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Abstract

Methods for optical measurement of voltage dynamics in living cells are attractive because they 

provide spatial resolution surpassing traditional electrode-based measurements and temporal 

resolution exceeding that of widely-used Ca2+-imaging. Chemically-synthesized voltage-sensitive 

dyes that use photoinduced electron transfer (PeT) as a voltage-sensing trigger offer high voltage 

sensitivity and fast response kinetics, but targeting chemical indicators to specific cells remains an 

outstanding challenge. Here, we present a new family of readily functionalizable, fluorescein-

based voltage sensitive fluorescent dyes (sarcosine-VoltageFluors) that can be covalently attached 

to a genetically-encoded cell surface receptor to achieve voltage imaging from genetically defined 

neurons. We synthesized four new VoltageFluor derivatives that possess carboxylic acid 

functionality for simple conjugation to flexible tethers. The best of this new group of dyes was 

conjugated via a polyethyleneglycol (PEG) linker to a small peptide (SpyTag, 13 amino acids) that 

directs binding and formation of a covalent bond with its binding partner, SpyCatcher (15 kDa). 

The new VoltageSpy dyes effectively label cells expressing cell-surface SpyCatcher, display good 

voltage sensitivity, and maintain fast response kinetics. In cultured neurons, VoltageSpy dyes 

enable robust, single-trial optical detection of action potentials at neuronal soma with sensitivity 

exceeding genetically encoded voltage indicators. Importantly, genetic targeting of chemically 

synthesized dyes enables VoltageSpy to report on action potentials in axons and dendrites in single 

trials, tens to hundreds of micrometers away from the cell body. Genetic targeting of synthetic 

voltage indicators with VoltageSpy enables voltage imaging with low nanomolar dye concentration 

and offers a promising method for allying the speed and sensitivity of synthetic indicators with the 

enhanced cellular resolution of genetically encoded probes.
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Introduction

Cellular membrane potential, or voltage, is a key physiological parameter critically 

important to all aspects of life, but especially to excitable cells, like neurons. Optical 

methods to image voltage promise to relieve our dependence on classic electrode-based 

methods, which are highly invasive, often limited to single cells, and extremely low-

throughput. Voltage-sensitive fluorescent indicators - either chemically synthesized or 

genetically encoded - offer an attractive solution for the direct observation of voltage 

dynamics in a minimally invasive, highly parallel, and high throughput manner.1–2

Pioneering work showed that many commercially available dyes possess voltage-sensitive 

optical properties.3–5 Targeted synthesis of voltage-sensitive compounds yielded dyes with 

voltage sensitivity arising from an electrochromic interaction between the fluorophore and 

the electric field across the membrane, or Stark-effect.6–7 These electrochromic dyes offer 

incredibly fast responses, but at the expense of relatively small shifts in their excitation/

emission spectra. More recent versions display improved sensitivity but require torturous 

chemical syntheses.8–9 Other chemical indicators include oxonol dyes which partition on the 

outer or inner leaflet of the plasma membrane in a voltage-dependent fashion. These dyes 

can give larger fractional changes in fluorescence, but often-times do not possess the 

required response kinetics to enable resolution of action potentials.10–12 To address 

challenges associated with speed and sensitivity of chemical dyes, we were inspired by 

elegant theoretical models13 and early experimental examples,14 to explore photoinduced 

electron transfer (PeT) through molecular wires as a modality for voltage sensing. These 

voltage-sensitive fluorophores, or VoltageFluors, developed in our lab are amenable to 

voltage sensing across a wide range of colors, afford high voltage sensitivities (60% ΔF/F 

per 100 mV, in HEK cells), and maintain response times capable of clearly resolving action 

potential spikes in mammalian neurons.15–19

Completely genetically encoded approaches to voltage imaging offer a complementary 

method for voltage imaging.20–21 Genetically encoded platforms for voltage imaging cluster 

into three groups: fluorescent proteins coupled to voltage sensing domains from ion channels 

and/or enzymes,22–27 opsin-based indicators,28–32 or hybrid opsin-fluorescent protein 

fusions.33–35 Improved trafficking36–37 of fluorescent protein-based indicators enabled 

considerable improvement over early, pioneering protein-based voltage indicators.22–24 Yet 

despite progress in recent years, significant challenges remain regarding proper trafficking of 
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heterologous proteins to the cell membrane, response speed, low brightness, added 

capacitance, and/or light induced ion pumping.

Hybrid chemical and genetic approaches to voltage imaging combine the speed and 

sensitivity of chemical indicators with the cell-type specificity of genetic model systems. 

Previous hybrid chemical-genetic methods for voltage sensing include hVOS indicators, in 

which an exogenously added, lipophilic anion partitions between inner and outer leaflets of 

the membrane in a voltage-dependent fashion to quench fluorescent protein fluorescence;
38–42 enzymatic localization in which genetically encoded phosphatases on the cell surface 

improve the membrane accumulation of a modified electrochromic dye;43–45 

electrochromic-FRET (eFRET), in which Cu-mediated click chemistry is employed to 

selectively attach a fluorophore to a picolyl azide incorporated on a voltage-sensitive opsin 

via an engineered lipoic acid ligase;46 and a fluorogenic approach from our lab in which a 

genetically encoded esterase unmasks a caged VF dye in defined neurons (VoltageFluor 

activated by esterase Expression, VF-EX).47 These approaches suffer variously from the use 

of capacitance-adding anions like dipicrylamine; low selectivity in cell uptake and difficult 

chemical syntheses; toxicity associated with Cu-mediated catalysis on neuronal surfaces and 

the requirement for expanded genetic codes; and/or low contrast between cells which 

express the targeting enzyme and the wild-type cells.

We hypothesized that we could address some of the short comings of our VF -EX targeting 

approach - specifically the low contrast between expressing and non-expressing cells - by 

covalently tethering VF dyes to a cell of interest (Scheme 1). A number of excellent 

approaches exist for the covalent labeling of modified enzymes.48–52 All rely on a modified 

enzyme that will label itself with a small, chemical ligand. We envisioned that one of these 

self-labeling enzymes could be targeted to the cell surface of a neuron of interest to direct 

covalent capture of a VF dye modified with the cognate ligand. We were specifically 

attracted to the SpyTag/SpyCatcher system52 that employs an engineered cell adhesion 

molecule from Streptococcus pyogenes. The SpyTag fragment is a small peptide (13 amino 

acid residues) that interacts with the SpyCatcher enzyme to form an isopeptide bond. We 

hoped that by linking the SpyTag peptide to a VF dye via a flexible polyethyleneglycol 

(PEG) linker, we could direct selective localization of VF dye only to those cells which 

express SpyCatcher on the cell surface. We additionally reasoned that use of the SpyTag 

peptide on VF would limit the amount of VF dye that passed through cell membranes, thus 

improving the membrane localization of the VF dye. Here, we show that SpyTag/SpyCatcher 

can be applied to a new VF scaffold to achieve fast and sensitive voltage imaging with only 

nanomolar concentrations of dye and in genetically-defined neurons.

Results

Synthesis of sarcosine VoltageFluor dyes

The structure of the prototypical green VoltageFluor VF2.1.Cl (Scheme 1) does not lend 

itself to further synthetic modification. We recently reported a family of rhodamine-based 

voltage reporters (RhoVRs) which have a sarcosine amide at the 3 position of the meso 
aromatic ring, rather than an aryl sulfonate as in VF2.1.Cl.18, 53 The resultant free carboxylic 

acid offers a convenient handle for synthetic modification, maintains cellular 
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impermeability, and is largely decoupled from the conjugated system of the 

phenylenevinylene molecular wire, making it a logical site for installing a targeting moiety 

(Scheme 1). The brightness and voltage-sensitivity of VoltageFluor dyes are sensitive to the 

identity of the aniline electron donor54 and orientation of the molecular wire.17, 55 To find an 

optimized green VoltageFluor which could serve as a starting point for our targeted voltage 

indicators we synthesized and characterized a new series of sarcosine-containing 

VoltageFluor dyes (11–14) (Scheme 2). Starting from isomerically pure 5- and 6-bromo-2’,

7’-dichlorofluorescein (1, 2),18, 56 HATU-mediated amide couplings yielded tert-butyl ester 

protected intermediates 3 and 4 in 72 and 87% yield, respectively. Heck couplings with 

molecular wire fragments 5 or 618 gave four tert-butyl ester protected VF-sarcosine 

compounds 7-10 in yields ranging from 53 to 83%. Removal of the tert-butyl ester with TFA 

gave sarcosinyl-VoltageFluors 11-14 in moderate to good yield (40%−99%) after 

purification by preparative TLC. We confirmed sarcosinyl-VoltageFluors and their synthetic 

precursors form stable rotamer pairs using VT-NMR (SI Spectra). All four sarcosine VF 

dyes (Table 1) displayed similar optical properties, with absorption and emission maxima 

centered at 525 and 540 nm respectively. Quantum yields ranged from 0.008 (12) to 0.055 

(14), in line with typical values for fluorescein-type VoltageFluors.18–19

Cellular characterization of sarcosine VoltageFluors

All the newly synthesized sarcosine VoltageFluors clearly labeled the plasma membranes of 

HEK cells (Fig. 1, Fig. S1) with variable fluorescence intensity. The brightest VF dye was 

13, displaying cellular fluorescence 40-fold greater than the dimmest indicator, 12 (Table 1, 

Fig. S1). The voltage sensitivity of VoltageFluor-sarcosine probes was determined by dual 

optical and electrophysiology in HEK cells (Fig. 1). We delivered voltage steps from +100 to 

−100 mV volts in 20 mV increments to HEK293T in whole-cell voltage clamp while 

recording concomitant changes in fluorescence intensity over the cell body. Sarcosine VF 14 
displayed the greatest voltage sensitivity, at 29% ΔF/F per 100 mV. The least sensitive was 

sarcosine VF 12, at 12% ΔF/F. Because sarcosine VF 13 possessed high cellular brightness, 

good voltage sensitivity, and superior signal to noise ratios (SNR) for detecting depolarizing 

voltage steps in HEK cells (Table 1, Fig. 1, Fig. S1), we thought it a promising candidate for 

covalent attachment to cell surfaces via SpyTag/SpyCatcher interaction.

Design and synthesis of VoltageSpy Indicators

We envisioned that sarcosine VF 13 could be linked to the SpyTag peptide via a flexible 

PEG linker. The linker should be long enough to allow incorporation of the VF dye into the 

cell membrane. Because proper orientation of VF-type dyes in the cell membrane is critical 

for optimal voltage sensitivity,17 the linker should ideally allow the dye to freely orient in 

the membrane. To assess this, we coupled sarcosine VF 13 to PEG linkers of lengths ranging 

from 14 to 128 Å (PEGX; X = 3, 11, 23, or 35, Scheme 3). Amide coupling of sarcosine VF 

13 with heterobifunctional PEG linkers terminating with amino and azido groups provided 

VF-PEGX-N3 intermediates 15–18 in 59 to 99% yields. PEGylation of 13 resulted in a 

small, linker-length dependant red shift in the emission spectra, as well as an increase in 

quantum yield (Table 1, Fig. S2). Copper catalyzed azidealkyne cyclization of compounds 

15–18 with SpyTagalkyne, in which the native SpyTag 13-mer peptide 
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(AHIVMVDAYKPTK) is modified to contain propargyl glycine (Pra) on the C-terminus, 

resulting in the 14-residue peptide, AHIVMVDAYKPTK-Pra (SpyTag-Pra), gave VF-

PEGX-SpyTags 19–22 in 3 to 22% yield after purification by reversed-phase, semi-

preparative HPLC (Scheme 3).

Evaluation of VoltageSpy dyes in HEK cells

In order to evaluate the performance of the new VF-PEGX-SpyTags (VoltageSpy dyes), we 

expressed SpyCatcher on the surface of HEK cells. The SpyCatcher protein, originally 

engineered from the second immunoglobulin-like collagen adhesion domain (CnaB2) from 

the fibronectin binding protein FbaB of Streptococcus pyogenes, forms a stable isopeptide 

bond with SpyTag.52 We hypothesized that the new VF-PEGx-SpyTag dyes would be 

dependent on the presence of cell-surface SpyCatcher for effective membrane staining. We 

fused the original SpyCatcher protein to an N-terminal PAT3-derived signal peptide57 for 

efficient export from the cell and appended a C-terminal glycophosphatidyl inositol (GPI) 

anchor sequence derived from decay accelerating factor (DAF) (Fig. S3).

SpyCatcher expression in HEK cells was confirmed by immunofluorescence directed against 

the hemagglutinin tag (HA) that was included at the N-terminus of the SpyCatcher protein 

(Fig. S4a-d). To readily identify living cells expressing SpyCatcher, we included a nuclear-

localized mCherry on the same gene, linked through the self-cleaving T2A linker to provide 

stoichiometric expression of nuclear mCherry alongside cell-surface SpyCatcher (Fig. 2, 

Fig. S3). VF-PEGX-SpyTag conjugates 19–22 all show membrane labeling, with high 

selectivity for SpyCatcher expressing HEK293T cells over neighboring, non-expressing cells 

(Fig. 2, Fig. S5). SpyCatcher permits the use of other signal peptides and transmembrane 

domains; plasmids employing a signal peptide from immunoglobulin K (IgK) and platelet-

derived growth factor receptor (PDGFR) also showed good surface-expression of 

SpyCatcher in HEK293T cells (Fig. S4e-k). The inclusion of the SpyTag peptide is essential 

for membrane localization: azido-PEG precursors 15–18 all show some degree of cellular 

internalization (Fig. S6). This internalization lowers the nominal voltage sensitivity of the 

dyes - VF-PEGH-N3 shows only a modest 3% AF/F per 100 mV in HEK cells (Fig. S6e).

SpyCatcher-mediated labeling of HEK cells

VoltageSpy labeling of live HEK293T cells provides good contrast between SpyCatcher-

expressing and non-expressing cells (Fig. 2a-h, Fig. S5). At concentrations as low as 5 nM 

(two orders of magnitude lower than typical loading concentrations for untargeted voltage 

sensitive dyes), dyes of all PEG lengths gave mean contrast ratios ranging from 5.6 (± 3.8, 

S.D., n = 77, PEG3, VoltageSpy 19) to 35 (± 29, S.D., n = 50, PEG35, VoltageSpy 22). At a 

higher concentration of VoltageSpy, 25 nM, contrast ratios decreased, ranging from 3.9 

(± 1.9, S.D., n = 40, PEG3, VoltageSpy 19) to 13 (± 8.8, S.D., n = 87, PEG35, VoltageSpy 

22). At 100 nM VoltageSpy, contrast ratios decreased further to 3 (±1.9, S.D., n = 41, 

PEG11, VoltageSpy 20) and 7 (± 4.1, S.D., n = 38, PEG35, VoltageSpy 22). The decrease in 

contrast ratio is driven by increasing amounts of non-specific Volt-ageSpy labeling at higher 

dye concentrations. This non-specific labeling is worse for short PEG linkers (x = 3, 11, 

VoltageSpy 19 and 20) and is near negligible for the longer PEG linkers (x = 23, 35, 

VoltageSpy 21 and 22) (Fig. S5b). The fluorescence intensities of SpyCatcher-expressing 
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cells do not substantially increase with addition of more VoltageSpy dye, indicating near-

saturation of available SpyCatcher binding sites, even at 5 nM VoltageSpy treatment (Fig. 

S5a). The brighter regions that sometimes appear where two cell membranes touch (Fig. 

2a,b) is a result of imaging from a larger volume of vertical membrane at an interface using 

widefield fluorescence microscopy. This is not an artifact of protein expression or labeling; 

we see a similar effect with the parent VoltageFluor (13, Fig. 1a).

VoltageSpy dependence on SpyCatcher

VoltageSpy labeling depends on the expression of cell surface SpyCatcher. Cellular 

VoltageSpy labeling could be blocked by preincubation of SpyCatcher-expressing cells with 

unlabeled SpyTag-peptide52 (Fig. S7). When VoltageSpy 20 (PEG11) was applied to 

SpyCatcher-expressing cells pre-treated with 10 μM SpyTag-Pra52, we observed a 62 % 

decrease in membrane-associated fluorescence (Fig. S7). The large excess of unlabeled 

SpyTag-Pra52 required to block nM concentrations of VoltageSpy suggests that the presence 

of a lipophilic molecular wire increases the labeling speed of VoltageSpy dyes. Partition of 

the molecular wire into the membrane may lead to a high local concentration of VoltageSpy 

at the cell surface, accelerating the SpyTag-SpyCatcher reaction and contributing to some of 

the background staining observed at higher VoltageSpy concentrations (Fig. S5). We find 

that SpyTag conjugated to a simple dichlorofluorescein (Fig. S8, DCF-PEG11-SpyTag, 24) 

applied at 100 nM gave only poor labeling of HEK cells, where Μm concentrations of 24 
were required to achieve appreciable labeling of SpyCatcher-expressing cells (Fig. S8). 

However, in the absence of the lipophilic molecular wire, almost no off-target labeling was 

observed.

VoltageSpy labels extracellular membrane surfaces

The majority of the cellular fluorescence is associated with the extracellular face of the 

membrane. Treatment of Voltag-eSpy-labeled HEK cells (22, PEG35, 5 nM) with Trypan 

Blue (0.1%) to quench extracellularly-associated fluorescence58 results in a 79% decrease in 

fluorescence intensity (Fig. S9). In contrast, Trypan Blue treatment does not substantially 

decrease the fluorescence of a cytosolic fluorescent indicator, Oregon Green BAPTA (Fig. 

S9), establishing that the majority of VoltageSpy fluorescence is associated with the external 

face of the plasma membrane. In this regard, VoltageSpy circumvents a common problem 

observed with genetically encoded voltage indicators; the presence of a substantial 

intracellular pool of improperly-trafficked fluorophores which contribute a non-responsive 

background signal.36–37 Poor trafficking stymied the wide adoption of first-generation 

GEVIs,22–24, 36–37 and improvements to the trafficking and sub-cellular targeting of GEVIs 

continue to advance the usefulness of fluorescent GEVIs.32

VoltageSpy dyes are voltage-sensitive after labeling Spy-Catcher expressing cells (Fig. 2). 

VoltageSpy dyes 19-22 are all equally voltage sensitive (25 nM dye), with a response of 12% 

ΔF/F per 100 mV (Table 2, Fig. S10). We hypothesize that the small size of the SpyCatcher 

protein and the conformational flexibility of the C-terminus of SpyCatcher59 enables even a 

PEG3 linker (approximately 14 Å) to allow a VF dye to insert into the plasma membrane. 

Additionally, the final 3 amino acid residues of SpyTag project away from and do not form 

hydrogen bonds with SpyCatcher in the crystal structure,59 providing additional flexibility 
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for a tethered VF to reach the membrane. In HEK cells that do not express SpyCatcher, 

higher concentrations (1 μM) of VoltageSpy 20 are needed to stain the membrane. 

VoltageSpy 20 is voltage-sensitive in non-expressing cells, at approximately 9% per 100 mV 

(Table 1, Fig. S10e). Because the voltage sensitivity of the VoltageSpy dyes (9 to 13%) are 

lower than sarconsine VF 13 (22%), we hypothesize that the replacement of the anionic 

carboxylate on 13 with the neutral amide in 15 – 18 results in a slightly different orientation 

in the membrane,17 decreasing voltage sensitivity. Conjugation to SpyCatcher may place 

additional constraints on the orientation of the VoltageFluor sensor.

VoltageSpy in Neurons

In neurons, VoltageSpy dyes recapitulate the selective staining observed in HEK293T cells. 

Using immunocytochemistry, we verified that the PAT3 signal sequence and the GPI 

sequence from DAF under control of the human synapsin promoter gave good cell surface 

expression of SpyCatcher in cultured rat hippocampal neurons (Fig. S11). A combination of 

live-cell imaging followed by fixation and immunocytochemistry confirm the high 

specificity of the VoltageSpy/SpyCatcher interaction in neurons (Fig. S11). Following live-

cell staining with VoltageSpy 20 (PEGn), membrane-associated VoltageSpy fluorescence 

survived fixation (Fig. S11e,f) allowing us to establish good correlation between VoltageSpy 

localization and HA-epitope staining of SpyCatcher (Fig. S11g-j). Live-cell imaging in 

neurons stained with VoltageSpy dyes (PEGn, VoltageSpy 20, Fig. 3a-d; and PEG35, 

VoltageSpy 22, Fig. 3e-h) showed good selectivity for SpyCatcher-expressing neurons over 

non-expressing cells, with contrast ratios of approximately 5, across PEG lengths and 

concentrations (Fig. S12). The contrast in neurons varied widely, owing to differences in 

Spy-Catcher expression. The brightest neurons stained with VoltageSpy indicators possessed 

contrast ratios of approximately 25-fold over non-transfected cells, a 5-fold increase over 

contrast we achieved using fluorogenic VF dyes (~4-fold in neurons).47 We selected the 

brightest cells for subsequent imaging analysis.

Functional imaging with VoltageSpy in neurons

VoltageSpy dyes clearly report on action potentials from neurons expressing SpyCatcher. 

Under low-light illumination conditions (8 mW/mm2) we successfully recorded spontaneous 

activity in cultured neurons with good signal to noise (Fig. 3i). Both VoltageSpy 20 (PEGn) 

and VoltageSpy 22 (PEG35) readily recorded action potential spikes, with sensitivities of 

11.6 ±1.3% and 11.1 ±1.4% ΔF/F, respectively (Fig. 3i, values are for n = 15 neurons and 

represent mean ± standard deviation, recorded at 500 Hz). The selectivity of targeting, lack 

of linker-length dependence on voltage sensitivity, and ΔF/F values in neurons match well 

with VoltageSpy performance in HEK cells. Dual optical and electrophysiological 

recordings of Volt-ageSpy 22 (PEG35) reveal that targeted indicators faithfully report 

underlying action potential dynamics with no lag time (Fig. 3j-l). Additionally, we 

established that the presence of either SpyCatcher alone or SpyCatcher + VoltageSpy did not 

alter neuronal membrane properties; we saw no difference in membrane capacitance, resting 

membrane potential, or action potential kinetics (Fig. S14).

VoltageSpy 22 (PEG35) performs well in neurons, compared to other genetically encoded 

voltage indicators. VoltageSpy dyes possessed excellent sensitivity, detecting evoked action 
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potential with 9.7 ± 1.5% ΔF/F, compared to −2.7 ± 0.6% for ASAP2f,60 a fluorescent 

protein-based indicator, and −3.4 ± 0.9% for Ace2N-mNeon,61 an electrochromic FRET-

based indicator (Fig. 4) when all three indicators were imaged under identical conditions. 

Both ASAP2f and Ace2N-mNeon displayed negative-going responses to membrane 

depolarization, as a result of their sensing mechanism.61–62 The SNR of VoltageSpy 22 for 

action potentials is 7.7 ± 1.9, comparable to Ace2N-mNeon (7.1 ± 1.1) and substantially 

larger than ASAP2f (4.4 ± 0.5) (Fig. 4f). ASAP2f and Ace2N-mNeon are 2.4- and 15-fold 

brighter than VoltageSpy, respectively (as measured at the soma of cells from which we 

recorded), but the majority of the fluorescence of the genetically encoded indicators comes 

from fluorescence associated with internal structures—not the plasma membrane (Fig. 4a-c, 

Fig. S13). This highlights again a unique advantage of a hybrid approach in which a voltage-

sensitive fluorophore is appended to a non-fluorescent genetically-encoded membrane 

target: in the hybrid case of Voltag-eSpy/SpyCatcher, poorly-trafficked proteins are invisible 

and do not contribute to unproductive background fluorescence.

Imaging sub-cellular voltage dynamics

Measurements of the electronic properties of pre- and post-synaptic sites in neurons have 

been a tremendous, long-standing experimental challenge in neuroscience. Patching pre-

synaptic boutons is difficult, and dendritic spines are inaccessible to electrophysiology. 

These structures therefore provide a unique opportunity where optical tools are the only 

viable existing method for interrogating their biology. The electric properties of dendrites 

have previously been probed with VSDs, but requires laborious internal loading of dyes via 

patch pipette.63–67 GEVIs have been also been employed to interrogate pre and post-

synaptic biology, but the slow kinetics and low brightness of GEVIs make these experiments 

challenging.68

By employing the speed and sensitivity of VF dyes with genetic targeting of the SpyTag/

SpyCatcher system, we can readily image sub-cellular voltage dynamics in cultured 

hippocampal neurons. Application of 5 nM VoltageSpy 22 (PEG35) results in clear, 

membrane-associated fluorescent restricted to SpyCatcher-expressing neurons indicated by 

nuclear mCherry (Fig. 5a). VoltageSpy labeling discriminates sub-cellular dendritic 

morphology - peripheral regions of dendrites are brighter than the internal cytosolic 

component (Fig. 5b) - and micronsized structures, dendritic spines, are visible (Fig. 5b). 

Singletrial (no stimulus-timed averaging used) optical recordings of a train of 25 evoked 

action potentials imaged at dendritic sites (purple, green, and blue ROIs, Fig. 5c) reveal clear 

action potentials (Fig. 5d). VoltageSpy dyes enable remote monitoring of voltage dynamics 

in sub-cellular regions 60 to 90 μm away from neuronal soma, the site of traditional 

electrophysiological recordings (Fig. 5d). In this way, genetically targeted VoltageSpy 

circumvents space clamp errors69 associated with measuring voltage changes in structure 

that are not close to the neuronal cell body. In a complementary fashion, VoltageSpy 20 
(PEG11) can also image voltage dynamics in pre-synaptic structures associated with axon 

terminals (Fig. 5e-g). The cellular specificity of the VoltageSpy/SpyCatcher interaction 

enables tracing of extensive axonal tracks (Fig. 5e). Zooming in on the boxed region reveals 

the fine structure of an axon, several hundred microns distant from the nearest cell body 

(Fig. 5f). Single-trial, high speed imaging of 25 evoked action potentials clearly resolves fast 
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voltage dynamics in a micron-sized axonal terminal hundreds of micrometers away from the 

neuronal soma (Fig. 5g).

Conclusion

In conclusion, we show that voltage-sensitive fluorescent dyes can be covalently appended 

to the cell surface of mammalian cells and neurons, affording the opportunity for voltage 

imaging in genetically-defined cells or in sub-cellular regions of interest. The best of the 

newly-synthesized, sarcosine-containing VoltageFluors is readily functionalized with a PEG 

linker terminating with the SpyTag ligand. Localization of this VoltageSpy is determined by 

the expression of the SpyCatcher protein on cell surfaces. In this way, the speed and 

sensitivity of fluorescein-based voltage-sensitive fluorophores can be coupled with a 

genetically encoded component. This hybrid approach readily detects voltage changes in 

cultured cells and mammalian neurons. VoltageSpy performs well in cultured neurons, 

displaying up to 25-fold increase in staining in Spy-Catcher-expressing cells, and reporting 

on action potentials with higher sensitivity than commonly used genetically encoded voltage 

indicators. Using VoltageSpy, voltage dynamics in subcellular structures are readily 

observable in single trial experiments - an experiment which is otherwise difficult in culture 

due to the extensive overlap of axons and dendrites from different neurons in any given area. 

The sparse labeling achieved with VoltageSpy dyes also points the way towards future 

experiments in brain slice and in vivo, where the high density of cell bodies and their 

processes complicates imaging from single cells with untargeted dyes. Looking forward, we 

aim to expand the palette of available VoltageSpy dyes by engaging carboxylate-containing 

rhodamine-based voltage reporters (RhoVRs),53 develop new chemistries to target far-red 

dyes,15 apply next-generation SpyTag/SpyCatcher constructs,70 and mix and match 

complementary covalent targeting strategies48–52 with our existing palette of voltage-

sensitive dyes for multiplexed imaging in complex neural tissue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Characterization of sarcosine VoltageFluor dyes. a) Widefield, fluorescence microscopy 

image of HEK cells loaded with 1 μM sarcosine probe 13. Scale bar is 10 μM. b) 

Absorbance (black line) and emission (green line) spectra of 13. c) Representative plot of 

fractional change in fluorescence (ΔF/F) vs time from a series of voltage steps (+100 to 

−100 mV from a holding potential of −60 mV in 20 mV increments) recorded from a HEK 

cell stained with 1 μM 13 in whole-cell voltage clamp mode. d) Plot of fractional change in 

fluorescence vs membrane potential from voltage-clamped HEK cells stained with 1 μM 13. 

Data are mean ±SEM from six cells.
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Figure 2. 
Evaluation of VoltageSpy dyes in HEK cells. a-h) Widefield fluorescence (a-d) and DIC (e-

h) microscopy images of HEK cells co-expressing SpyCatcher and nuclear mCherry (red 

signal) labeled with 5 nM VoltageSpy (green signal) dyes 19 (PEG3, a, e), 20 (PEG11, b, f), 

21 (PEG23, c, g) and 22 (PEG35, d, h). Scale bar is 20 μm. i) Representative plot of 

fractional change in fluorescence (ΔF/F) vs time from a series of voltage steps (+100 to 

−100 mV from a holding potential of −60 mV in 20 mV increments) recorded from a HEK 

cell labeled with 22 in whole-cell voltage clamp mode. j) Plot of fractional change in 

fluorescence vs membrane potential from voltage-clamped HEK cells labeled with 22. Data 

are mean ±SEM from five cells
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Figure 3. 
VoltageSpy dyes report on voltage dynamics in cultured hippocampal mammalian neurons. 

a-h) Widefield fluorescence and DIC microscopy images of neurons co-expressing 

SpyCatcher and nuclear mCherry labeled with VoltageSpy dyes 20 (a-d) and 22 (e-h). Scale 

bar is 40 μm. i) Representative ΔF/F traces of spontaneous activity recorded from 

SpyCatcher expressing neurons labeled with 22. Traces are ΔF/F from regions of interest at 

the cell bodies of neurons after background offset and bleach correction. Images were 

acquired at 500 Hz and represent single-trial acquisitions. Fluorescence (j, merged 

VoltageSpy and mCherry signals) and DIC (k) microscopy images of a VoltageSpy 22 
labeled neuron in whole-cell current clamp mode. Scale bar is 20 μm. l) Overlaid optical and 

electrophysiology signals from a single action potential in a current-clamped neuron. Optical 

trace was acquired at 1 kHz.
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Figure 4. 
Comparison of VoltageSpy to GEVIs. Widefield fluorescence microscopy images of 

cultured hippocampal neurons expressing a) Ace2N-mNeon, b) ASAP2f or c) SpyCatcher 

and labeled with VoltageSpy 22. Scale bar is 20 μm. d) Representative traces of optically 

recorded, evoked action potentials from each indicator recorded under identical imaging 

conditions (. e, f) Quantification of ΔF/F (e) and SNR (f) of evoked spikes. Data are mean 

±SD for 17 (VoltageSpy), 15 (ASAP2f) and 15 (Ace2N-mNeon) cells and represent 

averaged ΔF/F and SNR values from all spikes in a single trace
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Figure 5. 
Sub-cellular voltage imaging with VoltageSpy dyes. a-d) imaging evoked action potentials in 

dendrites. a) Widefield fluorescence microscopy image of a hippocampal neuron co-

expressing SpyCatcher and nuclear mCherry (red) and labeled with VoltageSpy 20 (green) 

under 63X magnification. Scale bar is 20 μm. b) Close-up of boxed region in panel (a). Scale 

bar is 20 μm. c) Average intensity projection of 2500 frames recorded at 500 Hz. ROIs are 

10 μm long. d) ΔF/F traces of an evoked train of 25 APs. Color-coding corresponds to ROIs 

indicated in panel (c). Approximate distances from the center of the mCherry nucleus are 

indicated above each trace. e-g) imaging evoked action potentials in axons. e) Widefield 

fluorescence microscopy image of a hippocampal neuron co-expressing SpyCatcher and 

nuclear mCherry (red channel) and labeled with VoltageSpy 20 (green signal) under 20X 

magnification. Scale bar is 100 μm. f) Axon branch of the neuron in panel (e) under 63X 

magnification and close-up of axon terminal indicated by the yellow circle in panels (e) and 

(f) averaged intensity projection from 6000 frames imaged at 1.2 kHz. Scale bar is 10 μm. g) 

ΔF/F trace of an evoked train of 25 APs recorded at 1.2 kHz.
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Scheme 1. 
Genetic targeting of VoltageFluor dyes using SpyTag/SpyCatcher methodology
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Scheme 2. 
Synthesis of sarcosine VoltageFluors

Grenier et al. Page 20

J Am Chem Soc. Author manuscript; available in PMC 2020 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 3. 
Synthesis of VoltageSpy indicators.

Grenier et al. Page 21

J Am Chem Soc. Author manuscript; available in PMC 2020 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Grenier et al. Page 22

Ta
b

le
 1

.
P

ro
pe

rt
ie

s 
of

 s
ar

co
si

ne
 V

F
 d

ye
s,

 P
E

G
yl

at
ed

 in
te

rm
ed

ia
te

s 
an

d 
V

ol
ta

ge
Sp

y 
in

di
ca

to
rs

.

dy
e

is
om

er
R

P
E

G
 u

ni
ts

λ
m

ax
 (

ab
s)

[a
]

λ
m

ax
 (

em
)[

a ]
Φ

[a
]

ce
llu

la
r

br
ig

ht
-

ne
ss

[b
]

C
on

tr
as

t
[b

][
c ]

%
Δ

F
/F

[b
][

d ]

ef
fe

ct
iv

e
se

ns
it

iv
it

y
[e

]

11
5

-H
--

-
52

5
54

1
2.

7
10

--
-

27
.2

±
0.

2
7

12
5

-O
M

e
--

-
52

5
54

0
5.

5
1

--
-

12
.2

±
0.

4
1

13
6

-H
--

-
52

5
54

0
3.

9
40

--
-

22
.7

±
0.

1
12

14
6

-O
M

e
--

-
52

4
54

0
0.

8
6

--
-

29
.3

±
0.

8
6

15
6

-H
3

52
6

54
5

5.
8

--
-

--
-

--
-

--
-

16
6

-H
11

52
6

54
4

10
.9

--
-

--
-

3.
2 

±
0.

1
--

-

17
6

-H
23

52
6

54
0

9.
8

--
-

--
-

--
-

--
-

18
6

-H
35

52
6

54
0

11
.2

--
-

--
-

--
-

--
-

19
6

-H
3

52
7

54
4

10
.9

--
-

5.
6

±
3.

8
12

.5

±
0.

2 
[f

]
--

-

20
6

-H
11

52
6

54
4

7.
9

--
-

12
.6

±
8.

6

13
.1

±
0.

2

[f
][

g ]
--

-

21
6

-H
23

52
6

54
6

13
.9

--
-

17
.8

±
9.

7
11

.6

±
0.

2 
[f

]
--

-

22
6

-H
35

52
6

54
6

8.
7

--
-

34
.6

±
29

.3
12

.7

±
0.

1 
[f

]
--

-

[a
] A

cq
ui

re
d 

in
 P

B
S,

 p
H

 7
.4

 w
ith

 0
.1

%
 T

ri
to

n 
X

-1
00

.

[b
] m

ea
su

re
d 

in
 H

E
K

 c
el

ls
.

[c
] ra

tio
 o

f 
fl

uo
re

sc
en

ce
 in

te
ns

ity
 o

f 
Sp

yC
at

ch
er

 e
xp

re
ss

in
g 

ce
lls

 a
nd

 m
ed

ia
n 

fl
uo

re
sc

en
ce

 in
te

ns
ity

 o
f 

un
tr

an
sf

ec
te

d 
ce

lls
 lo

ad
ed

 w
ith

 5
 n

M
 d

ye
. D

at
a 

is
 m

ea
n 

±
SD

 f
or

 4
9 

to
 7

7 
ce

lls
.

[d
] Pe

r 
10

0 
m

V
 s

te
p,

 o
pt

ic
al

ly
 s

am
pl

ed
 a

t 5
00

 H
z.

[e
] R

el
at

iv
e 

pr
od

uc
t o

f 
sq

ua
re

 r
oo

t o
f 

ce
llu

la
r 

br
ig

ht
ne

ss
 a

nd
 Δ

F/
F.

[f
] V

al
ue

s 
ar

e 
m

ea
su

re
d 

in
 H

E
K

 c
el

ls
 e

xp
re

ss
in

g 
ce

ll-
su

rf
ac

e 
Sp

yC
at

ch
er

.

[g
] In

 c
el

ls
 th

at
 d

o 
no

t e
xp

re
ss

 S
py

C
at

ch
er

, v
ol

ta
ge

 s
en

si
tiv

ity
 is

 9
.1

 ±
0.

1%
.

J Am Chem Soc. Author manuscript; available in PMC 2020 January 23.


	Abstract
	Graphical Abstract
	Introduction
	Results
	Synthesis of sarcosine VoltageFluor dyes
	Cellular characterization of sarcosine VoltageFluors
	Design and synthesis of VoltageSpy Indicators
	Evaluation of VoltageSpy dyes in HEK cells
	SpyCatcher-mediated labeling of HEK cells
	VoltageSpy dependence on SpyCatcher
	VoltageSpy labels extracellular membrane surfaces
	VoltageSpy in Neurons
	Functional imaging with VoltageSpy in neurons
	Imaging sub-cellular voltage dynamics

	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Scheme 1.
	Scheme 2.
	Scheme 3.
	Table 1.

