

HHS Public Access

Author manuscript *Gastroenterology*. Author manuscript; available in PMC 2020 May 01.

Published in final edited form as:

Gastroenterology. 2019 May ; 156(6): 1905–1913. doi:10.1053/j.gastro.2019.01.254.

Prevalence of Germline Mutations Associated with Cancer Risk in Patients With Intraductal Papillary Mucinous Neoplasms

Michael Skaro¹, Neha Nanda¹, Christian Gauthier¹, Matthäus Felsenstein¹, Zhengdong Jiang¹, Miaozhen Qiu^{1,3}, Koji Shindo¹, Jun Yu^{2,4}, Danielle Hutchings¹, Ammar A. Javed⁴, Ross Beckman⁴, Jin He⁴, Christopher L. Wolfgang^{1,2,4,5}, Elizabeth Thompson^{1,2}, Ralph H. Hruban^{1,2,5}, Alison P. Klein^{1,2,5,6}, Michael Goggins^{1,2,5,7}, Laura D. Wood^{1,2,5}, and Nicholas J. Roberts^{1,2,5}

¹Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

²The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

³Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China.

⁴Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

⁵Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

⁶Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.

⁷Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

Abstract

Background & aims—Many patients with pancreatic adenocarcinoma (PDAC) carry germline mutations associated with increased risk of cancer. It is not clear whether patients with intraductal

Correspondence: Nicholas J. Roberts, Vet.M.B., Ph.D., The Johns Hopkins University School of Medicine, Department of Pathology, 1550 Orleans Street, Baltimore, MD 21287. Tel: 410-502-5162. Email: nrobert8@jhmi.edu. Contributions

M.S. and N.J.R planned and designed study. M.S., N.N., C.G., M.F., Z.J., M.Q., K.S., J.Y., D.H., A.J., R.B., J.H., C.L.W., E.T., R.H.H., A.P.K., M.G., L.D.W., and N.J.R. collected samples and clinicopathologic data. M.S., N.N., C.G., M.F., Z.J., and N.J.R. conducted experiments and generated sequence data. M.S., C.G., M.Q., and N.J.R. analyzed data. M.S. and N.J.R. wrote the manuscript. All authors approved the final version of the manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflicts of interest

The authors declare no conflicts of interest.

papillary mucinous neoplasms (IPMNs), which are precursors to some pancreatic cancers, also carry these mutations. We assessed the prevalence of germline mutations associated with cancer risk in patients with histologically confirmed IPMN.

Methods—We obtained non-tumor tissue from 315 patients with surgically resected IPMNs, from 1997 through 2017, and sequenced 94 genes with variants associated with cancer risk. Mutations associated with increased risk of cancer were identified and compared to individuals from the Exome Aggregation Consortium.

Results—We identified 23 patients with a germline mutation associated with cancer risk (7.3%; 95% CI, 4.9%–10.8%). Nine patients had a germline mutation associated with pancreatic cancer susceptibility (2.9% 95% CI, 1.4%–5.4%). More patients with IPMNs carried germline mutations in ATM(P<.0001), PTCH1 (P<.0001), and SUFU (P<.0001) compared with controls. Patients with IPMNs and germline mutations associated with pancreatic cancer were more like to have concurrent invasive pancreatic carcinoma compared to patients with IPMNs without these mutations (P<.0320).

Conclusions—In sequence analyses of 315 patients with surgically resected IPMNs, we found almost 3% to carry mutations associated with pancreatic cancer risk. More patients with IPMNs and germline mutations associated with pancreatic cancer had concurrent invasive pancreatic carcinoma compared to patients with IPMNs without these mutations. Genetic analysis of patients with IPMNs might identify those at greatest risk for cancer.

Keywords

Pancreas; cancer; genetics; predisposition

Introduction

Pancreatic adenocarcinoma (PDAC) is a deadly disease with a 5-year survival rate of just 8 percent¹. By 2030, PDAC is predicted to become the second leading cause of cancer-related death in the United States¹. Understanding the genetics and biology of pancreatic tumorigenesis is key to early diagnosis when patient outcomes are much improved^{2, 3}. In particular, understanding the risk factors driving development of non-invasive pancreatic precursor lesions and their transition to invasive carcinoma is essential to appropriate patient stratification and intervention.

Approximately 10% of patients with PDAC have a germline mutation in an established pancreatic cancer susceptibility gene, including: *ATM, BRCA1, BRCA2, CDKN2A, CPA1, MLH1, MSH2, PALB2, PMS2, PRSS1*, and *STK11*^{4–12}. Prevalence of a germline mutation is higher still in patients with PDAC and a family history of pancreatic cancer in a first-degree relative, reaching 15–20%⁴. Inheritance of a germline mutation in an established pancreatic cancer susceptibility gene can impact patient care in several ways. First, knowledge of germline status allows for informed, risk-appropriate screening strategies to be undertaken and PDAC to be detected early^{3, 13}. Second, as many established susceptibility genes predispose to tumors in a number of organs, recommended screening for these extrapancreatic cancers can be instituted¹⁴. Finally, in some patients with PDAC, germline mutation status may have therapeutic implications, for example, use of poly [ADP-ribose]

polymerase-1 (PARP-1) inhibitors or platinum-based chemotherapy for tumors deficient in homology directed DNA due to *BRCA2* loss and use of immunotherapy for patients with tumors deficient in mismatch repair due to loss of *MLH1*, *MSH2*, *MSH6*, or *PMS2*^{15–17}.

PDAC forms when normal ductal epithelium acquires sequential genetic, cellular, and morphological alterations^{18–21}. These alterations are well-defined and result in progression from normal epithelium, to non-invasive precursor lesion, and finally invasive carcinoma²². Pre-malignant, non-invasive precursor lesions are of three types, microscopic pancreatic intraepithelial neoplasia and macroscopic intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms²³. As IPMNs are macroscopic and non-invasive, they represent an ideal opportunity for intervention before progression to PDAC. IPMNs, however, are common in the population^{24, 25} and numerous clinical criteria are used as surrogates of high-grade dysplasia or invasive cancer to identify IPMN patients with a high-risk of progression to PDAC and may benefit from surgical intervention. These include size of the main pancreatic duct, cyst size, presence of a mural nodule, and symptoms such as pancreatitis or jaundice^{26–29}. Although useful, these clinical criteria are imprecise and indirect measures of tumor biology. Molecular markers that indicate a need for surgical resection are desperately needed but are currently lacking.

Several lines of evidence suggest a possible underlying genetic predisposition to IPMNs. First, IPMNs are often multifocal and the remnant pancreas is at increased risk of IPMN after resection. This multifocality could be due intraluminal spread of neoplastic cells, to an environmental exposure, or an underlying genetic predisposition^{30–32}. Second, germline mutations in pancreatic cancer susceptibility genes such as *BRCA2*, *CDKN2A*, and *STK11* have been identified in patients with IPMN^{33–35}. Third, in one screening study of 78 patients at high-risk of pancreatic cancer, most of the patients who underwent pancreatic resection for concerning imaging findings had IPMN³⁶. And in another study, the prevalence of incipient and high-grade IPMN was higher in patients with familial compared to sporadic PDAC³⁷. Finally, several reports have suggested that patients with an IPMN have an increased risk of developing other cancers, including colon cancer^{35, 38–41}.

Despite the potential ramifications of germline status in patients with IPMNs, no studies have systematically characterized germline mutations in this patient population. Therefore, we used targeted next-generation sequencing to characterize variation in genes that predispose to PDAC and other cancers in a series of 315 patients with surgically resected, histologically confirmed, IPMN.

Materials and methods

Patients and biospecimens

This study was reviewed and approved by the Johns Hopkins Medicine Institutional Review Board. 350 unselected patients with surgically resected IPMN and available non-tumor tissue were identified from surgical and pathology databases. Where available, 25 mg of fresh-frozen non-tumor tissue (duodenum) was obtained. Otherwise, 0.6 mm tissue cores were obtained from formalin-fixed blocks (FFPE) of non-tumor tissue (duodenum, gallbladder, liver, or spleen).

DNA extraction

DNA was extracted from fresh-frozen non-tumor tissue using the DNeasy Blood & Tissue Kit (Qiagen, catalog no. 69504) according to the manufacturer's instructions. DNA from FFPE non-tumor tissue cores was extracted using the QIAamp DNA FFPE Tissue Kit (Qiagen, catalog no. 56404) and deparaffinization solution (Qiagen, catalog no. 19093) with the following protocol modifications: 1) 10 or fewer tissue cores were de-paraffinized with 120 μ L of deparaffinization solution, while 11 or more tissue cores were deparaffinized with 200 μ L of deparaffinization solution, 2) after addition of ATL buffer and proteinase K, samples were incubated for up to 7 days with intermittent mixing by inversion and vortex, and 3) an additional 20 μ L of proteinase K was added to the sample after 48 hours of incubation. Extracted DNA was quantified with the Qubit 3.0 Fluorometer (Thermo Fisher Scientific) using the Qubit 1× dsDNA BR Assay Kit (Thermo Fisher Scientific, catalog no. Q32853).

Library preparation, sequencing, and analysis

DNA sequence libraries for each sample were prepared with the TruSight Rapid Capture Kit (Illumina, catalog no. FC-140-1105) and pooled into groups of 12 before capture with the TruSight Cancer probe set (Illumina, catalog no. FC-140–1101) according to the manufacturer's instructions. The TruSight Cancer probe set covers the coding region of 94 hereditary cancer predisposition genes (Supplementary Table 1). Fragment size and yield of captured libraries were assessed with the Bioanalyzer 2100 Instrument (Agilent, catalog no. G2939BA) using the High Sensitivity DNA Kit (Agilent, catalog no. 5067–4626) and the Qubit 3.0 Fluorometer (Thermo Fisher Scientific) using the Qubit 1× dsDNA HS Assay Kit (Thermo Fisher Scientific, catalog no. Q33230). Captured sequence libraries were further pooled into groups of 24 samples and sequenced on the Illumina MiSeq System (Illumina, CA) using the MiSeq Reagent Kit v2 (300-cycles) (Illumina, catalog no. MS-102-2002), generating 150 base pair (bp) paired-end reads. Sequence reads were processed through a standardized pipeline using MiSeq Reporter Software v2.6 (Illumina, CA). Sequence reads were aligned to the human reference genome (hg19) using Burrows-Wheeler Aligner (BWA)⁴². Variant calling was performed with Genome Analysis Tool Kit (GATK)⁴³. Samples with less than 20× average target coverage were excluded from analysis. Annotation of variants was conducted with ANNOVAR and included amino acid alterations based on RefSeq transcripts, minor allele frequency (MAF) using publicly available variant databases (1000 Genomes Project, Exome Variant Server, and Exome Aggregation Consortium (ExAC)), and ClinVar annotations^{44–46}. Variants (single base substitutions (SBS) or insertions/deletions (INDEL)) within exons or adjacent intronic sequence (+/-1, +/-2) of target genes were classified as either benign, of unknown significance, or deleterious germline mutation as follows: 1) benign – a variant of any functional consequence of >0.5 % MAF or a synonymous variant of any MAF, 2) variant of unknown significance - a missense SBS or in-frame INDEL of 0.5 % MAF, and 3) deleterious – a frameshift or splicing INDEL, a nonsense SBS, a stop loss SBS, or splicing SBS of 0.5 % MAF. Sequence reads supporting deleterious germline variant calls were inspected using the Integrative Genomics Viewer⁴⁷.

Variant validation

Putative deleterious germline mutations were validated via PCR amplification and Sanger sequencing of the variant region. Primers (Integrated DNA Technologies, Inc., CA) used for amplification are given in Supplementary Table 2. PCR set-up was conducted with OneTaq (NEB, catalog no. M0480S) according to manufacturer's instructions. Amplification was conducted with the T100 Thermo Cycler (BioRad, catalog no. 1861096) using the following cycling conditions: one cycle of 94° C for 30 s, 21 cycles of 94° C for 30 s, 70° C for 30 s (decrement 0.5° C per cycle), 68° C for 60 s, and 25 cycles of 94° C for 30 s, 60° C for 30 s, 68° C for 60 s. PCR products were purified with the QIAquick PCR Purification Kit (Qiagen, catalog no. 28104) and Sanger sequenced (Genewiz, MD). Sequence chromatograms were visualized with 4Peaks (Nucleobytes, Netherlands)

Statistical analysis

Statistical analyses were conducted with Prism 6 (GraphPad Software). Confidence intervals for percent of samples with a hereditary cancer predisposition gene or pancreatic cancer susceptibility gene were calculated using the modified Wald method. Germline mutations in surgically resected IPMN patients and non-TCGA samples from ExAC were grouped by gene and compared using a two-tailed, chi-square test with Yates' correction. Bonferroni correction for multiple testing was used and a *P* value $< 5.3 \times 10^{-4}$ was considered significant. Germline mutations in patients with surgically resected IPMN and unselected PDAC patients were grouped by gene and compared using a two-tailed Fisher's exact test. Clinicopathologic variables in surgically resected IPMN patients by presence of germline mutation and invasive cancer were compared using a two-tailed Fisher's exact test, except for age at time at surgery, duration of follow-up, and mean longest diameter of IPMN, which were compared using a two-tailed, unpaired *t* test. *P* values < 0.05 were considered significant. *P* values less than 0.0001 were abbreviated to < 0.0001.

Results

350 patients with surgically resected IPMN were included in this study. 315 patients had greater than 20× average target coverage after sequencing and were included in subsequent analyses. 138 patients had a high-grade IPMN (43.8%), 152 patients had a low- or intermediate-grade IPMN (48.3%), while 25 did not have a reported grade (7.9%). 62 (19.7%) patients had multifocal IPMN. 72 patients had IPMN and a co-occurring invasive carcinoma (22.9%), most commonly PDAC (57 patients). Other types of invasive carcinoma present in the study population included colloid carcinoma (11 patients), adenosquamous PDAC (1 patient), anaplastic carcinoma (1 patient), colloid carcinoma and PDAC (1 patient), and signet ring carcinoma (1 patient). 40 patients (12.7%) had a family history of pancreatic cancer in either a 1st or 2nd degree relative and 54 patients (17.1%) had a personal history of cancer. Further details of patient demographics and characteristics are given in Table 1 and Supplementary Table 3.

Targeted sequencing generated a mean of 150 Mbp per sample (range: 10-562 Mbp; standard deviation: 138 Mbp). Mean target coverage was $256 \times$ (range: $20-877 \times$; standard deviation: $140 \times$). Mean target region covered at $1 \times$ and $10 \times$ was 99.1% (73.9-100%,

standard deviation: 2.0%) and 97.2% (range: 46.9–100%; standard deviation: 5.6%) respectively. Mean number of SNVs identified per patient was 276 (range: 56–340; standard deviation: 40) and mean number of insertions and deletions was 1 (range: 1–3; standard deviation: 0).

Variants identified in the 94 hereditary cancer predisposition genes covered by the TruSight Cancer Panel were classified as either benign variant, variant of unknown significance, or deleterious germline mutations (see Materials and Methods). This analysis identified 26 germline mutations in 23 patients (7.3%: 95 percent confidence interval 4.9-10.8%) (Table 2). 10 germline mutations in 9 patients were in established pancreatic cancer susceptibility genes (2.9%: 95 percent confidence interval 1.3–5.4%), including five germline mutations in ATM, three germline mutations in BRCA2, one germline mutation in MSH6, and one germline mutation in PALB2. One germline mutation was also identified in BUB1B, a previously identified candidate pancreatic cancer susceptibility gene¹¹. More than one patient had a germline mutation involving ATM (5 patients), BRCA2 (3 patients), FANCI (2 patients), and PTCH1 (2 patients). Three patients had more than one germline mutation in a hereditary cancer predisposition gene. One patient had both a RB1 and PTCH1 germline mutation, one patient had both a BRCA2 and FANCM germline mutation, and another had both a BRCA2 and MSH6 germline mutation. Similar findings have been reported for familial pancreatic cancer and familial pancreatitis in which affected individuals have deleterious germline mutations in multiple susceptibility genes^{11,48}.

We next compared the prevalence of germline mutations in surgically resected IPMN patients to similarly-analyzed, publicly-available variant data from ExAC (Table 3)⁴⁶. Germline mutations were not significantly enriched when considering all sequenced hereditary cancer predisposition genes (*P* value = 0.6590) or pancreatic cancer susceptibility genes (*P* value = 0.1403). Similarly, the majority of individual genes sequenced were not significantly enriched in patients with an IPMN. However, three genes were significantly enriched after Bonferroni correction for multiple testing. These genes are *ATM*(*P* value = < 0.0001), *PTCH1* (*P* value = < 0.0001), and *SUFU*(*P* value = < 0.0001).

We also compared the prevalence of germline mutations in established pancreatic cancer susceptibility genes between surgically resected IPMN patients and previously published series of unselected PDAC patients (Supplementary Table 4)^{8, 9}. No genes analyzed had statistically significant over- or under-representation in surgically resected IPMN patients compared to unselected PDAC patients.

The patients with IPMN that had a germline mutation in a pancreatic cancer susceptibility gene were more likely to have concurrent invasive carcinoma than IPMN patients without a germline mutation. Specifically, 5 of 9 patients with germline mutation in a pancreatic cancer susceptibility gene had concurrent invasive carcinoma compared to 67 of 306 patients without a germline mutation (Fisher's exact test; *p*-value = 0.0320) (Table 4). Interestingly, there was no statistically significant association between a germline mutation in a hereditary cancer predisposition gene and concurrent invasive carcinoma (Table 4). Of the five patients with a germline mutation in a pancreatic cancer susceptibility gene and invasive carcinoma, only one had a family history of pancreatic cancer in a 1st or 2nd degree relative and none

had a reported previous cancer history. Otherwise, there were no statistically significant differences between IPMN patients with a germline line mutation in either a hereditary cancer predisposition gene or a pancreatic cancer susceptibility gene compared to IPMN patients without a germline mutation with respect to family history of pancreatic cancer in 1st or 2nd degree relatives, personal history of cancer, age at surgery, sex, presence of multifocal IPMN, high-grade dysplasia, size, or main duct involvement (Table 4).

Patients with IPMN and invasive carcinoma were significantly more likely to have highgrade dysplasia (P value = < 0.0001) and involvement of the main pancreatic duct (P value = < 0.0059) compared to patients without concurrent invasive carcinoma (Supplementary Table 5). There were no other statistically significant associations between IPMN patients with and without invasive carcinoma.

Follow-up was available for 243 of 315 patients with a mean duration of 33.3 months (range: 0.1 - 199.3 months). The number of patients with a new diagnosis of pancreatic cancer during follow-up was 2 (0.8%). There were no significant differences in mean duration of follow-up or incident pancreatic cancers between patients with a germline mutation and those without a germline mutation (Table 4).

Discussion

In this retrospective study of patients with surgically resected, histologically confirmed, IPMN, we found that 7.3% of patients had a germline mutation in a hereditary cancer predisposition gene and 2.9% had a germline mutation in an established pancreatic cancer susceptibility gene. The number of patients with a germline mutation in a either a hereditary cancer predisposition gene or a pancreatic cancer susceptibility gene was not significant when compared to ExAC controls. However, prevalence of a germline mutation in pancreatic cancer susceptibility genes in IPMN patients is similar to recent studies of PDAC patients unselected for family history where between 3.9 and 5.5% patients had a germline mutation^{8, 9}.

Three individual genes were significantly enriched in surgically resected IPMN patients compared to ExAC controls. These genes include *ATM* (five germline mutations), *PTCH1* (two germline mutations), and *SUFU* (one germline mutation). *ATM* is a serine/threonine kinase integral to DNA double strand break repair in response to ionizing radiation⁴⁹. *ATM* is an established pancreatic cancer susceptibility gene and recent evidence suggests that *ATM* germline mutations are among the most common found in familial and sporadic PDAC patients^{8, 9, 11, 50}. *PTCH1* and *SUFU* are both components of the Hedgehog signaling pathway. *PTCH1* is a transmembrane protein that suppresses Hedgehog signaling when not bound to ligand, while *SUFU* is a cytoplasmic protein that inhibits Hedgehog signaling through binding of GLI transcription factors⁵¹. Germline mutations in *PTCH1* and *SUFU* are implicated in Gorlin syndrome and predisposition to childhood medulloblastoma^{52–54}. *PTCH1* and *SUFU* are intriguing candidate pancreatic cancer susceptibility genes as aberrant Hedgehog signaling has been implicated in pancreatic tumor development. Specifically, over-expression of SHH is observed in over 70% of pancreatic tumors and results in autocrine mediated changes to the tumor-microenvironment^{55, 56}. Furthermore,

PTCH1 and *SUFU* can be somatically mutated in PDAC^{11, 57–59}. Additional large cohort studies of IPMN and PDAC patients will be needed to determine the prevalence of *PTCH1* and *SUFU* germline mutations and risk of tumor development.

Interestingly, surgically resected IPMN patients with a germline mutation in a pancreatic cancer susceptibility gene were significantly more likely to have concurrent invasive pancreatic carcinoma than patients without a germline mutation (Table 4). The majority of patients with a germline mutation in a pancreatic cancer susceptibility gene and invasive carcinoma did not have a reported family history of pancreatic cancer (4 of 5 patients) or personal cancer history (5 of 5 patients). This may indicate that the presence of a germline mutation in a pancreatic cancer susceptibility gene is an independent risk factor for progression to PDAC. Prospective studies, however, are necessary to determine the magnitude of any increased risk⁶⁰.

Recent studies have suggested that knowledge of germline status in PDAC patients may be of limited personal utility, except for guiding use of PARP-1 inhibitors and immunotherapies in patients with defects in homology-directed and mismatch DNA repair respectively^{15–17}. Knowledge of germline status in patients with an IPMN, however, may be advantageous. Specifically, IPMN patients with a germline mutation may warrant additional surveillance to diagnose pancreatic and extra-pancreatic tumors, as is the case for germline mutation carriers with a family history of PDAC^{61, 62}. Additional prospective studies are needed to confirm that additional screening in this patient population improves early diagnosis rates and patient outcomes.

Our study has several limitations. First, this is a retrospective study of patients with surgically resected IPMN. While this assured that all IPMNs were histologically confirmed, these patients are a subset of all patients with IPMN. Specifically, our study included patients with IPMNs advanced enough to warrant surgery and therefore, may be more likely to have already or in the future develop PDAC. Assessment of unselected patients is necessary to determine the clinical utility of stratification by germline mutation status in patients with IPMN that have not yet undergone surgical resection. Second, while we present the largest characterization of hereditary cancer predisposition genes in IPMN patients to date, our sample size is too small to detect associations with germline mutations that are a rare cause of IPMN or PDAC. Third, we used publicly available data from ExAC for controls as a large dataset of similarly sequenced controls was not available. Variant data from ExAC samples was similarly annotated and analyzed to IPMN cases, however, sequencing methodology was different, and this may result in batch effects that hinder analysis of gene associations. Fourth, only limited clinicopathologic data were available, therefore, associations between cancer-risk factors other than those presented in the study and germline mutation status could not be explored.

In conclusion, we characterized germline mutations in hereditary cancer predisposition genes in surgically resected IPMN patients. We found that germline mutations were most frequently identified in *ATM* and *BRCA2* and that germline line mutations in *ATM*, *PTCH1*, and *SUFU* were significantly more common in patients with an IPMN than in ExAC controls. Furthermore, IPMN patients with a germline mutation in a pancreatic cancer

susceptibility gene were significantly more likely to have concurrent invasive pancreatic carcinoma. Our study indicates that germline testing of IPMN patients is warranted and may have important implications for patient care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding sources

This work was supported by: The Sol Goldman Pancreatic Cancer Research Center; Susan Wojcicki and Dennis Troper; The Lustgarten Foundation; The Rolfe Pancreatic Cancer Foundation; The Joseph C Monastra Foundation; The Gerald O Mann Charitable Foundation (Harriet and Allan Wulfstat, Trustees); NIH/NCI R00 CA190889 and NIH/NCI P50 CA62924.

Abbreviations

ATM	Ataxia telangiectasia mutated
bp	Base pair
BRCA1	breast cancer 1
BRCA2	breast cancer 2
BUB1B	BUB1 mitotic checkpoint serine/threonine kinase B
CDKN2A	cyclin-dependent kinase inhibitor 2A
CPA1	carboxypeptidase A1
ExAC	Exome Aggregation Consortium
FANCI	FA complementation group I
FANCM	FA complementation group M
FFPE	formalin fixed, paraffin-embedded
GLI1	GLI family zinc finger 1
IPMNs	intraductal papillary mucinous neoplasms
MAF	minor allele frequency
MLH1	mutL homolog 1
MSH2	mutS homolog 2
PDAC	pancreatic adenocarcinoma
PALB2	partner and localizer of BRCA2
PMS2	PMS1 homolog 2, mismatch repair system component

PARP-1	poly [ADP-ribose] polymerase-1
PRSS1	serine protease 1
PTCH1	patched 1
STK11	serine/threonine kinase 11
SUFU	SUFU negative regulator of hedgehog signaling

References

- Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017;67:7–30. [PubMed: 28055103]
- 2. Amundadottir LT. Pancreatic Cancer Genetics. Int J Biol Sci 2016;12:314-25. [PubMed: 26929738]
- Canto MI, Almario JA, Schulick RD, et al. Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance. Gastroenterology 2018;155:740– 751e2. [PubMed: 29803839]
- Chen F, Roberts NJ, Klein AP. Inherited pancreatic cancer. Chin Clin Oncol 2017;6:58. [PubMed: 29307198]
- Hu C, Hart SN, Bamlet WR, et al. Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients. Cancer Epidemiol Biomarkers Prev 2016;25:207–11. [PubMed: 26483394]
- Grant RC, Selander I, Connor AA, et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology 2015;148:556–64. [PubMed: 25479140]
- Holter S, Borgida A, Dodd A, et al. Germline BRCA Mutations in a Large Clinic-Based Cohort of Patients With Pancreatic Adenocarcinoma. J Clin Oncol 2015;33:3124–9. [PubMed: 25940717]
- Shindo K, Yu J, Suenaga M, et al. Deleterious Germline Mutations in Patients With Apparently Sporadic Pancreatic Adenocarcinoma. J Clin Oncol 2017;35:3382–3390. [PubMed: 28767289]
- Hu C, Hart SN, Polley EC, et al. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA 2018;319:2401–2409. [PubMed: 29922827]
- Hu C, LaDuca H, Shimelis H, et al. Multigene Hereditary Cancer Panels Reveal High-Risk Pancreatic Cancer Susceptibility Genes. JCO Precision Oncology 2018:1–28. [PubMed: 30949620]
- Roberts NJ, Norris AL, Petersen GM, et al. Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discov 2016;6:166–75. [PubMed: 26658419]
- Tamura K, Yu J, Hata T, et al. Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci USA 2018;115:4767–4772. [PubMed: 29669919]
- Tanaka M Intraductal Papillary Mucinous Neoplasm of the Pancreas as the Main Focus for Early Detection of Pancreatic Adenocarcinoma. Pancreas 2018;47:544–550. [PubMed: 29702531]
- Hruban RH, Canto MI, Goggins M, et al. Update on familial pancreatic cancer. Adv Surg 2010;44:293–311. [PubMed: 20919528]
- 15. Villarroel MC, Rajeshkumar NV, Garrido-Laguna I, et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol Cancer Ther 2011;10:3–8. [PubMed: 21135251]
- Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409–413. [PubMed: 28596308]
- O'Reilly EM, Lee JW, Lowery MA, et al. Phase 1 trial evaluating cisplatin, gemcitabine, and veliparib in 2 patient cohorts: Germline BRCA mutation carriers and wild-type BRCA pancreatic ductal adenocarcinoma. Cancer 2018;124:1374–1382. [PubMed: 29338080]
- Hruban RH, Goggins M, Parsons J, et al. Progression model for pancreatic cancer. Clin Cancer Res 2000;6:2969–72. [PubMed: 10955772]

- Notta F, Chan-Seng-Yue M, Lemire M, et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 2016;538:378–382. [PubMed: 27732578]
- Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science 2013;339:1546–58. [PubMed: 23539594]
- 21. Makohon-Moore AP, Matsukuma K, Zhang M, et al. Precancerous neoplastic cells can move through the pancreatic ductal system. Nature 2018.
- 22. Pittman ME, Rao R, Hruban RH. Classification, Morphology, Molecular Pathogenesis, and Outcome of Premalignant Lesions of the Pancreas. Arch Pathol Lab Med 2017;141:1606–1614. [PubMed: 29189063]
- 23. Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Primers 2016;2:16022. [PubMed: 27158978]
- 24. Laffan TA, Horton KM, Klein AP, et al. Prevalence of unsuspected pancreatic cysts on MDCT. AJR Am J Roentgenol 2008;191:802–7. [PubMed: 18716113]
- Lennon AM, Wolfgang CL, Canto MI, et al. The early detection of pancreatic cancer: what will it take to diagnose and treat curable pancreatic neoplasia? Cancer Res 2014;74:3381–9. [PubMed: 24924775]
- Tanaka M, Chari S, Adsay V, et al. International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology 2006;6:17–32. [PubMed: 16327281]
- Vege SS, Ziring B, Jain R, et al. American gastroenterological association institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology 2015;148:819–22; [PubMed: 25805375]
- Tanaka M, Fernandez-del Castillo C, Adsay V, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 2012;12:183–97. [PubMed: 22687371]
- Tanaka M, Fernandez-Del Castillo C, Kamisawa T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 2017;17:738– 753. [PubMed: 28735806]
- Matthaei H, Norris AL, Tsiatis AC, et al. Clinicopathological characteristics and molecular analyses of multifocal intraductal papillary mucinous neoplasms of the pancreas. Ann Surg 2012;255:326–33. [PubMed: 22167000]
- 31. Kang MJ, Jang JY, Lee KB, et al. Long-term prospective cohort study of patients undergoing pancreatectomy for intraductal papillary mucinous neoplasm of the pancreas: implications for postoperative surveillance. Ann Surg 2014;260:356–63. [PubMed: 24378847]
- 32. Pea A, Yu J, Rezaee N, et al. Targeted DNA Sequencing Reveals Patterns of Local Progression in the Pancreatic Remnant Following Resection of Intraductal Papillary Mucinous Neoplasm (IPMN) of the Pancreas. Ann Surg 2017;266:133–141. [PubMed: 27433916]
- 33. Martinez de Juan F, Reolid Escribano M, Martinez Lapiedra C, et al. Pancreatic adenosquamous carcinoma and intraductal papillary mucinous neoplasm in a CDKN2A germline mutation carrier. World J Gastrointest Oncol 2017;9:390–396. [PubMed: 28979722]
- Sato N, Rosty C, Jansen M, et al. STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 2001;159:2017–22. [PubMed: 11733352]
- Lubezky N, Ben-Haim M, Lahat G, et al. Intraductal papillary mucinous neoplasm of the pancreas: associated cancers, family history, genetic predisposition? Surgery 2012;151:70–5. [PubMed: 21975290]
- Canto MI, Goggins M, Hruban RH, et al. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 2006;4:766–81; [PubMed: 16682259]
- Shi C, Klein AP, Goggins M, et al. Increased Prevalence of Precursor Lesions in Familial Pancreatic Cancer Patients. Clin Cancer Res 2009;15:7737–7743. [PubMed: 19996207]
- Panic N, Capurso G, Attili F, et al. Risk for Colorectal Adenomas Among Patients with Pancreatic Intraductal Papillary Mucinous Neoplasms: a Prospective Case-Control Study. J Gastrointestin Liver Dis 2015;24:445–50. [PubMed: 26697570]

- Khan S, Sclabas G, Reid-Lombardo KM. Population-based epidemiology, risk factors and screening of intraductal papillary mucinous neoplasm patients. World J Gastrointest Surg 2010;2:314–8. [PubMed: 21160836]
- Reid-Lombardo KM, Mathis KL, Wood CM, et al. Frequency of extrapancreatic neoplasms in intraductal papillary mucinous neoplasm of the pancreas: implications for management. Ann Surg 2010;251:64–9. [PubMed: 19858708]
- 41. Benarroch-Gampel J, Riall TS. Extrapancreatic malignancies and intraductal papillary mucinous neoplasms of the pancreas. World J Gastrointest Surg 2010;2:363–7. [PubMed: 21160845]
- 42. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60. [PubMed: 19451168]
- McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297–303. [PubMed: 20644199]
- 44. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38:e164. [PubMed: 20601685]
- 45. Genomes Project C, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature 2015;526:68–74. [PubMed: 26432245]
- 46. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285–91. [PubMed: 27535533]
- Robinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011;29:24–6. [PubMed: 21221095]
- LaRusch J, Whitcomb DC. Genetics of pancreatitis. Curr Opin Gastroenterol 2011;27:467–74. [PubMed: 21844754]
- 49. Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 2008;9:759–69. [PubMed: 18813293]
- 50. Roberts NJ, Jiao Y, Yu J, et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2012;2:41–6. [PubMed: 22585167]
- 51. Wu F, Zhang Y, Sun B, et al. Hedgehog Signaling: From Basic Biology to Cancer Therapy. Cell Chem Biol 2017;24:252–280. [PubMed: 28286127]
- 52. Wolter M, Reifenberger J, Sommer C, et al. Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 1997;57:2581–5. [PubMed: 9205058]
- 53. Pastorino L, Ghiorzo P, Nasti S, et al. Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am J Med Genet A 2009;149A:1539–43. [PubMed: 19533801]
- Waszak SM, Northcott PA, Buchhalter I, et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol 2018;19:785–798. [PubMed: 29753700]
- 55. Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003;425:851–6. [PubMed: 14520413]
- 56. Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014;25:735–47. [PubMed: 24856585]
- 57. Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012;491:399–405. [PubMed: 23103869]
- Waddell N, Pajic M, Patch AM, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015;518:495–501. [PubMed: 25719666]
- Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 2017;45:D777–D783. [PubMed: 27899578]
- Mukewar SS, Sharma A, Phillip N, et al. Risk of Pancreatic Cancer in Patients With Pancreatic Cysts and Family History of Pancreatic Cancer. Clin Gastroenterol Hepatol 2018;16:1123–1130e1. [PubMed: 29425780]
- Canto MI, Hruban RH, Fishman EK, et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 2012;142:796–804; [PubMed: 22245846]

62. Vasen H, Ibrahim I, Ponce CG, et al. Benefit of Surveillance for Pancreatic Cancer in High-Risk Individuals: Outcome of Long-Term Prospective Follow-Up Studies From Three European Expert Centers. J Clin Oncol 2016;34:2010–9. [PubMed: 27114589]

Table 1.

Demographics and characteristics of patients with surgically resected IPMN

Characteristic ¹		Number	Percen
Race			
	White	270	85.7
	Other	45	14.3
Sex			
	Male	162	51.4
	Female	153	48.6
Age			
	<40	7	2.2
	41–45	6	1.9
	46–50	11	3.5
	51–55	17	5.4
	56-60	28	8.9
	61–65	40	12.7
	66–70	60	19.0
	71–75	69	21.9
	76–80	49	15.6
	81-85	21	6.7
	>86	7	2.2
Family history of pancreatic cancer			
	Yes	40	12.7
	No	205	65.1
	NR	70	22.2
Personal history of cancer			
	Yes	54	17.1
	No	247	78.4
	NR	14	4.4
Diagnosis			
	IPMN	243	77.1
	IPMN and invasive carcinoma	72	22.9
Size of IPMN			
	<1	22	7.0
	1 and <2	87	27.6
	2 and <3	85	27.0
	3 and <4	48	15.2
	4 and <5	23	7.3
	5	32	10.2
	NR	18	5.7
Number of IPMN			
	1	253	80.3

Characteristic ¹		Number	Percent
	2+	62	19.7
Duct type			
	Branch duct	146	46.3
	Main duct	112	35.6
	NR	57	18.1
Grade of IPMN			
	High	138	43.8
	Low or intermediate	152	48.3
	NR	25	7.9

 I IPMN - intraductal papillary mucinous neoplasm. NR - not reported. Family history of pancreatic cancer in 1st and 2nd degree relatives.

₽
<u> </u>
Ŧ
õ
Ř
~
\leq
מ
⊐
nu
nuso
nuscr
nuscrip
nuscript

	Table 2.

Author Manuscript

Skaro et al.	

1 ATM NM 00051 $gchr11:10817812 CAAAGCS$ $c.07341$ $p.W57X$ Sopgin 2 ATM NM 00051 $gchr11:10817849 CcT$ $c.0241072461$ $p.X3425$ Frameshift deleion 4 ATM Puncreatic NM 00051 $gchr11:108175849 CcT$ $c.255447$ $p.0875X$ Sopgain 6 $BTCA2$ sweepthilin NM 00051 $gchr11:108175549 CcT$ $c.2854617$ $p.0875X$ Sopgain 7 $BTCA2$ sweepthilin NM 00059 $gchr13:3291437 GT5G$ $c.3846617$ $p.07575$ Sopgain 8 $BTCA2$ sweepthilin NM 00059 $gchr13:3291437 GT5G$ $c.234361$ $p.12875$ Sopgain 9 $MSH6$ NM 00059 $gchr13:3291437 GT5G$ $c.234361$ $p.12875$ Sopgain 10 $MSH6$ NM 001310 $gchr13:3291437 GT5G$ $c.234617$ $p.08758$ Sopgain 11 $BTCA2$ sweepthilin NM 012111 $gchr3:3291637 GTSG$ $c.073477$ $p.128758$ Sopgain	Functio	nal consequence Concuri	rent invasive carcinoma
2 $4M$ MM 00051 gehrli 108117812CAAAGC c 1024 102761 p K4215 Frameshift deteion 4 $4M$ Panceauic MM 00051 gehrli 1.08117589 C-T c C5544T p 0885X Sopgain 6 $4TM$ Panceauic MM 00051 gehrli 1.0817549 C-T c C5544T p 0485X Sopgain 6 $BRC42$ succeptility NM 00059 gehrli 3.3391437 CT>G c A8256F p 8467X Sopgain $8RC42$ succeptility NM 00059 gehrli 3.3391447 CT>G c A8256F p 8467X Sopgain $8RC42$ succeptility NM 00059 gehrli 3.3391437 CT>G c A8356F Frameshift deteion 10 $RRC42$ succeptility NM 001301 gehrli 3.3391437 CT>G c A99737 Sopgain 10 $MSHb$ $NM 013101$ gehrli 3.3981057 CT>G c C1997 p 81368 Frameshift deteion 11 BR/H $NM 0131118$ gehrli 3.3891057 CT c C1997 p 81368 Sopgain 11 RRH $NM 01$:.G170A p.W57X Stopgair	signet ri	ing carcinoma
3 $47h$ NM_00051 gehrl1:10817549 C.T c.C254T p.R87.X Sopgin $4.7h$ Pancentic NM 00051 gehrl1:10817549 C.T c.C564T p.R182.X Sopgin 6 $4.7h$ cancer NM 00051 gehrl1:10875665 A.T c.A266T p.K3755 Sopgin 6 $BRCA_2$ susceptibility NM 00059 gehrl1:30206665 A.T c.A130T p.K407 Sopgin 8 $BRCA_2$ susceptibility NM 00059 gehrl1:3237344.T1CG c.A130T p.K407 Sopgin 8 $BRCA_2$ susceptibility NM 00059 gehrl1:3237346.T1CG c.A130T p.K407 Sopgin 10 $MSH6$ NM 00059 gehrl1:3297346.T1CGA>C c.A132T p.S1857 Sopgin 11 $BRPA$ NM 00059 gehrl1:3297345.11CGA>C c.512.17564 p.S1857 Sopgin 11 $BRPA$ NM 013191 gehrl6:3369705 c.513754 p.S1857 Sopgin 11 $BRPA$ NM 0131784	c.1024 1027del p.K342fs Framesh	ift deletion PDAC	
4 ATM Fanctatic NM 000051 gchrl 1:108175549 C:T C5564T p.R188:X Stoggin 5 ATM cancer NM 000051 gchrl 1:10820686 A:T c.A3266T p.K467X Stoggin 6 $BECA_2$ susceptibliky NM 000059 gchrl 3:3291437 GT>G c.A1399T p.K467X Stoggin 8 $BECA_2$ gene NM 000059 gchrl 3:3291437 GT>G c.A1390T p.K467X Stoggin 6 $MSH6$ NM 000059 gchrl 3:329734 GTT c.A1290T p.S1982h Framshift deletion 8 $MSH6$ NM 00059 gchrl 3:329105 GACAA>G c.72.175del p.S1985h Framshift deletion 11 $BRIP$ Samoet NM 001211 gchrl 5:36976 GACAA>G c.72.175del p.R1483 Stoggin 12 $BUBIB susceptibliky NM 001211 gchrl 5:36976 GACAA>G c.72.175del p.R1483 Stoggin 13 CDH1 susceptibliky NM 001211 gchrl 5:36976 GACAA>G c.72.4767 p.R1483 Stoggin<$	c.C2554T p.Q852X Stopgair	'	
3 $4M$ cancer NM 000051 gchrli.10820666.5.T c.8.2567 p.K375X Stopgin 7 $BKCA_2$ susceptibility NM 000059 gchrli.3:3291437 GT>G c.31397T p.K467X Stoggin 8 $BKCA_2$ susceptibility NM 000059 gchrli.3:3291437 GT>G c.5946deT p.S19875 Fameshift deletion 8 $MSH6$ NM 00059 gchrli.3:32971346_TGTA>T c.9697_9700de1 p.C33335 Fameshift deletion 10 MKH Heredinany NM 003043 gchrli.3:32971359 c.3697_1700de1 p.C33355 Fameshift deletion 11 $BKPI$ came NM 00311 gchrli.3:5971059 c.172_17546 p.L3887 Fameshift deletion 12 $BLBIB$ susceptibility NM 001211 gchrli.3:5971059 c.172_17546 p.L3875 Stopgin 13 $CDHI gene NM 001311 gchrli.3:5971059 c.172_17546 p.R41375 Stopgin 14 EKPI came NM 001311 gchrli.3:5971059 c.172_17546$	c.C5644T p.R1882X Stopgair	PDAC	
6 BRCA2 suscptibility NM 00059 ch13:3207014 A>T c.1399T p.46/57 Sopgain 7 BRCA2 gene NM 00059 ch13:3291437 GT>G c.5946deT p.519736 Frameshifi deletion 8 BRCA2 eme NM 00059 ch13:3291437 GT>G c.59476deT p.519736 Frameshifi deletion 6 MSH6 N NM 00059 ch13:3297346_TTGTA>T c.59479700de p.519733 Frameshifi deletion 10 MLK Heredinay NM 00059 ch13:3249206_GACAA>G c.723345 Frameshifi deletion 11 BRIPI eereptibility NM 001311 ch15:3469206_GACAA>G c.172_175de1 p.1287 Sopgain 12 DALK Heredinay NM 00131184 ch15:3469206_GACAA>G c.172_175de1 p.1287 Sopgain 13 CDH1 gene NM 00131184 ch15:3464206 c.172_175de1 p.1287 Sopgain 14 EAUFI saceptibility M0 01311184 ch16:68771344 C>A c.01977 p.12487 <	c.A8266T p.K2756X Stopgair		
7 $BRCA_2$ gene NM 000059 gchrl3:3291437 GT>G c.5946deT p519826 Frameshift deteion 8 $BRCA_2$ NM 000059 gchrl3:32972346_TTGTAxT c9697_9700de p523358 Frameshift deteion 6 $MSH6$ NM_00059 gchrl3:32972346_TTGTAxT c9697_9700de p23385 Frameshift deteion 9 MLR Hereditary NM_024675 gchrl5:359712346_TA c3947421 p11585 Frameshift deteion 10 ALK Hereditary NM 001211 gchrl5:36871059 C>A c.172_175de1 p12585 Frameshift deteion 11 $BRPI$ cancer NM 001211 gchrl5:36871059 C>A c.172_175de1 p12585 Frameshift deteion 12 $BUBIB$ susceptibility NM 00131138 gchrl5:36871059 C>A c.172_175de1 p12585 Frameshift deteion 13 $CDHI$ gene NM 00131138 gchrl5:36871059 C>A c.172_177 p24585 Stopgin 14 Frameshift action recordatac c.0526A p28565 Stopgin	c.A1399T p.K467X Stopgair	'	
8 BRCA2 NM 000059 chrl3:3327346_TTGTA>T c9673_9700dcl pC33358 Frameshift deteion 6 $MSH6$ NA NA 26m2.46073 5cm2.33051 57700dcl pC33358 Frameshift deteion 9 $HLB2$ NM 0.34675 5cm2.46053649206_GACA>G c.172_175del pL3858 Frameshift deteion 10 ALK Herediany NM 0033043 2ch17.59871059 CAA c.172_175del pL3858 Frameshift deteion 11 $BKHP$ cancer NM 001311 gehrl6:38711344 CAA c.172_175del pL3858 Stoppinin 12 $BUBHB$ susceptibility NM 0013118 gehrl6:38711344 CAA c.172_175del pL3858 Stoppinin 13 $CDH1$ gene NM 0013118 gehrl6:3871344 CAA c.19377 pStoppinin Stoppinin 14 $EANCA$ NM 0013118 gehrl6:3871344 CAA c.172_17546 pL3858 Stoppinin 15 $EANCA$ NM 0013118 gehrl6:3871344 CAA c.172_1764 pR5875 Stopp	2.5946delT p.S1982fs Framesh	ift deletion -	
6 M5H6 N N CMD-34033791 GTAAC-G - - Splicing 9 $P4LB2$ NM_024675 g.ch16:2364306.GACAA-G c.172_175461 p.L3835 Framsshift deletion 10 ALK Hereditary NM 004304 g.ch16:2364306.GACAA-G c.172_175461 p.L3835 Stopgain 11 $BKUP$ cancer NM 001317184 g.ch17:39871059 C-A c.C37427 p.R12435 Stopgain 12 $BLBLB$ susceptibility NM 001317184 g.ch17:39871059 C-A c.C37427 p.R12435 Stopgain 13 $CDH1$ gene NM 001317184 g.ch15:496528 C-T c.C1997 p.R375 Stopgain 14 $FANCA$ NM 001317184 g.ch15:498658 C-T c.C1997 p.R375 Stopgain 15 $FANCA$ NM 001113378 g.ch15:498658 C-T c.C24761 p.Q89356 Framsshift deletion 16 $FANCA$ NM 00118113 g.ch15:49883165 C-T c.C24761 p.Q89356 Framsshift deletion 17 FA	c.9697_9700del p.C3233fs Framesh	ift deletion Colloid	carcinoma
9 $PALBZ$ NM_024675 gchrl6:3549206_GACAAAG c.172_175del p.L86K Frameshift deletion 10 ALK Hereditay NM 004304 gchrl7:39871059 C.A c.1372T p.L86K Stopgain 11 $BRPI$ cancer NM 00131184 gchrl7:39871059 C.A c.03137T p.L86K Stopgain 12 $BUBIB$ susceptibility NM 00131184 gchrl7:39871059 C.A c.01372T p.L86K Stopgain 13 $CDHI$ gene NM 00131184 gchrl7:39871059 C.A c.01372T p.L86K Stopgain 14 $FANCA$ NM 00131184 gchrl6:8771344 C.A c.C199T p.R67K Stopgain 16 $FANCA$ NM 00131184 gchrl6:8771344 C.A c.C264 p.S05K Stopgain 17 $FANCA$ NM 00111378 gchrl6:8791487 C.A c.C3476T p.R57K Stopgain 18 $FANCA$ NM 00111378 gchrl6:58838165 C.T c.C2476T p.R263K Stopgain 18 $FANCH$ NM 0111378	- Splicing		
10 ALK Hereditary NM 004304 $cch2:29436S1 G>A$ $cC3742T$ $pR124S$ Stopgain 11 $BRIP$ cancer NM 0032043 $cch17:9871059 C>A$ $cJ372T$ $pE4SSX$ Stopgain 12 $BUBIB$ susceptibility NM 001211184 $gchr15:9871059 C>A$ $cC199T$ $pE4SX$ Stopgain 13 $CDHI$ gene NM 001211184 $gchr15:89871059 C>A$ $cC199T$ $p.R67X$ Stopgain 14 $EANCA$ NM 001311184 $gchr15:89871057 C>G cC29AT p.R157T p.R67X Stopgain 15 EANCA NM 001131378 gchr15:8983165 C>T cC757T p.R253X Stopgain 16 EANCI NM 001131378 gch15:898338165 C>T cC757T p.R253X Stopgain 17 EANCI NM 001131378 gch15:89843584 C>CA cC757T p.R253X Stopgain 18 NBN NM 01130313 gch15:89843584 C>CA cC737T p.R253X Stopgain 18$	2.172_175del p.L58fs Framesh	ift deletion PDAC	
11 $BRIPI$ cancer NM 032043 gchrl7:59871059 C>A c.G1372T p.E458X Stopgain 12 $BUB1B$ susceptibility NM 001211 gchrl5:68771344 C>A c.G199T p.R67X Stopgain 13 $CDH1$ gene NM 001317184 g.chrl6:68771344 C>A c.C199T p.R67X Stopgain 14 $FANCA$ NM 001317184 g.chrl6:68771344 C>A c.C26A p.S9X Stopgain 15 $FANCA$ NM 00113378 g.chrl6:89871687 C>G c.C26A p.S9X Stopgain 16 $FANCD$ NM 001113378 g.chrl5:8983165 C>T c.C26A p.S3X Stopgain 17 $FANCD$ NM 001113378 g.chrl5:8983458 C>T c.C2476T p.Q235X Stopgain 17 $FANCD$ NM 001133378 g.chrl5:89843584 C>C c.C2476T p.Q355K Stopgain 18 $ANCN$ NM 00130813 g.chrl5:89843584 C>C c.C2476T p.Q826X Stopgain 19 $PANCM$ NM 00130813 g.chrl5:89843584 C>	c.C3742T p.R1248X Stopgair	,	
12 $BUBIB$ susceptibility NM 001211 $g.chr16:6071344C>A$ $c.C197$ $p.R67X$ Stopgain 13 $CDH1$ gene NM 001317184 $g.chr16:68771344C>A$ $c.C197$ $p.R67X$ Stopgain 14 $FANCA$ NM 001317184 $g.chr16:89871687C>G$ $c.C26A$ $p.S9X$ Stopgain 15 $FANCA$ NM 001018115 $g.chr16:89871687C>G$ $c.C2547$ $p.S9X$ Stopgain 16 $FANCA$ NM 001018115 $g.chr15:8983165C>T$ $c.C7577$ $p.R253X$ Stopgain 17 $FANCA$ NM 00118115 $g.chr15:8983365C>T$ $c.C3577$ $p.R253X$ Stopgain 18 $FANCA$ NM 00118133 $g.chr15:8984354C>CA$ $c.C3674hpA$ $p.Q8956$ Framshift insertion 19 NBN NM 001308133 $g.chr15:89843584C>CA$ $c.C3674hpA$ $p.Q8956$ Stopgain 10 $FANCA$ NM 001308133 $g.chr15:89843584C>CA$ $c.C3674hpA$ $p.Q826X$ Stopgain 10 NBN NM 001	c.G1372T p.E458X Stopgair	Adenosq	quamous PDAC
13 $CDH1$ gene NM 001317184 gchr16:68771344 C>A c.26A p.89X Stopgain 14 $FANCA$ NA gchr16:89871687 C>G - Splicing Stopgain 15 $FANCA$ NA 001018115 gchr16:89871687 C>G - Splicing 16 $FANCP$ NM 00108115 gchr15:8983165 C>T c.7577 p.8253X Stopgain 17 $FANCP$ NM 01113378 gchr14:45645855 G>T c.7577 p.8253X Stopgain 17 $FANCH$ NM 0118193 gchr14:45645855 G>T c.2678dupA p.080535 Frameshift insertion 18 NBN NM 0138133 gchr14:45645855 G>T c.2678dupA p.080535 Frameshift deletion 19 NBN NM 0213813 gchr14:45645855 G>T c.3678dupA p.080535 Frameshift deletion 20 $PANCH$ NM 001083603 gchr14:45645855 G>T c.4delG p.E255 Frameshift deletion 21 $PTCH1$ NM 001083603 gchr9:98279098 TC>T c.4delG	c.C199T p.R67X Stopgair	PDAC	
14 $FANCA$ NA $gchrl6:8971687 C>G$ - - Splicing 15 $BANCD2$ NM 00108115 $gchri5:10083368 C>T$ $c.757T$ $pR253X$ Stopgain 16 $FANCD$ NM 00118115 $gchri5:8983165 C>T$ $c.757T$ $pR253X$ Stopgain 17 $FANCI$ NM 0111378 $gchr15:8983165 C>T$ $c.25746T$ $p.8253X$ Stopgain 17 $FANCI$ NM 0111378 $gchr15:89843584 C>CA$ $c.25784pA$ $p.89355$ Frameshift insertion 18 $BANCM$ NM 001308133 $gchr14:45645855 G>T$ $c.25784pA$ $p.089355$ Frameshift insertion 19 NBN NM 001308133 $gchr13:45645855 G>T$ $c.26784pA$ $p.08357$ Stopgain 10 $PTCHI$ NM 001308133 $gchr13:45645855 G>T$ $c.36784pA$ $p.08357$ Stopgain 10 $PTCHI$ NM 001083603 $gchr13:48922000 G>T$ $c.44elG$ $p.225$ Frameshift deletion 20 RBI NM NM $gchr13:48922000 G$	c.C26A p.S9X Stopgair	,	
15 $F4NCD2$ NM 001018115 gchr3:10083368 C>T c.C757T p.R253X Stopgain 16 $F4NCI$ NM 001113378 gchr15:89838165 C>T c.C3476T p.R253X Stopgain 17 $F4NCI$ NM 001113378 gchr15:89838165 C>T c.C2476T p.R255X Stopgain 17 $F4NCI$ NM 01113378 gchr15:89843584 C>CA c.C2476T p.Q826X Stopgain 18 $P4NCM$ NM 01308133 gchr14:45645855 G>T c.G3820T p.1274X Stopgain 18 NBN NM 001308133 gchr14:45645855 G>T c.G3820T p.K635X Stopgain 19 $PTCHI$ NM 001308133 gchr14:45645855 G>T c.G3820T p.K635X Stopgain 10 $PTCHI$ NM 0013603 gchr13:489220063 T>A c.A1903T p.K635X Stopgain 20 RBI NM 001083603 gchr13:48922000 G>A c.A1903T p.K655K Stopgain 21 $RECQL4$ NM 004260 gchr13:48922000 G>A c.C1960T p.Q654X	- Splicing	ı	
16 $F_4 NCI$ NM 00111378 g.chr15:8983165 C>T c.C2476T p.Q856X Stopgain 17 $F_4 NCI$ NM 018193 g.chr15:89843584 C>CA c.2476T p.Q836K Frameshift insertion 8 $F_4 NCM$ NM 0130333 g.chr15:89843584 C>CA c.2678dupA p.Q893fs Frameshift insertion 8 $F_4 NCM$ NM 001308133 g.chr14:45645855 G>T c.G3320T p.E1274X Stopgain 19 NBN NM 00138603 g.chr14:5645855 G>T c.G3320T p.E1274X Stopgain 20 $PTCHI$ NM 00138603 g.chr14:5645855 G>T c.G3320T p.E1274X Stopgain 20 $PTCHI$ NM 00138603 g.chr14:5645855 G>T c.G46IG p.E2fs Frameshift deletion 20 $PTCHI$ NM 001083603 g.chr13:48922000 G>A c.44eIG p.E2fs Frameshift deletion 21 RBI NM NM 001083603 g.chr13:48922000 G>A c.14eIG p.G5fs Frameshift deletion 22 KBI NM NM 0012803<	c.757T p.R253X Stopgair	PDAC	
17 $F4NCI$ NM 018193 gchrl5:8943584 C>Ca c.2678dupA p.0893fa Frameshift insertion 8 $F4NCM$ NM 001308133 gchrl4:45645855 G>T c.2678dupA p.0893fa Frameshift insertion 18 NBN NM 001308133 gchrl4:45645855 G>T c.63820T p.E1274X Stopgain 19 NBN NM 001308133 gchrl9:98279098 TC>T c.Al903T p.K635X Stopgain 20 $PTCHI$ NM 001083603 gchr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 20 $PTCHI$ NM 001083603 gchr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 21 RBI NM 001083603 gchr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 22 RBI NM 001083603 gchr13:48922000 G>A c. c.203delA p.0654X Stopgain 21 $RECQL4$ NM 001178133 gchr13:48922000 G>A c. p.0654X Stopgain 22 $SUFU$ NM 001178133 gchr13:48922000 G>A c. c. p.0654X Stopgain 23	c.C2476T p.Q826X Stopgair	,	
8 F4NCM NM 001308133 g.chrl4:45645855 G>T c.G3320T p.E1274X Stopgain 18 NBN NM 002485 g.chr8:90960063 T>A c.A1903T p.E1274X Stopgain 19 PTCH1 NM 002485 g.chr8:90960063 T>A c.A1903T p.K635X Stopgain 20 PTCH1 NM 001083603 g.chr9:98279098 TC>T c.A1903T p.K635X Stopgain 20 PTCH1 NM 001083603 g.chr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 20 RB1 NM 001083603 g.chr13:48922000 G>A - - Splicing 21 RECQL4 NM 004260 g.chr13:48922000 G>A - - Splicing 22 SUFU NM 004260 g.chr13:48922000 G>A - - Splicing 23 KECQL4 NM 004260 g.chr13:48922000 G>A - - Splicing 24 RECQL4 NM 004260 g.chr13:48922000 G>A - - - Splicing 24	c.2678dupA p.Q893fs Framesh	ift insertion -	
18 NBN NM 002485 g.ch8:9060063 T>A c.A1903T p.K635X Stopgain 19 PTCHI NM 001083603 g.chr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 20 PTCHI NM 001083603 g.chr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 20 PTCHI NM 001083603 g.chr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 20 RBI NM 001083603 g.chr3:48922000 G>A c.4delG p.E2fs Frameshift deletion 21 RECQL4 NM 004260 g.chr1:3:48922000 G>A - - Splicing 22 SUFU NM 001178133 g.chr1:0104268955 CA>C c.223delA p.R75fs Frameshift deletion 20 mu	c.G3820T p.E1274X Stopgair	Colloid e	carcinoma
19 PTCH1 NM 001083603 g.chr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 20 PTCH1 NM 001083603 g.chr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 20 RB1 NA 001083603 g.chr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 20 RB1 NA 001083603 g.chr13:48922000 G>A - - Splicing 21 RECQL4 NM 004260 g.chr8:145739410 G>A - - Splicing 22 SUFU NM 001178133 g.chr10:104268965 CA>C c.223delA p.R75fs Frameshift deletion 20 um um 0.1178133 g.chr10:104268965 CA>C c.223delA p.R75fs Frameshift deletion	2.A1903T p.K635X Stopgair	,	
20 PTCH1 NM 001083603 g.chr9:98279098 TC>T c.4delG p.E2fs Frameshift deletion 20 RB1 NA g.chr13:48922000 G>A - - Splicing 21 RECQL4 NM 004260 g.chr13:48922000 G>A - - Splicing 22 SUFU NM 001178133 g.chr10:104268965 CA>C c.223delA p.R75fs Frameshift deletion 20 mm	2.4delG p.E2fs Framesh	ift deletion Colloid	carcinoma
20 RB1 NA g.chrl3:48922000 G>A - - Splicing 21 RECQL4 NM 004260 g.chr8:145739410 G>A c.C1960T p.Q654X Stopgain 22 SUFU NM 001178133 g.chr10:104268965 CA>C c.223deIA p.R75fs Frameshift deletion 20 umi umi umi umi p.001178133 p.000000 p.00117610 <	2.4delG p.E2fs Framesh	ift deletion -	
21 RECQL4 NM 004260 g.chr8:145739410 G>A c.C1960T p.Q654X Stopgain 22 SUFU NM 001178133 g.chr10:104268965 CA>C c.223deIA p.R75fs Frameshift deletion 22	- Splicing	ı	
22 <i>SUFU</i> NM 001178133 g.chr10:104268965 CA>C c.223delA p.R75fs Frameshift deletion	c.C1960T p.Q654X Stopgair	,	
	c.223deIA p.R75fs Framesh	ift deletion -	
23 WII NM 0003/8 g.clir11:32430/33 UC>U C.1300eU p.A40IS Framesinit defeuon	2.136delG p.A46fs Framesh	ift deletion -	

\rightarrow
~
<u> </u>
t
5
ō
\leq
_
-
~
\geq
ha
han
/lanu
/lanu
/lanus
lanusc
Anusci
Anuscri
/anuscrip
/anuscript

Table 3.

Comparison of germline mutations identified in patients with surgically resected IPMN and ExAC controls

		H	Ņ		EXAU		
Germine mutation	AC	Ā	N AF	AC	AN	AF	P value
Hereditary cancer gene	26	631	0 0.041	3921	105586	0.037	0.6590
Pancreatic cancer susceptibility	gene 10	631	0 0.016	992	105732	0.009	0.1403
ATM	5	631	0 0.008	134	106203	0.001	<0.0001*
BRCA2	ω	631	0 0.005	216	106188	0.002	0.2858
9HSH6	1	631	0 0.002	261	106196	0.002	0.9709
PALB2	1	631	0 0.002	63	106206	0.001	0.8413
ALK	1	631	0 0.002	24	106209	0.000	0.3570
BRIPI	1	631	0 0.002	120	106202	0.001	0.7336
BUBIB	1	631	0 0.002	32	106209	0.000	0.4874
СDHI	1	631	0 0.002	6	96677	0.000	0.0861
FANCA	1	631	0 0.002	117	105585	0.001	0.7189
FANCD2	1	631	0 0.002	83	106209	0.001	0.9947
FANCI	2	631	0 0.003	83	106208	0.001	0.1569
FANCM	1	631	0 0.002	174	106183	0.002	0.9746
NBN	1	631	0 0.002	59	103676	0.001	0.7286
PTCHI	2	631	0 0.003	14	105834	0.000	<0.0001 *
RBI	1	631	0 0.002	9	106198	0.000	0.0235
RECQL4	1	631	0 0.002	173	105674	0.002	0.9754
SUFU	-	631	0 0.002	0	105586	0.000	< 0.0001
WTI	1	63(0 0.002	13	105241	0.000	0.1476

Gastroenterology. Author manuscript; available in PMC 2020 May 01.

* Significant when applying Bonferroni correction for multiple testing (threshold for significance = 5.3×10^{-4}).

a.
-
~
0
-
_
\leq
\leq
≤a
Mar
Manu
Manu
Manus
Manus
Manusc
Manuscr
Manuscri
Manuscrip

Author Manuscript

mutation
ı germline
d without a
with and
I IPMN
resected
surgically
with
atients
р.
of p
Comparison of p

	Germline mutation	i in hereditary cancer	promposition Bono		•	
Variable ¹	+ (n=23)	- (n=292)	p-value	+ (9)	- (n=306)	P value
Patients with concurrent invasive carcinoma (n)	6	63	0.0694	5	67	0.0320
Patients with family history of pancreatic cancer (n)	9	34	0.0971	ŝ	37	0.1670
Patients with personal history of cancer (n)	1	53	0.1419	1	53	1.0000
Mean age at surgery (years)	65.2	68.2	0.1911	62.2	68.2	0.1025
Male patients (n)	14	148	0.3916	9	156	0.5031
Patients with high-grade dysplasia (n)	8	130	0.6442	2	136	0.6865
Mean longest diameter of IPMN (cm)	2.1	2.7	0.0986	2.1	2.7	0.3674
Patients with multifocal IPMN (n)	4	58	1.0000	2	60	0.6921
Patients with main duct involvement (n)	9	106	1.0000	2	110	0.3078
Mean duration of follow-up (months)	46.8	32.5	0.1248	40.2	33.2	0.6287
Incident pancreatic cancer during follow-up (n)	0	2	1.0000	0	2	1.0000