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Abstract

In this study, we propose a novel deep learning framework for anatomy segmentation and 

automatic landmarking. Specifically, we focus on the challenging problem of mandible 

segmentation from cone-beam computed tomography (CBCT) scans and identification of 9 

anatomical landmarks of the mandible on the geodesic space. The overall approach employs three 

inter-related steps. In step 1, we propose a deep neural network architecture with carefully 

designed regularization, and network hyper-parameters to perform image segmentation without the 

need for data augmentation and complex post-processing refinement. In step 2, we formulate the 

landmark localization problem directly on the geodesic space for sparsely-spaced anatomical 

landmarks. In step 3, we utilize a long short-term memory (LSTM) network to identify closely-

spaced landmarks, which is rather difficult to obtain using other standard networks. The proposed 

fully automated method showed superior efficacy compared to the state-of-the-art mandible 

segmentation and landmarking approaches in craniofacial anomalies and diseased states. We used 

a very challenging CBCT dataset of 50 patients with a high-degree of craniomaxillofacial (CMF) 

variability that is realistic in clinical practice. Qualitative visual inspection was conducted for 

distinct CBCT scans from 250 patients with high anatomical variability. We have also shown the 

state-of-the-art performance in an independent dataset from MICCAI Head-Neck Challenge 

(2015).
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I. Introduction

In the United States, there are more than 17 million patients with congenital or 

developmental deformities of the jaws, face, and skull, also defined as the 

craniomaxillofacial (CMF) region [1]. Trauma, deformities from tumor ablation, and 

congenital birth defects are some of the leading causes of CMF deformities [1]. The number 

of patients who require orthodontic treatment is far beyond this number. Among CMF 

conditions, the mandible is one of the most frequently deformed or injured regions, with 

76% of facial trauma affecting the mandibular region [2].

The ultimate goal of clinicians is to provide accurate and rapid clinical interpretation, which 

guides appropriate treatment of CMF deformities. Cone-beam computed tomography 

(CBCT) is the newest conventional imaging modality for the diagnosis and treatment 

planning of patients with skeletal CMF deformities. Not only do CBCT scanners expose 

patients to lower doses of radiation compared to spiral CT scanners, but also CBCT scanners 

are compact, fast and less expensive, which makes them widely available. On the other hand, 

CBCT scans have much greater noise and artifact presence, leading to challenges in image 

analysis tasks.

CBCT-based image analysis plays a significant role in diagnosing a disease or deformity, 

characterizing its severity, planning the treatment options, and estimating the risk of 

potential interventions. The core image analysis framework involves the detection and 

measurement of deformities, which requires precise segmentation of CMF bones. 

Landmarks, which identify anatomically distinct locations on the surface of the segmented 

bones, are placed and measurements are performed to determine the severity of the 

deformity compared to traditional 2D norms as well as to assist in treatment and surgical 

planning. Figure 1 shows nine anatomical landmarks defined on the mandible.

Currently, the landmarks have not evolved from traditional 2D anatomical landmarks for 

cephalometric analysis though 3D imaging has become more commonplace for clinical 

application. Landmarking on CT images is tedious and manual or semi-automated and prone 

to operator variability. Despite some recent elaborative efforts towards making a fully auto-

mated and accurate software for segmentation of bones and landmarking for deformation 

analysis in dental applications [3], [4], the problem remains largely unsolved for global 

CMF deformity analysis, especially for those who have congenital or developmental 

deformities for whom the diagnosis and treatment planning are most critically needed.

The main reason for this research gap is high anatomical variability in the shape of these 

bones due to their deformities in such patient populations. Figure 2 shows some of the 

known CMF deformities and artifacts, including missing bones (hence missing landmarks) 

or irregularities from the underlying disease or the surgical treatment (Figures 2a-2b), 
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varying number of teeth including missing teeth and unerupted deciduous teeth distorting the 

anatomy (Figures 2c-2d), and surgical interventions such as implants or surgical plates and 

screws that are necessary to treat the injury or deformity (Figures 2e-2f). Other reasons are 

image/scanner based artifacts/problems such as noise, truncation, beam hardening, and low 

resolution. Unlike existing methods focusing on dental applications with relatively small 

anatomical variations, there is a strong need for creating a general purpose, automated CMF 

image analysis platform that can help clinicians create a segmentation model and find 

anatomical landmarks for extremely challenging CMF deformities.

The overarching goal of our study is to develop a fully-automated image analysis software 

for mandible segmentation and anatomical landmarking that can overcome the highly 

variable clinical phenotype in the CMF region. This program will facilitate the ease of 

clinical application and permit the quantitative analysis that is currently tedious and 

prohibitive in 3 D cephalometric and geometric morphometrics. To this end, we include a 

landmarking process as a part of the segmentation algorithm to make geometric 

measurements more accurate, easier, and faster than manual methods. Our main dataset 

includes patients with congenital deformities fading to extreme developmental variations in 

CMF bones. The patient population is highly diverse, consisting of a wide range of ages 

across both sexes, imposing additional anatomical variability apart from the deformities.

Our proposed algorithm included three inter-connected steps (See Figures 3 and 4 for the 

overview of the proposed method and a sample processing pipeline for a single CBCT scan). 

For the first step, we designed a new convolutional neural network (CNN) architecture for 

mandibular segmentation from 3D CBCT scans. For Step 2, we presented a learning-based 

geodesic map generation algorithm for each sparsely-spaced anatomical landmark defined 

on the mandible. For Step 3, inspired by the success of recurrent neural networks (RNN) for 

capturing temporal information, we demonstrated a long short-term memory (LSTM) based 

algorithm to capture the relationship between closely-spaced anatomical landmarks as a 

sequential learning process.

II. Related Work

The mandible is the lower jaw bone and it is the only mobile bone in the CMF region. It is 

the largest, the strongest, and the most complex bone in the CMF region that houses the 

lower teeth as well as canals with blood vessels and nerves. Due to its complex structure and 

the significant structural variations of patients with CMF disorders, segmentation and 

landmark localization in the mandibular region is a very challenging problem (See Figure 2). 

Although, there are efforts with promising performances [3], [5], [6], [7], the literature still 

lacks a fully-automated, fast, and generalized software solution in response to a wide range 

of patient ages, deformities, and the imaging artifacts. Hence, the current convention used in 

clinics is still either manual segmentation and annotations, or semi-automated with software 

support such as (in alphabetical order) 3dMDvultus (3dMD, Atlanta, Ga), Dolphin Imaging 

(Dolphin Imaging, Chatsworth, Ca), and InVivoDental (Anatomage, San Jose, Ca).

Over the past decade, there have been significant improvements in mandible segmentation 

and landmarking using registration-based (atlas-based), model-based, and more recently 
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machine learning-based approaches [9]. Although, registration-based methods have been 

reported to achieve relatively high accuracy when shape and appearance information are 

integrated, these algorithms perform poorly when there are variations due to aging (i.e., 

pediatrics vs. adults), missing teeth, missing parts of the region of interest, and imaging 

artifacts [4], [10], [11]. In 2015, Gupta et al. [12] developed a knowledge-based algorithm to 

localize 20 anatomical landmarks on the CBCT scans. Despite the promising results, in 

cases of missing lower incisors, mandible fractures, or other anatomical deformities that 

directly alter the anterior mandible, an error in seed localization can lead to a sub-optimal 

outcome. In 2016, Zhang et al. [5] digitized CMF landmarks on CBCT scans using a 

regression forest-based landmark detector. Image segmentation was used as a guidance to 

address the spatial coherence of landmarks. The authors obtained a mean digitization error 

less than 2mm for 15 CMF landmarks. In 2017, Zhang et al. [3] improved their method by 

proposing a joint CMF bone segmentation and landmark digitization framework via a 

context-guided multi-task fully convolutional neural network (FCN) adopting a U-Net 

architecture. The spatial context of the landmarks were grasped using 3D displacement 

maps. An outstanding segmentation accuracy (dice similarity coefficient of 93.27±0.97%) 

was obtained along with a mean digitization error of less than 1.5 mm for identifying 15 

CMF landmarks. Despite these promising performances, the study had the limitation of 

working on small number of landmarks due to memory constraints. That is, if there are Nl 

landmarks and each patient’s 3D scan is composed of V voxels, 3D displacement maps use 3 

× Nl × V memory as input to the 2nd U-Net. Furthermore, most of the slices in the 

displacement maps were the same due to planar spatial positions, leading to inefficiency 

because of redundant information.

In a more conventional way, Urschler et al. [7] combined image appearance information and 

geometric landmark configuration into a unified random forest framework, and performed a 

coordinate descent optimization procedure that iteratively refines landmark locations jointly. 

The authors achieved a high performance on MRI data with only a small percentage of 

outliers.

A. Our Contribution

To date, little research has been carried out involving deep learning-based segmentation of 

CMF bones and landmarking. Herein, we demonstrate in-depth mandible segmentation and 

landmarking in a fully automated way, and we propose novel techniques that enhance 

accuracy and efficiency to improve the state-of-the-art approaches in the setting of high 

degree of anatomical variability. The latter function is highly critical as previous methods 

have been developed based on optimized and normal patient cohorts, but the limitations of 

these methods are evident in diseased and pathological cohorts and fallshort of clinical 

utilization and application. Specifically, our contributions can be summarized as follows:

• Our proposed method is unique because we propose a fully automated system 

with a geodesic map of bones automatically injected into the deep learning 

settings unlike the state-of-the-art deep approaches where landmarks are 

annotated in Euclidean space [3], [13].

Torosdagli et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• While other works learn landmark locations using only spatial location of the 

landmarks along with context information, we learn the sparsely-spaced 

landmark relationship on the same bone by utilizing a U-Net based landmark 

detection algorithm. Then, an LSTM based algorithm is developed to identify 

closely-spaced landmarks. We consider the landmarks as states of the LSTM, 

and operate on the geodesic space. This approach is not only realistic, but also 

computationally more feasible.

• We present in-depth analysis of architecture parameters such as the effect of 

growth rate in segmentation, the different pooling functions both in detection and 

segmentation tasks, and the harmony of dropout regularization with pooling 

functions.

• Our dataset includes highly variable bone deformities along with other 

challenges of the CBCT scans. For an extremely challenging dataset, the 

proposed geodesic deep learning algorithm is shown to be robust by successfully 

segmenting the mandible bones and providing highly accurate anatomical 

landmarks.

III Methods

The proposed system comprises three steps (see Figure 3 for the overview). Step 1 includes 

a newly proposed segmentation network for mandible based on a unified algorithm 

combining U-Net and DenseNET with carefully designed network architecture parameters 

and a large number of layers. In Step 2, we propose a U-Net based geodesic learning 

architecture to learn true and more accurate spatial relationships of anatomical landmarks on 

the segmented mandible. Finally, in Step 3, we identify closely-spaced landmark locations 

by a classification framework where we utilize an LSTM network.

A. Step 1: Segmentation Network

CNN based approaches such as U-Net [8], fully convolutional network (FCN) [14], and 

encoder-decoder CNNs [15] have achieved increasing success in image segmentation. These 

methods share the same spirit of obtaining images at different resolutions by consecutive 

downsampling and upsampling to make pixel level predictions. Despite the significant 

progress made by such standard approaches towards segmentation, they often fail to 

converge in training when faced with objects with high variations in shape and/or texture, 

and complexities in the structure. Another challenge is the optimization of massive amount 

of hyper-parameters in deep nets. Inspired by the recently introduced notion of densely 

connected networks (DenseNET) for object recognition [16], a new network architecture 

was presented by Jégou et al. [17] for semantic segmentation of natural images, called Fully 

Convolutional DenseNET (or Tiramisu in short). In this study, we adapted this Tiramisu 

network for medical image segmentation domain through significant modifications:

(1) We set all default pooling functions (often they are defined as max pooling) with 

average pooling to increase pixel-level predictions. Although pooling functions 

in the literature have been reported to perform similarly in various tasks, we 

hypothesized that average pooling was more suitable for pixel level predictions 

Torosdagli et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



because average pooling identifies the extent of an object while max-pooling 

only identifies the discriminative part.

(2) We explored the role of dropout regularization on segmentation performance 

with respect to the commonly used batch normalization (BN) and pooling 

functions. Literature provides mixed evidence for the role of these regularizers.

(3) We investigated the effect of growth rate (of dense block(s)) on the segmentation 

performance. While a relatively small growth rate has been found successful in 

various computer vision tasks, the growth rate of dense blocks is often fixed and 

its optimal choice for segmentation task has not been explored yet.

(4) We examined appropriate regularization as well as network architecture 

parameters, including number of layers, to avoid the use of post-processing 

methods such as CRF (conditional random field). It is common in many CNN-

based segmentation methods to use such algorithms so that the model 

predictions are further refined because the segmentation accuracy is below an 

expected range.

Figure 5 illustrates the Tiramisu network architecture (a) and the content of a dense block 

(b), respectively. Tiramisu network is extremely deep, including 103 layers [17] as compared 

to the U-Net which has only 19 layers in our implementation. The input of the Tiramisu 

network was the 2D sagittal slices of the CBCT scan of patients with CMF deformities, and 

the output was the binary 2D sagittal slices with the mandible segmented (see Figure 4 for 

an example workflow of a 2D slice). The architecture consisted of 11 dense blocks with 103 

convolutional layers. Each dense block contained a variable length of layers and the growth 

rate was set specifically for each dense block based on extensive experimental results and 

comparison. The network was composed of approximately 9M trainable parameters. We 

trained the revised Tiramisu from scratch without the need for data augmentation and 

complex post-processing. Details of the network parameters are given in Tables I and II.

B. Step 2: Geodesic Learning for Landmarking

We approach the problem of anatomical landmarking (landmark detection) as a learning 

problem. The state-of-the-art method in the literature adopts a U-Net architecture to learn 

the locations of the anatomical landmarks [3]. For a given 3D CBCT scan X and a landmark 

l, authors [3] created three displacement maps Dl,x, Dl,y, Dl,z corresponding to x,y, and z 
axes [3]. That is, if there are Nl landmarks, Nl × 3 displacement maps are generated. 

Displacement maps, also called heatmaps, were created using a simple Euclidean metric 

measuring the distance of a landmark to a reference point ((0,0) index of image). Although 

the method is simple to implement and efficient within the multi-task learning platform, it 

does not incorporate information about the object of interest (mandible) and works on the 

image space. In addition, the method generates a large number of heatmaps when the 

number of landmarks is high. Lastly, the method operates directly on the Euclidean space 

and it does not capture the underlying data distribution, which is non-Euclidean in nature.

To alleviate these problems and to solve the landmarking problem directly on the shape 

space, we propose to use a Geodesic Distance Transform to learn the relationship of 
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landmarks directly on the shape space (mandible surface). To this end, we first apply linear 

time distance transform (LTDT) [18] to the segmented mandible images (i.e., binary) and 

generate signed distance maps. Assuming I is a 3D-segmented binary image (mandible) 

obtained at Step 1 from a given CBCT scan X in the domain Ω = {1,…,n}×{1,…,m}, 

Mandible M is represented by all white voxels (I(v) = 1), while Mandible complement 

(background) MC is represented by all black voxels (I(v) = 0) [19]:

M = v ∈ Ω I(v) = 1 ,
MC = v ∈ Ω I(v) = 0 .

(1)

LTDT represents a map such that each voxel v is the smallest Euclidean distance from this 

voxel to the MC:

LTDT(v) = min dist (v, q) q ∈ MC . (2)

Then, the signed LTDT, namely sLTDT, of I for a voxel v can be represented as:

sLTDT(v) =
LTDT(v) if v ∈ M,
−min dist (v, q) q ∈ M if v ∈ MC .

(3)

For each landmark l, we generate a geodesic distance map Dl
G . To do so, we find the shortest 

distance between landmark l and each voxel v as:

Dl
G(v) =

min π(l, v) if v ∈ M,
inf if v ∈ MC,

(4)

where π indicates all possible paths from the landmark l to the voxel v (v ∈ M). Since the 

shortest distance between two points is found on the surface, it is called geodesic distance 

[20], [21] as a convention. To find the shortest path π, we applied Dijkstra’s shortest path 

algorithm. For each landmark l, we generated one geodesic map as Dl
G . For multiple 

landmarks, as is the case in our problem, we simply combined the geodesic maps to generate 

one final heatmap, which includes location information for all landmarks. Final geodesic 

map for all landmarks was obtained through hard minimum function 

DI
G = min Dl1

G°Dl2
G°…°Dln

G , where o indicates pixel-wise comparison of all maps. In other 

words, the final geodesic map DI
G includes n extrema (minimum) identifying the locations of 

the n landmarks.

To learn the relationship of n landmark points on the mandible surface, we designed a 

landmark localization network, based on the Zhang’s U-Net architecture [3]. Tiramisu 
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network could perhaps be used for the same purpose. However, the data was simplified in 

landmark localization due to geodesic distance mapping, and Zhang’s U-Net uses only 10% 

of the overall parameter space for landmark localization. The improved Zhang’s U-Net 

accepts 2D slices of the signed distance transform of the segmented mandible (I) as the 

input, and produces the 2D geodesic map (DI
G) revealing the location of Nl landmarks as the 

output. The details of the landmark localization architecture (improved version of the 

Zhang’s U-Net) with 19 layers and parameters are given in Tables III and IV, respectively. 

Briefly, the encoder path of the U-Net was composed of 3 levels. Each level consisted of 

(multiple) application(s) of convolutional nodes: 5×5 convolutions, batch normalization 

(BN), rectified linear unit (ReLU), and dropout. Between each level max pooling, 

downsampling with a stride of 2, was performed. Similar to the encoder path, the decoder 

path was also composed of 3 levels. In contrast to encoder path, dropout was not applied in 

the decoder path. Between the levels in the decoder path, upsampling operation was applied. 

To emphasize the high-resolution features that may be lost in the encoder path, copy 

operation was used in the decoder path. Copy operation, as the name implies, concatenated 

the features at the same 2D resolution levels from the encoder path to the decoder path.

We have chosen the optimization algorithm as RM-SProp [22] due to its fast convergence 

and adaptive nature. The initial learning rate was set to 1e-3 with an exponential decay of 

0.995 after each epoch (Table IV). At the end of the decoder path, softmax cross entropy was 

applied as a loss function because mean squared error (MSE) caused serious convergence 

issues. We quantized the geodesic map in the range [0 – 20], where the limit 20 was set 

empirically. The network was composed of ≈ 1M trainable parameters. Compared to the 

Zhang’s U-Net [3], in our improved implementation, in addition to the 5 × 5 convolutions, 

on the expanding path at level 2, we kept the symmetry in the number of features obtained as 

in the contracting path. These alterations made sure Zhang’s U-Net to work without failures.

C. Step 3: Localization of Closely-Spaced Landmarks

Fusion of geodesic maps through pixel-wise hard-coded minimum function is reliable when 

landmarks are sufficiently distant from each other. In other words, if landmarks are very 

close to each other, then the combined geodesic map DI
G may have instabilities in locating its 

extrema points. In particular for our case, it was not possible to localize specifically 

“Menton” and other mid-sagittal closely-spaced landmarks in a clinically acceptable error 

range (i.e., ⩽ 3mm) . In order to avoid such scenarios, we divided the landmarking process 

into two distinct cases: learning closely-spaced and sparsely-spaced landmarks separately. 

First, we classified the mandible landmarks into sparsely and closely-spaced sets. Sparsely-

spaced landmarks (N=5) were defined in the inferior, superior-posterior-left, superior-

posterior-right, superior-anterior-left, and superior-anterior-right regions. Closely-spaced 

landmarks (N=4) were defined as the ones that were closely tied together (Infradentale (Id), 

B point (B), Pogonion (Pg), and Gnathion (Gn)).

Note that these anatomical landmarks often reside on the same sagittal plane in the same 

order according to the midpoint of the lower-jaw incisors. We propose to capture this order 

dependence by using an LSTM architecture in the sagittal axis of the images containing the 
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landmark “Menton” (Figure 6). The rationale behind this choice was that LSTM network is 

a type of RNN introduced by Hochreiter et al. [23] in 1997, modeling the temporal 

information of the data effectively. Although the imaging data that we used does not include 

temporal information in the standard meaning, we modeled the landmark relationship as a 

temporal information due to their close positioning in the same plane. This phenomenon is 

illustrated in Figure 6. The input data to the LSTM network was a 64 × 64 mandible binary 

boundary image of the sagittal plane of the landmark Me, and the output was a vector of 0’s 

and 1’s: while 0 refers to non-landmark location, 1 refers to a landmark location in the 

sagittal axis. Figure 7 shows further details of the LSTM network and content of a sample 

LSTM block that we used for effective learning of closely-spaced landmarks.

To generate the training data, the sagittal slice containing the closely-spaced landmarks 

“Menton”, “Gnathion”, “Pogonion”, “B-point” and “Infradentale” was scaled into a binary 

boundary image of size 64 × 64. The 5 landmark locations (marked by red circles in Figure 

6) on this boundary image were parameterized as (x,y), where y is the row number in the 

range 0 to 64, and x is the white boundary column number of the corresponding row y.

LSTM network was composed of 64 cells (Figure 7), and each cell in the LSTM network 

consisted of 512 units. The training images were row-wise input to the LSTM network such 

that nth row was input to the corresponding nth cell of the network. The output of each cell 

was multiplied by 512 × 2 weight and 1 × 2 bias was added. The resultant 1 × 2 tensors at 

each cell were concatenated and softmax cross entropy was applied as a loss function.

D. Training Framework: End-to-end vs. Sequential vs Mixed

Since the proposed learning system is complex, it is worth to explore whether gradient-

descent learning system can be applied to the system as a whole (called end-to-end). For this 

purpose, first, we evaluated the performances of each network individually, so named 

sequential training followed by an engineering approach for concatenation of the three 

networks. Since end-to-end learning systems require all modules of the complex system to 

be differentiable, our proposed system was not fully eligible for this learning type. It is 

because the 3rd module (LSTM network for closely-spaced landmark localization) had 

differentiability issues for the given loss function. Therefore, we trained the first and second 

modules in an end-to-end manner while integrating the third network module into this 

system sequentially. In summary, we devised two alternative methods to solve our overall 

goal: in the first solution, the overall system was considered as a sequential system. In the 

second solution, the first two modules of the system were trained in an end-to-end manner 

with the inclusion of the third module as a sequential block. Owing to the usage of 

sequential and end-to-end frameworks together, we named the second solution as “mixed”.

Although end-to-end networks are conceptually and mathematically beautiful, it has a strict 

condition that each module should be differentiable with respect to the loss function so that a 

positive impact can be obtained on the final objective. However, as stated in [24] and [25], 

when some modules are not differentiable (as the third module of our proposed method), or 

when the system is too complex with sparse modules, the overall results may be inferior 

compared to the sequential method. Due to the differentiability issue in the third module, our 

system falls into this category. That is, the input to the 3rd module was the 2D sagittal slice 
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containing the anatomical landmark “Menton”. Since not every output slice in the training 

could be used for the 3rd module, differentiability was lost. In addition, we observed that 

unless the first two modules were close to the converging state, it was not possible to locate 

“Menton” more precisely than a random guess. Due to the requirement of convergence 

within this module, eventually, it was not possible to apply LSTM training in a truly end-to-

end manner.

IV. Experiments and Results

A. Data description:

Anonymized CBCT scans of 50 patients (30 female and 20 male, mean age = 22.4 years, 

standard deviation = 9.6 years) were included in our analysis through an IRB-approved 

protocol and data sharing agreement between UCF and NIH. These patients had craniofacial 

congenital birth defects, developmental growth anomalies, trauma to the CMF, surgical 

intervention, and included pediatric and adult patients. All images were obtained on a CB 

MercuRay CBCT system (Hitachi Medical Corporation, Tokyo, Japan). The 12-inch field of 

view was required for this study to capture the entire length of the airway and was scanned 

at 10 mA and 100 Kvp. The equivalent radiation dosage for each scan was approximately 

300 mSv. After the study had begun, the machine was modified to accommodate 2 mA for 

the same 12-inch field of view, thus lowering the equivalent radiation dosage for each scan 

to approximately 132.3 mSv. Each patient’s scan was re-sampled from 512 × 512 × 512 to 

256 × 256 × 512 to reduce computational cost. In-plane resolution of the scans was noted 

either as 0.754mm × 0.754mm × 0.377mm or 0.584mm × 0.584mm × 0.292mm. Apart from 

highly diverse nature of this data set, the following image-based variations have also been 

confirmed: aliasing artifacts due to braces, metal alloy surgical implants (screws and plates), 

dental fillings, and missing bones or teeth.

Additionally, we tested and evaluated our algorithm(s) using the MICCAI Head-Neck 

Challenge 2015 dataset [26]. MIC-CAI Head-Neck Challenge 2015 dataset was composed 

of manually annotated CT scans of 48 patients from the Radiation Therapy Oncology Group 

(RTOG) 0522 study (a multi-institutional clinical trial [27]). For all data, the reconstruction 

matrix was 512 × 512 pixels. The in-plane pixel spacing was isotropic, and varied between 

0.76mm × 0.76mm and 1.27mm × 1.27mm. The range of the number of slices of the scans 

were 110–190. The spacing in the z-direction was between 1.25mm and 3mm [26]. In the 

challenge, there were three test results provided, where test data part 1 (off-site data) and 

part 2 (on-site data) did not have publicly available manual annotations to compare to our 

performances. Hence, we compared our test results to the the cross-validation results as 

provided in [28].

Training deep networks: We have trained our deep networks with 50 patients’ 

volumetric CBCT scans in a 5-fold cross validation experimental design. Since each 

patient’s scan includes 512 slices (i.e., 2D images with 256 × 256 pixels inplane), we had a 

total of 25,600 images to train and test. In each training experiment, we have used 20,480 

2D images to train the network while the remaining slices (5,120) were used for testing. This 
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procedure was repeated for each fold of the data, and average of the overall scores were 

presented in the following subsections.

B. Evaluation metrics and annotations:

Three expert interpreters annotated the data (one from the NIH team, two from the UCF 

team) independently. Interobserver agreement values were computed based on these three 

annotations. Later, second and third experts (from the UCF team) repeated their manual 

annotations (after one month period of their initial annotations) for intra-observer 

evaluations. Experts used freely available 3D Slicer software for the annotations. Annotated 

landmarks were saved in the same format of the original images, where landmark positions 

in a neighborhood of 3 × 3 × 3 were marked according to the landmark ID while the 

background pixels were marked as 0.

A simple median filtering was used to minimize noise in the scans. No other particular 

preprocessing algorithm was used. Experiments were performed through a 5-fold 

crossvalidation method. Intersection of Union (IoU) metric was used to evaluate object 

detection performance. For evaluating segmentation, we used the standard DSC (dice 

similarity coefficient), Sensitivity, Specificity, and HD (Hausdorff Distance) (100% 

percentile). As a convention, high DSC, sensitivity, specificity and low HD indicate a good 

performance. The accuracy of the landmark localization was evaluated using the detection 

error in pixel space within a 3 × 3 × 3 bounding box. Inter-observer agreement rate was 

found to be 91.69% for segmentation (via DSC).

C. Evaluation of Segmentation

The proposed segmentation framework achieved highly accurate segmentation results 

despite the large variations in the imaging data due to severe CMF deformities. Table V 

summarizes the segmentation evaluation metrics and number of parameters used for the 

proposed and the compared networks. The proposed segmentation network outperformed the 

state-of-the-art U-Net [8]. Specifically, we have improved the success of the baseline U-Net 

framework by increasing the number of layers into 19. In terms of the dice similarity metric, 

both improved Zhang’s U-Net and the proposed segmentation network were statistically 

significantly better than the baseline U-Net (P = 0.02, t-test). In summary, (i) there is no 

statistically significant difference noted between our proposed method and the manual 

segmentation method (P = 0.77); (ii) there is a statistically significant difference between our 

proposed method and the baseline U-Net (P = 0.02); (iii) there is no statistically significant 

difference noted between the proposed method and our improvement over the Zhangs U-Net 

(P = 0.28). It is also worth to note that the proposed Tiramisu network performed more 

robustly in training, converging faster than the improved Zhang’s U-Net despite the larger 

number of parameters in the Tiramisu.

We evaluated the segmentation performances on different datasets and training styles 

(sequential vs. mixed learning) and summarized the results in Table VI. With the MICCAI 

Head-Neck Challenge 2015 dataset, we obtained a dice accuracy of 93.86% compared to 

90% [28]. High accuracies of the MICCAI Head-Neck Challenge 2015 and the NIH datasets 

imply the robustness of the Tiramisu segmentation network. It should be noted that MICCAI 
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Head-Neck Challenge 2015 dataset contains mainly scans with imaging artifacts as well as 

different diseases. Closer inspection of Table VI also shows that a simple post-processing 

step such as “Connected Component Analysis” and “3D fill” were important to decrease the 

number of the false positives and false negatives in the challenge dataset. The slightly lower 

performances of mixed training with Tiramisu network for both segmentation and landmark 

localization can be explained by the increased number of parameters but insufficient dataset 

size to derive learning procedure as a whole. Sequential learning was sufficient to obtain 

good results in segmentation, though.

D. Evaluation of Landmark Localization

Ground truth annotations (manual segmentation and anatomical landmarking) were 

performed by three experts independently. Inter-observer agreement rate was 91.69%. Figure 

8c presents per landmark and overall expert reading variations of landmarking in the pixel 

space. We observed that there was an average 3 pixel errors among the experts. Hence, any 

landmarking algorithm leading to error within 3 pixel range can be considered a clinically 

acceptable level of success. Figures 8a and 8b summarize the proposed algorithm’s 

landmark localization errors in the pixel space and the volume space, respectively.

The mean and median volume space errors for each landmark are presented at Table VII. 

The errors in the pixel space (Figure 8a) were less than 3 pixels for all 9 landmarks, 

indicating that our method is highly accurate and can be used for clinical applications as it 

results in less variations than the inter-observer variation rate as explained earlier (Figure 

8c).

Figure 9 presents three experimental results when there was high morphological variation 

and deformity. In Figure 9a, due to the genioplasty with chin advancement and rigid fixation, 

there is a protuberance on the mandible distorting the normal anatomy. In Figure 9b, 

condyle-ramus unit is absent on the left side of the mandible due to a congenital birth defect. 

The Geodesic Landmark Localization network successfully detected 4 landmarks. Note that 

the fifth landmark was on the missing bone, and it was not located as an outcome of the 

landmarking process. This is one of the strengths of the proposed method. In Figure 9c, the 

patient had bilateral surgical implants along the ascending ramus (bicortical positional 

screws), and bilateral condyle and coronoid processes are fixed with these implants. The 

landmarking process was successful in this challenging case too.

We also evaluated the impact of segmentation accuracy on the landmark localization error 

(Figure 10). In this evaluation, we first grouped the testing scans into 2 groups according to 

their dice values as lower and higher segmentation accuracies (i.e., ≤ 90% as lower, > 90% 

as higher). Next, we compared the landmark localization errors in pixel space for these two 

groups. In Figure 10, the landmarking process was robust to changes in segmentation 

accuracy, and never reached more than 3 pixels errors. It should also be noted that the mean 

and median segmentation accuracy were still very high in our experiments, leading to 

successful landmark localization even at the low end of the dice values. Overall, the 

landmark localization was robust to the segmentation step and a potential (visible) error may 

happen only when the Menton (closely-spaced landmark) is located incorrectly due to a 

potential segmentation error.
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Table VII summarizes the average and median errors of localized landmarks in millimeters 

with respect to different regularization methods, in particular pooling strategies. We 

observed that max pooling consistently outperformed other regularization methods. Unlike 

the segmentation problem, where average pooling was most effective in pixel level 

predictions, landmarking was driven by discriminative features, enhanced by max pool 

operation. All average and median errors of the landmark localizations were within the 

clinically acceptable limits (less than 3 pixels).

V. Discussion and Conclusion

Overall, the proposed networks (Tiramisu and improved Zhang’s U-Net) have enjoyed fast 

convergence (around 20 epochs) and high accuracy in a very challenging CBCT dataset. 

Tiramisu was observed to have better converging and training ability compared to improved 

Zhang’s U-Net. For landmark localization, improved Zhang’s U-Net in the geodesic space 

has performed comparably to the validated operator manual landmarking (e.g., median 

displacement error of 0 mm in most landmarks). We also addressed some of the poorly 

understood concepts in deep network architecture (particularly designed for medical image 

analysis applications) such as the use of dropout and pooling functions for regularization, 

activation functions for modeling non-linearity, and growth rate for information flow in 

densely connected layers (see Appendix A).

Fully convolution network (FCN) [14] has significantly changed the landscape of semantic 

image segmentation frameworks. Based on the FCN, Ronneberger et al. [8] introduced the 

U-Net which became the baseline for the current medical image segmentation tasks. The 

literature for particular medical image segmentation applications based on U-Net is vast; 

employing the encoder-decoder structure, dense connections, skip connections, residual 

blocks, and other types of architectural additions to improve segmentation accuracy for 

particular medical imaging applications. One major drawback of the U-Net framework is the 

inefficiency introduced by the significantly higher number of parameters to learn [29]. 

Hence, there is an anticipation for improvements in the efficiency and robustness of the U-

Net type of architecture in the medical imaging field in the near future. One example of such 

studies, called Capsules [29], may be a good future alternative to what we propose herein.

In our study, we have focused on individual aspects of segmentation and landmarking, and 

have proposed novel architectural designs to address problems in both processes that have 

not been corrected in currently available systems. The natural extension of our work will be 

to formulate segmentation and landmarking problem within the multi-task learning 

algorithm, similar to the one proposed by Zhang et al. [3].

There are some limitations to our proposed method. Due to extensive memory and hardware 

requirement, we used pseudo-3D image analysis instead of fully 3D. A possible extension of 

our study will be to work on completely 3D space once hardware and memory supports are 

available. Another limitation of our work is to have a two-cascaded system for landmark 

localization instead of one because the hardcoded minimum function that we used for 

combining geodesic distances created additional artificial landmarks between those closely 

distributed landmarks. To overcome this problem, we showed a practical and novel use of 
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LSTM-based algorithm to learn the locations of closely-spaced landmarks and avoided such 

problems. Exploration of different functions other than hard-coded minimum for closely-

spaced landmark localization is subject to further theoretical investigation in geodesic 

distance maps.

Future studies will include utilization for large cohort landmarking and analysis to establish 

normative craniofacial datasets. This fully automated method will enhance high throughput 

analysis of large, population-based cohorts. Additionally, studies on rare craniofacial 

disorders that often have anatomical variation will greatly benefit from the highly accurate 

landmark localization process.

Appendix

A. Evaluation of the Segmentation Network Parameters

1) Effect of pooling functions:

After extensive experimental comparisons, we found that average pooling acts as a robust 

regularizer compared to other pooling functions such as max pooling and stochastic pooling 

(Table IX).

2) Disharmony between BN and dropout:

We found that when BN is used in the network for segmentation purpose, the use of dropout 

is often detrimental except for only a drop rate of 20%. Similarly, we found that average 

pooling was the most robust pooling function compared to others when BN and dropout 

were used together.

3) The role of growth rate in dense blocks:

Tiramisu network with 103 layers (growth rate of 16) has a proven success in the computer 

vision tasks. In our experiments, we observed that a Tiramisu network with a growth rate of 

24 and drop rate of 0.2 produces the best accuracies instead of growth rate of 16 as in 

computer vision tasks (See Table X). Further, when no dropout is used (drop rate is 0), the 

growth rate performance inverses (See Table VIII), implying the regularizing impact of 

employing dropout on the neural networks.

4) The choice of activation functions: Although there have been many hand-

designed activation functions proposed for deep networks, ReLU (rectified linear unit) 

became an almost standard choice for most CNNs. The main reason is due to its significant 

effect on the training dynamics and high task performances. More recently, another 

activation function, called “Swish” [30], was proposed. Unlike other activation functions, 

Swish was automatically determined based on a combination of exhaustive and 

reinforcement learning-based search. Authors showed that Swish tend to perform better than 

ReLU for very deep models. Since the proposed Tiramisu has 103 layers, we replaced all 

ReLU functions with Swish, which is a weighted sigmoid function f (x) = x.sigmoid(βx), 

and explored the network behaviors. We summarized the network performance in Table 

Torosdagli et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VIII. Overall, we did not observe significant differences between ReLU and Swish, but 

ReLU led into slightly better results in all sub-experiments.

B. Qualitative Evaluation

Our total CBCT dataset is composed of 250 patient CBCT images provided by our 

collaborators at the NIDCR/NIH. Only 50 of them were manually annotated by the three 

experts. To measure the performance of the algorithm on all available scans, by following 

the routine radiologic evaluation of the scans, two experts visually scored the segmentation 

results in the range from 0 to 4, where 1 is unacceptable, 2 is borderline, 3 is acceptable at 

clinical level, and 4 is superior (excellent) (Figures 11 and 12). When the scan is completely 

distorted or mandible does not exist in its entirety in the scan, it is not possible to 

automatically segment mandible, hence a score of 0 is given.

Scores of 3 and 4 represent clinically acceptable segmentation, where score 3 may 

correspond to minor deformations in the segmentation. The left top part of the Mandible 

(Figure 12-a6) was missing, for instance, but it was still precisely segmented. The mandible 

(Figure 12-c2), for another example, was composed of two separate parts, and the algorithm 

detected the larger portion of the mandible. Further analysis showed that the scans that were 

scored as 1 or 2 were typically the ones with serious anatomical deformations. 

Approximately 5% of the segmentation results were scored as 1 by both experts A and B 
(Figure 11).
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Fig. 1: 
Anatomical landmarks on the mandible: Menton (Me), Gnathion (Gn), Pogonion (Pg), B 

Point (B), Infradentale (Id), Condylar Left (CdL), Condylar Right (CdR), Coronoid Left 

(CorL), and Coronoid Right (CorR). We aim to locate these landmarks automatically.
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Fig. 2: 
Examples of diverse CMF conditions are illustrated. (A) Surgical treatment, genioplasty 

with resultant chin advancement and fixation plate (implant) (adult), (B) missing condyle-

ramus unit in the mandible in left dominant hemifacial microsomia (adult), (C) unerupted 

teeth in the anterior mandible with distorted anatomy (pediatric), (D) mid-sagittal plane with 

respect to lower jaw incisors have a serious degradation from the 90 degrees (pediatric), (E) 

bilateral bicortical positional screws (implants) in the ascending ramus of the mandible for 

rigid fixation after a bileteral sagittal split osteotomy (adult), (F) plate and screws (implants) 

in the anterior mandible for rigid fixation and reduction of an oblique fracture (adult).
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Fig. 3: 
Following the Mandible Segmentation with Fully Convolutional DenseNet, Linear Time 

Distance Transform (LTDT) of the Mandible Bone is generated. A second U-Net [8] is used 

to transform LTDTs into a combined Geodesic Map of the mandibular landmarks Menton 

(Me), Condylar Left (CdL), Condylar Right (CdR), Coronoid Left (CdL), and Coronoid 

Right (CdR). Finally, an LSTM Network is used to detect Infradentale (Id), B point (B), 

Pogonion (Pg), and Gnathion (Gn) mandibular landmarks according to the detected position 

of the Menton (Me) in previous step. All algorithms in this proposed pipeline run in 

pseudo-3D (slice-by-slice 2D). To ease understanding of the segmentation results, surface 

rendered volumes are presented instead of contour based binary images.
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Fig. 4: 
The example workflow of a single slice in the proposed pipeline (Figure 3). The outputs of 

the steps (Landmark Classification and LSTM Network) are zoomed in for visual illustration 

of the process.
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Fig. 5: 
(a) General architecture of the Tiramisu [17] is illustrated. The architecture is composed of 

downsampling and upsampling paths including Convolution, Dense Block, Concatenation 

(C), Skip Connection (dashed lines), Transition Down, and Transition Up layers. 

Concatenation layer appends the input of the dense block layer to the output of it. Skip 

connection copies the concatenated feature maps to the upsampling path. (b) A sample dense 

block with 4 layers is shown to its connections. With a growth rate of k, each layer in dense 

block appends k feature maps to the input. Hence, the output contains 4 × k features maps.
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Fig. 6: 
LSTM network input-output. Each row of the scaled sagittal boundary image is input to the 

corresponding LSTM block, and binary 1D vector of locations annotated as landmark (1), or 

no-landmark (0) is output.
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Fig. 7: 
Details of the network architecture (LSTM) for identifying closely-spaced landmarks. 

Gnathion (Gn), Pogonion (Pg), B Point (B), and Infradentale (Id) are determined once the 

Menton (Me) is detected through U-Net architecture as shown in Step 3 of the Figure 3. 

Input image resolution is RxK, and the LSTM cell is composed of 512 hidden units.
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Fig. 8: 
(a) Errors in pixel space, (b) errors in the volume space, (c) inter-observer reading variations 

in pixel space.

Torosdagli et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9: 
Experimental renderings demonstrating segmentation and landmark localization results of 

patients with high anatomical variability due to deformities and surgical intervention
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Fig. 10: 
Impact of segmentation accuracy on the landmark localization process.
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Fig. 11: 
Summary of qualitative evaluation of 250 scans from the NIDCR/NIH dataset evaluated by 2 

experts, A and B
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Fig. 12: 
Qualitative Evaluation Scores of the Segmentation Results. The experts visually evaluated 

the performance of the segmentation of the 250 patient scans in the score range 1 to 4, where 

1 is inferior. Examples of scans with scores 1–4 are presented.
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TABLE I:

The network architecture of the Tiramisu segmentation engine.

Layers applied # of feature maps

Input 1

3 × 3 Convolution 48

Dense Block (4 layers) + Transition Down 112

Dense Block (5 layers) + Transition Down 192

Dense Block (7 layers) + Transition Down 304

Dense Block (10 layers) + Transition Down 464

Dense Block (12 layers) + Transition Down 656

Dense Block (15 layers) 896

Transition Up + Dense Block (12 layers) 1088

Transition Up + Dense Block (10 layers) 816

Transition Up + Dense Block (7 layers) 578

Transition Up + Dense Block (5 layers) 384

Transition Up + Dense Block (4 layers) 256

1 × 1 Convolution 2

Softmax 2
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TABLE II:

The network architecture parameters of the Tiramisu segmentation engine

Hyper-Parameters Value

Learning-Rate 0.00005

Drop-out 0.2

Network Weight Initialization Xavier Initializer

Bias Initializer Zero Initializer

Activation Function ReLu

Growth Rate 24

Normalization Batch Normalization

Network Parameters Value

Pooling Average

Batch-Size 3

Optimization Adam
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TABLE III:

The network architecture of the improved Zhang’s U-Net for sparsely-spaced landmarks

Layers applied Slice Size Number of feature
maps

Input 256 × 256 1

5 × 5 Convolution 256 × 256 32

5 × 5 Convolution 256 × 256 32

Max-pooling 128 × 128 32

5 × 5 Convolution 128 × 128 64

5 × 5 Convolution 128 × 128 64

Max-pooling 64 × 64 64

5 × 5 Convolution 64 × 64 128

5 × 5 Deconvolution 64 × 64 64

Upsampling + Copy 128 × 128 128

5 × 5 Deconvolution 128 × 128 64

5 × 5 Deconvolution 128 × 128 32

Upsampling + Copy 256 × 256 64

5 × 5 Deconvolution 256 × 256 32

5 × 5 Deconvolution 256 × 256 32

5 × 5 Deconvolution 256 × 256 21

Softmax 256 × 256 21
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TABLE IV:

The network architecture parameters of the improved Zhang’s U-Net for sparsely-spaced landmarks

Hyper-Parameters Value

Learning-Rate 1e-3

Decay-Rate 0.995

Drop-out 0.2

Network Weight Initialization Xavier Initializer

Bias Initializer Zero Initializer

Normalization Batch Normalization

Pooling Maxpool

Batch-Size 3

Optimization RMSProp
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TABLE V:

Evaluation of the segmentation algorithms. Higher IoU(%) and DSC (%), and lower HD (mm) indicate better 

segmentation performance. Improved Zhang’s U-Net is built on top of Zhang’s U-Net implementation [3].

Method IoU DSC HD Layers # of params.

Baseline U-Net [8] 100 91.93 5.27 31 ≈50M

Improved Zhang’s U-Net 100 93.07 5.87 19 ≈1M

Proposed (Tiramisu) 100 93.82 5.47 103 ≈9M
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TABLE VI:

Segmentation performances in different datasets, training paradigms (mixed vs. sequential), and post-

processing algorithms.

Post-processing DSC(%) Sensitivity(%) Specificity(%) HD(mm)

Sequential
Tiramisu Segmentation

MICCAI 2015

- 92.30 86.43 99.96 5.09

connected component analysis, 3D fill 93.86 95.23 99.99 4.58

Sequential
Tiramisu Segmentation

NIH Dataset

- 92.61 93.42 99.97 8.80

connected component analysis, 3D fill 93.82 93.42 99.97 6.36

Mixed
Tiramisu Segmentation

→ U-Net Landmark Localization
NIH Dataset

- 92.09 92.10 99.96 8.30

connected component analysis, 3D fill 92.28 92.10 99.96 7.11

Mixed
Tiramisu Segmentation

→ Tiramisu Landmark Localization
NIH Dataset

- 90.10 90.53 99.97 8.80

Connected component analysis, 3D fill 90.10 90.52 99.97 6.36
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TABLE VII:

Landmark localization performances are evaluated for each anatomical landmark and with respect to different 

pooling functions. Errors (in mm) are given both in average (avg) and median (md) values.

max pool avg pool stoc. pool max pool +
wo drop out

Me avg
md

0.33
0

1.35
0

0.37
0

0.03
0

CorL avg
md

0.27
0

0.07
0

0
0

0
0

CorR avg
md

0.33
0

0.3
0

0.37
0

0.45
0

CdL avg
md

1.01
0

0.037
0

0.56
0

0.33
0

CdR avg
md

0
0

0.11
0

0.07
0

0.07
0

Gn avg
md

0.41
0

1.64
0

1.35
0.18

0.49
0

Pg avg
md

1.36
1.17

2.34
0.75

2.4
1.6

1.54
0.75

B avg
md

0.68
0.18

1.47
0

1.24
0.56

0.33
0

Id avg
md

0.35
0

1.74
1.131

0.75
1.67

0.52
0
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TABLE IX:

Resulting segmentation DSC accuracies with respect to the drop ratio (avg pooling, ReLU, and growth rate of 

24). Note that drop ratio of 0 denotes “no” use of dropout layer.

Drop Ratio 0.5 0.3 0.2 0.1 0.0

DSC(%) 91.21 93.3l 93.82 92.90 92.88
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TABLE X:

Effect of different growth rates on segmentation performance using Tiramisu with avg. pooling.

Growth Rate(k) 12 16 24 32

DSC(%) 92.63 93.36 93.82 92.60

HD(mm) 6.44 5.50 5.4l 5.02
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