Skip to main content
. Author manuscript; available in PMC: 2020 Apr 1.
Published in final edited form as: IEEE Trans Med Imaging. 2018 Oct 12;38(4):919–931. doi: 10.1109/TMI.2018.2875814

TABLE I:

The network architecture of the Tiramisu segmentation engine.

Layers applied # of feature maps
Input 1
3 × 3 Convolution 48
Dense Block (4 layers) + Transition Down 112
Dense Block (5 layers) + Transition Down 192
Dense Block (7 layers) + Transition Down 304
Dense Block (10 layers) + Transition Down 464
Dense Block (12 layers) + Transition Down 656
Dense Block (15 layers) 896
Transition Up + Dense Block (12 layers) 1088
Transition Up + Dense Block (10 layers) 816
Transition Up + Dense Block (7 layers) 578
Transition Up + Dense Block (5 layers) 384
Transition Up + Dense Block (4 layers) 256
1 × 1 Convolution 2
Softmax 2