Skip to main content
. Author manuscript; available in PMC: 2020 Apr 1.
Published in final edited form as: IEEE Trans Med Imaging. 2018 Oct 12;38(4):919–931. doi: 10.1109/TMI.2018.2875814

TABLE VI:

Segmentation performances in different datasets, training paradigms (mixed vs. sequential), and post-processing algorithms.

Post-processing DSC(%) Sensitivity(%) Specificity(%) HD(mm)
Sequential
Tiramisu Segmentation
MICCAI 2015
- 92.30 86.43 99.96 5.09
connected component analysis, 3D fill 93.86 95.23 99.99 4.58
Sequential
Tiramisu Segmentation
NIH Dataset
- 92.61 93.42 99.97 8.80
connected component analysis, 3D fill 93.82 93.42 99.97 6.36
Mixed
Tiramisu Segmentation
→ U-Net Landmark Localization
NIH Dataset
- 92.09 92.10 99.96 8.30
connected component analysis, 3D fill 92.28 92.10 99.96 7.11
Mixed
Tiramisu Segmentation
→ Tiramisu Landmark Localization
NIH Dataset
- 90.10 90.53 99.97 8.80
Connected component analysis, 3D fill 90.10 90.52 99.97 6.36