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Abstract

Genetic predisposition is necessary for polycystic kidney disease (PKD) initiation, although there 

are other, incompletely identified downstream processes that are required for cyst growth. Their 

characterization may provide a unique opportunity for clinical interventions. One of the poorly 

studied phenomena in PKD is high ATP content in cysts. Unfortunately, neither origins of 

uncontrolled ATP release, nor consequences of abnormal purinergic signaling in relation to 

epithelial transport are well explored in the polycystic kidney. We tested the distribution of 

pannexin-1 (Panx1) and P2X7, two proteins potentially involved in ATP release, in the kidneys of 

the Pkd1RC/RC mice, a model of autosomal dominant PKD (ADPKD). Abundances of both 

proteins were abnormally increased in the cyst lining cells compared to non-dilated collecting 

ducts. To establish if pannexin-1 contributes to ATP release in the collecting ducts (CD), we 

measured luminal accumulation of ATP in M1 cell renal CD monolayers, and found that treatment 

with probenecid, a Panx1 blocker, prevents ATP release. Single channel patch clamp analysis of 

polarized M1 cells revealed that apical stimulation of P2X receptors with αβ-MeATP acutely 

reduces ENaC activity. We conclude that in ADPKD progression, an abnormal hyperexpression of 

both PANX1 and P2RX7 occurs in the cyst lining epithelial cells. High abundance of both proteins 

is not typical for non-dilated CDs but, when happens in cysts, pannexin1/P2X7 cooperation 

elevates ATP release into the luminal space. High ATP level is a pathogenic factor facilitating 

cystogenesis by reducing ENaC-mediated reabsorption from the lumen.
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Introduction

Polycystic kidney diseases are hereditary nephropathies characterized by a spontaneous 

growth of fluid-filled cysts along the nephron. Autosomal dominant PKD (ADPKD) is 

caused by mutation in the PKD1 or PKD2 genes encoding polycystins 1 and 2 whereas the 
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autosomal recessive form (ARPKD) is due to mutations in PKHD1 encoding fibrocystin, a 

protein capable of interacting with the polycystin-½ complex [1, 2]. ADPKD cysts start as 

tubular or ductal dilatation in a minority (~1%) of nephrons [3]. During cyst growth, 

numerous cellular abnormalities have been observed in cyst-lining cells, including 

alterations in apical–basal polarity, extracellular matrix rearrangements, cell proliferation, 

cAMP elevation, Warburg effect and abnormal fluid transport [4].

ATP is a molecule providing energy for a plethora of enzymatic reactions in the cell. It is 

also an important humoral factor responsible for para- and autocrine signaling. In the kidney, 

ATP plays a major role in orchestrating renal autoregulation, hemodynamics and epithelial 

transport. For example, in normal collecting ducts (CD) ATP is responsible for ion transport 

regulation and limits activity of ENaC during high salt consumption via activation of P2Y2 

receptors [5]. P2X and P2Y receptors co-exist in renal vasculature, glomeruli, nephron 

segments and the collecting duct system and regulate cell contractility, Ca2+ release from 

ER, ion channel activity and other functions [6].

There are data obtained from human biopsies and recently confirmed in PCK rats, a model 

of ARPKD, that PKD cysts accumulate an abnormally high level of ATP [7–9]. The 

involvement of auto- and paracrine ATP effects in the development of PKD was reviewed by 

Rangan [10] and Ilatovskaya and colleagues [11]. Both papers suggest that general ATP 

release mechanisms identified earlier in the kidney contributes to cyst growth: destruction 

(via apoptosis and necrosis) of cystic and normal renal cells, exocytosis in vesicles, and 

release via connexin/pannexin channels located in the membrane of epithelial cells, or other 

sources like infiltrated immune cells or nerve terminals. ATP excess in the lumen can serve 

as a pivotal pathogenic factor of cyst expansion driving impaired sodium reabsorption, 

increased chloride secretion and cell proliferation [12–15]. However, the origins and 

effectors of ATP release in PKD remain poorly understood.

Pannexin-1 was characterized as a non-junctional membrane channel existing in two 

conformations: with low (~50 pS) and high conductance (~500 pS) [16]. In the high 

conductive state pannexin-1 pores are capable of releasing large (up to 1 kDa) molecules 

including ATP [17] and interleukin-1β [18]. PANX1 appears as a hexameric assembly of 

pannexin-1 subunits that form a transmembrane channel called pannexon. There is 

accumulating evidence summarized in the excellent review [16] that pannexin-1 matches all 

requirements to serve as an ATP release channel (biophysical properties, co-localization and 

expression in ATP releasing cells, response to physiological stimuli). PANX1-dependent 

ATP release has been firmly shown in CNS, pancreatic β-cells, blood and immune cells [16, 

19, 20]. PANX1 is expressed in various excitable and non-excitable cells including the 

kidney, brain, various epithelial and endothelial cells, erythrocytes, and lymphocytes, 

whereas the expression of PANX2 and PANX3 is restricted to the brain and skin/bone, 

respectively [16]. According to data obtained in Panx1 knockout mice, in the kidney Panx1 
is expressed in principal and intercalated cells of the distal nephron and descending thin 

limb, and pannexin-1 is necessary for ATP release into the urine [21, 22].

There is strong evidence that pannexin-1 interacts with P2X7 receptors that change its 

conformation and form a channel highly permeable for ATP [16, 23–25]. Pannexin-1 can be 
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immunoprecipitated with P2X7 protein by antibodies directed to either Panx1 or P2X [26–

28]. Contribution of the pannexin-1/P2X7 interaction to ATP release has recently been 

demonstrated in cardioprotection [29], vascular inflammation in lungs [30], bone [25], and 

neuromuscular transmission [31]. A central role of the autocrine signaling loop involving 

ATP-induced P2X7 activation and further amplified by pannexin-1 dependent ATP release 

has been shown in motility of dendritic cells [32]. Unfortunately, the cooperation of 

pannexin-1 and P2X receptors in renal physiology is not well characterized.

Our study investigates cystic expression of pannexin-1 and P2X7 in Pkd1RC/RC mice, a 

rodent model of ADPKD [33], and their involvement in ATP release which serves as a 

pathogenic factor reducing sodium reabsorption in cystogenesis.

Methods

Animals and cell cultures.

Pkd1RC/RC mouse homozygous breeders were provided by the Mayo Clinic Translational 

Polycystic Kidney Disease Center and housed in the Henry Ford Health System animal 

facility (IACUC protocol 1580). Breeding and housing of the animals was performed in a 

standard 12/12hr light/dark cycle with water and food (Envigo Teklad 8640) provided ad 
libitum. Produced litters were weaned at 6 weeks and grown till 6 months of age. Only 

males were used in the experiments. Mice were anesthetized with isoflurane and the kidneys 

were cleared of blood by retrograde perfusion via abdominal aorta [34]. M1 cell culture was 

purchased from ATCC (#CRL-2038) and maintained under standard culture conditions 

recommended by the vendor: DMEM:F-12 1:1, 5% FBS (ATCC #30–2006; 30–2020), 1% 

PenStrep and 1% Insulin-Transferrin-Selenium Mix (Gibco #15140–122; 41400–045) in a 

5% CO2/37°C incubator.

Immunohistochemistry.

After antigen retrieval (S2369) samples were blocked with Dako system (X0590, X0909) 

and stained with primary antibody Anti-PANX1, 1:20 (HPA16930, Sigma-Aldrich) or Anti-

P2X7 Receptor, 1:50 (APR-004, Alomone Labs). For secondary staining we used 

biotinylated Anti-Rabbit Antibody 1:200 (BA-1000, Vector Laboratories, Burlingame, CA) 

and Streptavidin-HRP (Dako K0609). Visualization was conducted with DAB+ Substrate 

(Dako K3468). Images were captured at 40x magnification with Nikon microscope equipped 

with a histology camera and Leica Aperio slide scanner. For signal intensity quantification 

Fuji software package (NIH, Bethesda) was employed. Mean intensity was measured in 

apical regions of proximal tubules (taken as background), non-dilated collecting ducts and 

cyst lining cells.

Growing cells on permeable supports and ATP release assay.

M1 cells were seeded onto Transwell Corning 3801 snapwells and cultured for several days 

until an epithelial monolayer formed [35]. Figure 3A demonstrates that similarly to the 

Ussing system, snapwells have apical and basolateral chambers separated by a cellular 

monolayer grown on the permeable 0.22 μm pore membrane. Epithelial Volt Ohm Meter 

(Warner Instruments) was used to verify formation of a high-resistive monolayer, and 
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experiments were performed when resistance reached ~1 kΩ cm2. ATP production was 

stimulated with a 60 min long slow rocking. Samples of the media were collected from the 

apical chamber before and after flow stimulation and ATP level was measured with 

bioluminescent luciferin/luciferase assay kit (Invitrogen #A22066). Probenecid (Santa Cruz, 

CAS 57-66-9) was applied to study its effect on ATP release.

Patch-clamp experiments.

Single-channel currents were acquired and subsequently analyzed with an Axopatch 200B 

amplifier (Axon Instruments) interfaced via a Digidata 1550B to a PC running the pClamp 

10.6 suite of software (Axon Instruments). Bath solution contained (in mM): 150 NaCl, 1 

CaCl2, 2 MgCl2, 10 HEPES (pH 7.4). Pipette solutions for were (in mM): 140 LiCl, 2 

MgCl2 and 10 HEPES (pH 7.4). Snapwells with grown M1 cells were detached from the 

holder and transferred to the inverted microscope Nikon Ti-S. When mounted into the bath, 

snapwell has isolated apical and basolateral chambers that allows applying drugs specifically 

from one side. Patch-clamp micropipettes approached apical membrane and conventional 

cell-attached voltage clamp was performed to record ENaC activity at −40 mV holding 

potential as used earlier [35]. P2X agonist αβ-MeATP (α,β-Methyleneadenosine 5ʹ-
triphosphate) (Tocris #3209) was applied in 100 μM concentration.

Statistics.

All data presented as mean±SEM. Significance of difference in independent groups was 

verified with non-parametric Mann-Whitney U test, in paired experiments – with Wilcoxon 

signed-rank test. *p<0.05; *** p<0.001

Results

Augmented Pannexin-1 expression in ADPKD cysts.

Pannexin-1 was shown to mediate urinary ATP excretion in healthy c57 mice [21]; here we 

first studied the distribution of this protein in Pkd1RC/RC mouse kidneys. 

Immunohistochemical staining on Figure 1 demonstrates pannexin-1 signal in the nephron, 

similarly to Hanner and colleagues [21]. In the cortex, the protein presence was detected in 

proximal tubules but significantly more intense levels were typical for cortical collecting 

ducts. Labeling was highly abundant at the apical membrane of collecting ducts and less in 

the cytoplasm; also all CCD cell were Panx1-positive indicating expression in both principal 

and intercalated cells (Figure 1B). In the medulla, a large portion of tubules (descending thin 

limbs, according to [21]) exhibit strong signal. Surprisingly, cyst lining cells demonstrated 

an increased abundance of pannexin-1, which was ~2.8 fold higher than in collecting ducts 

(Figure 1C). Therefore, development of ADPKD cysts could be associated with enhanced 

expression of Panx1 in cystic epithelium.

High abundance of P2X7 receptors in ADPKD cysts.

Normal collecting ducts express both P2Y and P2X receptors. However, we recently 

demonstrated in PCK rats that the development of cysts is accompanied by loss of P2Y and 

transition to prevalent P2X signaling [9]. Also, P2X7 receptor was characterized as a factor 

facilitating activation of pannexin-1 channels and ATP release. Here, we studied the 
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expression of the P2X7 receptor in ADPKD mouse kidneys. Figure 2A shows the 

distribution of this protein in renal sections of a 6 months old mouse. A moderate staining 

level was detected in collecting ducts, and prominent labeling was found in large portion of 

proximal tubules. Most importantly, P2X7 abundance was dramatically increased in dilated 

CCDs, especially in the apical membrane (Figure 2B) and reached a ~3.2 fold higher level in 

mature cysts compared to non-dilated collecting ducts (Figure 2C).

Probenecid precludes ATP release by collecting duct cells.

High expression of pannexin-1 and P2X7 in cysts is a unique phenomenon which is 

important because these proteins can contribute to ATP release. We studied apical ATP 

release stimulated in M1 cells by shear-stress (1 hour rocking) with or without application of 

probenecid, a pannexin-1 inhibitor [36]. The cells form a polarized highly differentiated 

monolayer suitable for studies of epithelial physiology [37, 38]. Mechanical stimulation 

leads to accumulation of ATP in the apical chamber from 23±7 to 118±29 nM whereas 

treatment with 50 μM probenecid blunts this effect (1 and 10 μM probenecid provided no 

effect, data not shown). We conclude that collecting ducts are capable of releasing ATP via a 

Panx1-dependent mechanism.

P2X stimulation decreases activity of ENaC.

ATP is a powerful downregulator of ENaC activity and P2Y signaling is recognized as a key 

mediator of this effect [39–41]. The contribution of P2X receptors is less studied; data from 

amphibian cells indicate that the effect depends on polarity of application: ENaC inhibition 

was observed in non-polarized oocytes whereas basolateral application of MeS-ATP induced 

ENaC activation in A6 cell monolayer [42, 43]. Here we tested the effect of αβ-MeATP, a 

P2X agonist used in our experiments earlier [9] on polarized mammalian M1 cells. Cell 

attached analysis of ENaC activity was performed from the apical membranes whereas 

100μM αβ-MeATP (or vehicle) was applied into apical or basolateral chambers. Figures 

3C,D demonstrate 20 min recordings of ENaC activity (upper panels) and expanded 

representative sections before and after αβ-MeATP applications. As seen on the traces, 

apical (3C) but not basolateral (3D) application of the drug decreases ENaC activity. 

Summary graphs also demonstrates the lack of effect of vehicle application on ENaC 

activity (3E,F). These experiments support the hypothesis that ATP accumulation in the cyst 

space can reduce the activity of ENaC in cyst-lining cells.

Discussion

ADPKD is the most prevalent inherited progressive kidney disease affecting 1:1000 live 

births in the USA [44]. Paracrine factors are important players in cellular physiology and 

pathophysiology of PKD, and extracellular milieu of kidney cysts has a potential to serve as 

paracrine factors promoting cystogenesis. For example, cystic fluid collected from DBA/

2FG-pcy/pcy mice is capable of stimulating cyst growth when applied to MDCK 3D culture 

[45]. The origins of the secretagogues and mitogens in cysts were not fully determined, 

however, later a number of publications suggested that abnormal cystic ATP accumulation 

and purinergic signaling may contribute to the development of both ARPKD and ADPKD. 

Our data collected in Pkd1RC/RC mice reveal high expression of pannexin-1 and P2X7 
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membrane proteins capable of ATP release. There is evidence coming from other areas of 

research that these two proteins interact, facilitating ATP release; moreover, the significance 

of Panx1 for ATP urinary secretion was demonstrated earlier [19, 21]. Tanner and colleagues 

used two-photon in vivo microscopy to study renal transport of sulfonefluorescin, an organic 

anion dye secreted by proximal tubules, and found that probenecid reduces accumulation of 

sulfonefluorescin in normal proximal tubules and Han:SPRD proximal cysts [46]. We 

assume that in the distal cysts luminal permeability to organic anions such as ATP or 

sulforhodamine B is mediated by pannexin-1, and can be reduced by probenecid, similar to 

our experiments shown in Figure 3. Therefore, we report that activation of pannexin-1 

channels by P2X7 receptors can be highly important in the development of PKD and serves 

as a pivotal pathogenic mechanism of cystogenesis (Figure 4). Recently we demonstrated the 

remodeling of the P2 receptor profile in ARPKD cysts towards prevalence of P2X over P2Y 

signaling [9]; together these observations delineate this phenomenon as common for both 

forms of PKD. Interestingly, impaired P2Y signaling was suggested earlier as a factor 

unleashing vasopressin-dependent cAMP production in ADPKD [47].

As a powerful regulator of epithelial water-electrolyte transport, ATP can decrease 

reabsorption in the collecting duct system, where ~70% of ADPKD cysts develop. 

Particularly, as a paracrine agent, ATP limits activity of the epithelial sodium channel and 

increases chloride secretion in M1 cells [48]. Veizis et al. have shown that amiloride 

sensitive Na+ absorption is decreased in CD cells from the non-orthologous bpk mouse 

model of ARPKD [49] and later we demonstrated that impaired ENaC activity exacerbates 

development of PCK rat cysts [12, 13]. Involvement of ENaC in the development of 

ADPKD remains poorly understood. This study provides a rationale for targeting of 

pannexin-1 dependent ATP release in ADPKD, and suggests potential novel ways to correct 

abnormal renal management of sodium observed in hypertensive patients with ADPKD [50].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• ADPKD cysts epithelia exhibit a hyperexpression of pannexin-1 and P2X7 

proteins

• Pannexin-1 in renal epithelial cells mediates ATP release into the lumen

• P2X7 activation shown earlier to facilitate Panx1 conductance, reduces ENaC 

activity

• We suggest a new mechanism of pathogenic ATP accumulation in 

cystogenesis
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Figure 1. Pannexin-1 distribution in Pkd1RC/RC mouse kidneys.
A - staining at 10x magnification shows Panx1 expression in cortex and medulla. B - in the 

cortex, Panx1 signal is prominent in cysts and non-dilated collecting ducts; in the medulla - 

in DTL. C -quantification reveals significantly higher labelling in cysts vs collecting ducts. 

Each color represents one animal; CCD - collecting duct, PT -proximal tubule, DTL - 

descending thin limb, bv - blood vessel
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Figure 2. P2X7 distribution in Pkd1RC/RC mouse kidneys.
A - P2X7 staining in cortex and medulla. B - P2X7 abundance elevates during transition of 

CCDs to cysts; non-dilated CCD have low signal, developing cysts exhibit increased level 

especially in principal cells, mature cysts have strong P2X7 labeling in apical membranes of 

the cyst lining-cells. C - summary graph quantifies an enhanced expression of P2X in cysts 

vs collecting ducts. Each color represents one animal.
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Figure 3. ATP release by M1 cells and the effect of P2X stimulation on ENaC.
A - scheme of Transwell Corning system demonstrates that M1 cells form polarized tight 

epithelial monolayer which separates apical and basolateral chambers. B - accumulation of 

ATP in the apical chamber during 1 hr mechanical stimulation with rocking is inhibited by 

treatment with 50 μM probenecid. C,D - 100 μM αβ-MeATP was applied into apical (C) or 

basolateral (D) chambers. Upper traces are recordings of ENaC activity, arrows denote 

application of the drug. Representative sections before (i) and after (ii) are expanded below. 

“c” and “o1” denote closed and opened states of the channel, respectively; scale bars for 

entire and expanded traces are shown; holding potential is −40 mV; openings are downward. 

E,F - Summary graphs demonstrate that apical application of αβ-MeATP acutely decreases 

activity of ENaC whereas basolateral or control application of vehicle have no effect.
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Figure 4. Schematic illustration of the mechanism.
In normal collecting ducts ATP acts via P2Y and P2X receptors. However, in the developing 

cysts P2X receptors become more prevalent. Also, cystic epithelium enhances expression of 

pannexin-1 which is able to form a channel with P2X7 capable of facilitating ATP release 

into the cyst. High ATP levels promote cystogenesis by different mechanisms, particularly 

decreasing activity of ENaC-dependent reabsorption in cysts cells
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