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Abstract
Mutations in genes encoding sarcomeric proteins are the most important causes of inherited cardiomyopathies, which are a major
cause of mortality and morbidity worldwide. Although genetic screening procedures for early disease detection have been
improved significantly, treatment to prevent or delay mutation-induced cardiac disease onset is lacking. Recent findings indicate
that loss of protein quality control (PQC) is a central factor in the disease pathology leading to derailment of cellular protein
homeostasis. Loss of PQC includes impairment of heat shock proteins, the ubiquitin-proteasome system, and autophagy. This
may result in accumulation of misfolded and aggregation-prone mutant proteins, loss of sarcomeric and cytoskeletal proteins,
and, ultimately, loss of cardiac function. PQC derailment can be a direct effect of the mutation-induced activation, a compensa-
tory mechanism due to mutation-induced cellular dysfunction or a consequence of the simultaneous occurrence of the mutation
and a secondary hit. In this review, we discuss recent mechanistic findings on the role of proteostasis derailment in inherited
cardiomyopathies, with special focus on sarcomeric gene mutations and possible therapeutic applications.
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Classification of cardiomyopathies

Cardiomyopathies (CM) constitute one of the most common
causes of sudden cardiac death in young adults and represent
major causes for cardiac transplantation [88]. Disease onset
generally ranges between 20 and 50 years of age. CMs are
defined by abnormal myocardial structure and function in the
absence of any other diseases sufficient to cause these abnor-
malities [24]. These can be sub-classified based on their func-
tional phenotype and their specific morphological changes. The
most common types are hypertrophic CM (HCM),

characterized by increased left ventricular (LV) wall thickness
often occurring asymmetrically, and dilated CM (DCM), in
which the presence of LV dilatation is accompanied by con-
tractile dysfunction [24]. Besides HCM and DCM, there are
less frequent forms, such as restrictive CM (RCM) and desmin-
related cardiomyopathy [24]. All these cardiomyopathies can
be familial and are typically inherited in an autosomal dominant
manner. Mutations in genes encoding sarcomeric proteins are
the most common cause of these types of CMs [3]. However,
the genotype-phenotype relationship is far from clear. The var-
iations in age of CM onset and disease phenotype suggest that
additional factors play a role in CM pathogenesis.

Accumulating evidence indicates the presence of derailed
proteostasis in CMs as well as its contribution to CM onset
and progression. This derailment could either be caused di-
rectly by the mutation or indirectly due to a compensatory
mechanism. In the former case, the mutant protein might be
instable or improperly folded leading to direct activation of the
protein quality control (PQC). In the latter case, the mutation
does not interfere with protein folding or stability but causes
functional impairment, which in turn leads to cellular stress
and indirect activation of the PQC. Furthermore, the
Bsecondary-hit^model may apply in CMs, in which a primary
sarcomere mutation enhances vulnerability to secondary
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stressors, which increases cellular burden resulting in PQC
derailment. This review summarizes the current knowledge
about perturbations in the different components of the PQC
in CMs that are caused by mutations in sarcomeric proteins.

Proteostasis network ensures cardiac health

The heart has a very limited regenerative capacity and there-
fore requires surveillance by a system that maintains protein
homeostasis to ensure cardiac health [106]. The PQC system
sustains proteostasis by refolding misfolded proteins or re-
moving them if refolding is impossible. It is composed of heat
shock proteins (HSPs), the ubiquitin-proteasome system
(UPS), and autophagy. PQC is only then functional when all
three components are operative and interact with each other.
This means that derailment of one of the parts might impair
the function of the others in a direct or indirect manner. In a
physiological state, protein folding and refolding is ensured by
HSPs and their regulators. Terminally misfolded and
aggregation-prone proteins are cleared by the two degradation
systems, i.e., the UPS and autophagy that work in collabora-
tion with the HSPs (Fig. 1).

First, the different parts of the PQC in normal physiology
are described, before addressing their role in CMs.

Heat shock proteins

HSPs, originally identified as heat responsive proteins, are
constitutively expressed in the cell to serve as molecular chap-
erones to ensure correct folding and assembly of proteins.
HSPs are classified in two categories: the small HSPs with a
low molecular weight (15–30 kDa) and the chaperones with a
high molecular weight (> 30 kDa).

One functional group of HSPs are chaperonin complexes,
which are ATP-dependent chaperones with a barrel-like struc-
ture that provide correct folding of nascent proteins after trans-
lation. Besides their folding function during protein transla-
tion, HSPs are also induced in response to cellular and envi-
ronmental stressors to maintain a healthy cellular proteostasis
by clearance of misfolded proteins [66, 111].

As reviewed by Garrido et al., small HSPs show an ATP-
independent holdase activity. This means that they bind to
misfolded proteins, keep them in a state competent for either
refolding or degradation, and thereby prevent or attenuate their
aggregation. Due to the association of small HSPs with the HSPs
that have an ATP-dependent folding activity, the misfolded pro-
teins can be refolded into their native and functional conforma-
tion [28]. The binding affinity of HSPs to themisfolded protein is
dependent on the chaperone cofactors bound to the HSPs.
Furthermore, this binding of chaperone cofactors determines
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Fig. 1 Collaboration of the
protein quality control
components. Stress leads to
misfolding of proteins, which
may result in abnormal interaction
and subsequent aggregation.
Small HSPs (white/gray
rectangle) and HSPs with ATPase
activity (blue moon shape with
black rectangle) prevent
aggregation formation by binding
to the hydrophobic surfaces of
misfolded proteins. They either
refold the misfolded proteins to its
native structure or initiate its
polyubiquitination (Ub, orange
hexagon). Misfolded proteins
with polyubiquitin chains linked
to lysine 48 (K48) are mainly
degraded by the proteasome.
Misfolded proteins carrying K63-
linked polyubiquitin chains and
aggregated proteins enter the
autophagic pathway
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the processing of the misfolded protein for either refolding or
degradation. Chaperone cofactors involved in degradation path-
ways can switch off the refolding activity of HSPs by inhibiting
their ATPase activity and assist the HSPs and the UPS or autoph-
agy in the breakdown of misfolded proteins (Fig. 2) [13, 25]. The
degradation of the thick filament protein myosin-binding protein
C (MyBP-C), for instance, ismediated via the chaperone cofactor
HSC70 playing a major role in regulating MyBP-C protein turn-
over [32]. These degradation pathways are addressed in the fol-
lowing sections.

Tomaintain the structure and function of the highly dynam-
ic cardiac sarcomeres, HSPs play an important role. The mo-
lecular chaperones GimC (Prefoldin), chaperonin TCP-1 Ring
Complex (TRiC), αB-crystallin, and HSP27 ensure correct

folding and assembly of proteins, maturation of actin and pre-
vent aggregate formation [10, 14, 34, 36]. HSP27 is mostly
found as high-molecular weight oligomers in the cytosol of
unstressed cells [23]. Upon stress, HSP27 deoligomerizes and
translocates to F-actin and thereby stabilizes the F-actin net-
work [16]. To assemble the myosin thick filament, the chap-
erones UNC-45, HSP90, and HSP70 are required, whereas the
actin filament is self-assembled [7, 8, 94]. Several members of
the small HSPs family are expressed in the heart and associate
with cytoskeletal proteins [33, 103]. These HSPBs stabilize
cytoskeletal structures and improve coping with stress situa-
tions [33, 48, 49].

Ubiquitin-proteasome system

In case of terminally misfolded proteins, that failed be
refolded, HSPs and their chaperone cofactors recruit enzymes
to mediate polyubiquitination of the target substrate and there-
by mark them for the appropriate degradation pathway. Short-
lived proteins are typically degraded by the UPS, whereas
autophagy is mainly used for degrading long-lived proteins
and entire organelles [17, 39].

The polyubiquitination of the target substrate requires the se-
quential action of three enzymes. The ubiquitin-activating en-
zyme (E1) activates ubiquitin, which is then transferred to a
ubiquitin-conjugating enzyme (E2). In the last step, a ubiquitin
ligase (E3) links ubiquitin from the E2 enzyme to a lysine residue
of the target protein. There are only two E1 enzymes, several E2
enzymes, and many E3 ligases, each of which recognizes one or
several specific protein motifs. Therefore, the substrate specific-
ity is achieved by the selectivity of the different E3 ligases [26,
80]. Dependent on the combination of E2 enzyme and E3 ligase,
polyubiquitin chains are linked to the preceding ubiquitin mole-
cule either via lysine 48 (K48) or via lysine 63 (K63), which
marks the protein for degradation. Therefore, the
polyubiquitination process determines the degradation pathways:
Proteins carrying K48-linked polyubiquitin chains are predomi-
nantly targeted to proteasomal degradation, and proteins carrying
K63-linked polyubiquitin chains enter the autophagic pathways
as discussed in the following paragraph [1].

K48-linked polyubiquitinated proteins are transferred to
the proteasome, which is almost exclusively the 26S protea-
some in eukaryotic cells. This protein complex consists of one
20S core- and two 19S regulatory subunits forming a barrel-
like structure. The regulatory subunits have ubiquitin-binding
sites to recognize polyubiquitinated proteins and unfold them
using their ATPase activity. The unfolded proteins are trans-
ferred to the catalytic core and proteolytically cleaved [104].

Sarcomeric proteins have an average turnover rate of 5–
10 days [12, 112]. Therefore, they rely on a proper functioning
UPS to regulate their clearance. Once dissociated from the
myofibrils, ubiquitin-conjugating enzymes mark the proteins
for proteasomal degradation by adding K48-linked

binding of HSPs

association of 
chaperone
cofactors

ubiquitinationrefolding

degradation

native protein 

Fig. 2 Chaperone cofactor binding determines the heat shock protein
(HSP) function. Small HSPs (white/gray rectangle) and HSPs with
ATPase activity (blue moon shape with black rectangle) bind to the
misfolded protein to stabilize it. Dependent on the chaperone cofactors
(green circles or turquoise squares), the misfolded protein gets either
refolded or ubiquitinated for subsequent degradation. If refolding is
impossible, the chaperone cofactors can be exchanged to promote
degradation. In case of ubiquitination, the chaperone cofactors can
switch off the HSP refolding activity by blocking the ATPase activity
and, together with HSPs, assist in clearance of the misfolded protein via
the degradation pathways
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polyubiquitin chains [91, 112]. In cardiomyocytes, this step is
mediated by the MuRF family of E3 ligases [59, 93].

Autophagy

Autophagy cleans up aggregates or proteins via lysosomal
breakdown that cannot be refolded by chaperones or proc-
essed by the UPS [46]. During macroautophagy, herein re-
ferred to as autophagy, membrane-enclosed vesicles are
formed containing the targeted cellular components. First, an
isolation membrane is formed engulfing the cytoplasmic ma-
terial. The membrane expands until the edges fuse to form the
autophagosome [118]. Fusion of the autophagosome with a
lysosome leads to an autolysosome, which breaks down the
cargo [5]. During selective autophagy, proteins carrying a
K63-linked polyubiquitin chain are degraded. In the case the
proteasome is overwhelmed with proteins carrying a K48-
linked ubiquitin chain, such as aggregated proteins, they can
also be cleared via autophagy. Their polyubiquitin chain docks
to the adaptor protein p62/SQSTM1, which enables the trans-
location into the autophagosome [45]. Acidic lysosomal hy-
drolases degrade the captured material together with the inner
membrane, and the resulting macromolecules are recycled in-
to ATP, amino acids and fatty acids.

Autophagy is found to be upregulated in response to star-
vation, growth factor withdrawal, or high bioenergetic de-
mands [50, 56, 65, 86]. The ability to sequester and break
down entire organelles, such as mitochondria, peroxisomes,
endoplasmic reticulum, and intact intracellular microorgan-
isms, makes autophagy a unique and essential process in the
cell. Especially in post-mitotic cells like cardiomyocytes, bas-
al activation of autophagy is important to maintain a balanced
proteostasis by degradation of long-lived proteins, lipid drop-
lets, and dysfunctional organelles [17].

Cardiomyocytes have a low basal autophagic activity un-
der normal conditions. Upon stress, the formation of protein
aggregates is facilitated and triggers activation of autophagy
[96]. Furthermore, cardiac autophagy is initiated in response
to energy stress during periods of nutrient deprivation or high
metabolic demand [35].

Proteostasis derailment in inherited
cardiomyopathies

The PQC is of great importance in many cardiac diseases
caused by Bwear and tear,^ including cardiac amyloidosis,
myocardial infarction, and atrial fibrillation [37, 60, 73,
115]. The activation of PQC in a variety of cardiac stress
conditions can be considered as a positive compensatory re-
sponse to maintain proteostasis. This might be especially true
in the case of inherited CMs, where mutant protein expression
is the disease-causing mechanism. Recent studies provide

evidence for a causative role of the PQC in CM. On one hand,
mutations in components of the PQC itself can cause CM.
This has been described for the R120G mutation in CRYAB
encoding for the chaperone αB-crystallin, causing desmin-
related CM, and the P209Lmutation in the chaperone cofactor
BAG3, leading to juvenile DCM [87, 105]. Mutations in PQC
components as causes of inherited CM are rare, but PQC
impairment can also occur as a result of CM-causing sarco-
meric mutations. In this case, mutant sarcomeric proteins may
impair the function of the PQC through overload of its com-
ponents including HSPs, UPS, and autophagy. This could lead
to increased levels of mutant protein, exacerbating CM dis-
ease progression.

So far, the role of PQC has been investigated only in a
limited number of studies on CM caused by sarcomeric gene
mutations. In vitro information is available for HCM- and
DCM-causing mutations in ACTC1. Furthermore, it has been
studied in vivo with HCM-causing mutations in MYBPC3,
MYH7, and MYOZ2; DCM-causing NEBL mutations; and
RCM-causing TNNI3 mutations (Table 1). In the following
sections, the interaction between CMs and derailments of the
different parts of the PQC are described in detail.

Diverse abnormalities in heat shock protein function

HSP impairment or activation contribute to disease pathology
in CMs. Desmin-related CM displays HSP impairment and is
either caused by mutant desmin itself or mutant chaperone
αB-crystallin. In a normal state,αB-crystallin binds to desmin
and thereby prevents its aggregation [10]. Mutant desmin,
however, impairs the interaction with αB-crystallin leading
to desmin accumulation and cardiomyocyte dysfunction
[54]. This suggests aberrant protein aggregation can cause
CM. Correspondingly, the R120G mutation in CRYAB results
in desmin-related-CM as well and also presents with aggre-
gates containing desmin and mutant αB-crystallin [105].
Sanbe et al. showed that upregulation of HSPB8 due to
geranylgeranylacetone treatment reduces the amount of mu-
tant αB-crystallin-containing aggregates [83]. This implies
that other HSPs can compensate for the loss of function to
remove aggregates. Furthermore, in vitro experiments have
shown that HCM- or DCM-causing mutations in ACTC1,
encoding cardiac actin, can interfere with its folding by the
TRiC chaperonin complex resulting in inefficient incorpora-
tion of actin into the myofilament and its subsequent aggrega-
tion [102]. Mutations in one specific subdomain of actin affect
protein stability or polymerization, making actin more prone
for degradation. Whereas mutations in other subdomains of
actin cause alterations in protein-protein interactions [67]. A
gene co-expression analysis of human controls and HCM
samples identified the TRiC chaperonin complex as the most
differential pathway, thereby further highlighting its impor-
tance in HCM [19].
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By contrast, various studies on the role of PQC in CMs
report on increased levels of HSPs due to PQC activation.
However, it still remains unresolved whether the increased
levels of HSPs are a direct effect of the mutant protein or a
compensatory secondary effect due to increased cellular
stress. Therefore, the direct interaction of mutant protein and
HSPs needs to be studied. In mice with a truncatingMYBPC3
mutation and an HCM phenotype, increased levels of αB-
crystallin have been found [116]. In other CM mouse models,
independent of a sarcomeric mutation, increased levels of
HSP70 have been observed [62]. A study in patients with
chronic heart failure due to DCM revealed a correlation of
serum HSP60 levels with disease severity [69]. Since in-
creased levels of HSP27 and HSP70 are associated with a

protective effect in models for atrial fibrillation, by maintain-
ing cardiomyocyte function, one can speculate that increased
expression of these HSPs might be part of a compensatory
protective mechanism in CM [15, 62].

In general, research findings indicate that HSP impairment
is detrimental for cardiomyocyte function due to a higher risk
of impaired protein folding and aggregate formation. By con-
trast, HSP activation in CM is considered as a beneficial effect
and is most likely a compensatory mechanism of the cell.

Derailment of the ubiquitin-proteasome system

Derailed UPS function in CM affects the degradation of ter-
minally misfolded proteins. MYBPC3 mutations often lead to

Table 1 Overview of structural changes and adaptations in the protein quality control system related to cardiomyopathies

Gene Phenotype Morphological abnormalities Chaperones UPS Autophagy

ACTC1 HCM not reported + (in vitro) [102] not reported not reported

DCM not reported + (in vitro) [102] not reported not reported

RCM not reported not reported not reported not reported

ACTN2 HCM cytoplasmic vacuolization, perinuclear
halo, dysmorphic nuclei (human) [31]

not reported not reported not reported

DCM not reported not reported not reported not reported

MYBPC3 HCM large irregular vacuoles (infant) [109] αB-crystallin ↑
(mice) [116]

↓ (mice) [85] ↑ (human) [92]
↓ (mice) [85]

DCM not reported not reported not reported not reported

MYH6 HCM not reported not reported not reported not reported

DCM not reported not reported not reported not reported

MYH7 HCM not reported not reported not reported ↑ (human) [92]

DCM not reported not reported not reported not reported

RCM not reported not reported not reported not reported

MYL2 HCM not reported not reported not reported not reported

MYL3 HCM not reported not reported not reported not reported

RCM ultrastructural defects (mice) [119] not reported not reported not reported

MYOZ2 HCM not reported not reported ↑ (mice) [41] not reported

NEBL HCM myocyte vacuolization (human) [75] not reported not reported not reported

DCM enlarged and deformed mitochondria,
lipid accumulation (mice) [78]

not reported not reported abnormal lysosomes
(mice) [78]

TNNC1 HCM not reported not reported not reported not reported

DCM no evidence of vacuolization (human) [43] not reported not reported not reported

RCM degeneration of myocardial fibers (human) [76] not reported not reported not reported

TNNI3 HCM not reported not reported not reported not reported

DCM not reported not reported not reported not reported

RCM irregularly shaped megamitochondria
(human) [117]

not reported ↓ proteasomal activity (mice) [20] not reported

TNNT2 HCM myocyte atrophy (mice) [97] not reported ↓ (mice) [30] not reported

DCM not reported not reported not reported not reported

RCM abnormal mitochondria (human)* [74] not reported not reported not reported

TPM1 HCM nuclear gigantism [68] not reported not reported not reported

DCM accumulation of TPM1 (mice) [79] not reported not reported not reported

RCM not reported not reported not reported not reported

Mixed genotypes are indicated with B*^ and a B+^ indicates a positive finding
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expression of truncated protein, which is not incorporated into
the sarcomere because the most C-terminal domain needed for
incorporation is missing [64]. Truncated MyBP-C has not
been detected in cardiac samples of HCM patients [101]. In
addition, very low levels (< 4%) of truncated MyBP-C, which
were not incorporated into the sarcomeres, were found in
engineered heart tissue made of MYBPC3 knock-out mouse
cardiomyocytes transfected with a truncatingMYBPC3 muta-
tion [110]. Therefore, it is likely that either the mutant mRNA
is degraded via nonsense-mediated mRNA decay and/or the
truncated MyBP-C forms a substrate for immediate degrada-
tion by the UPS or autophagy. Since MyBP-C is highly
expressed in cardiomyocytes, high levels of truncated protein
may lead to an increased UPS burden and competitive inhibi-
tion of the proteasome [84, 85]. In this case, the UPS is
overwhelmed by the amount of truncated protein that needs
to be degraded. In line with this hypothesis are analyses of
myectomy samples from HCM patients with sarcomeric mu-
tations, which show a decrease in proteolytic activity (Table 1)
[77, 85]. Decreased processing through the UPS system is also
indicated by the increase in overall levels of protein
ubiquitination in HCM patients and animal models, which is
already detectable at an early postnatal phase prior to any
other symptom development [6, 30, 77, 85]. Consistent with
the studies in MYBPC3-mutant samples, UPS perturbations
have also been found in mouse heart tissue with TNNT2 mu-
tations [30]. Patient samples with a sarcomeric mutation
showed higher levels of polyubiquitination and decreased pro-
teolytic activity compared to healthy controls [77].

In addition to overload of the UPS by mutant protein, in-
creased oxidative stress can also impair the function of the
proteasome. In this case, the proteasomal dysfunction would
not be a direct effect of the mutant protein but a consequence
of secondary cellular changes. In CM samples, an increase in
oxidation of cytosolic protein content as well as the 19S pro-
teasome, thereby decreasing the overall proteolytic function of
the 26S proteasome subunit, has been identified [21, 30, 77].

In addition to the proteasome itself, the expression of ubiq-
uitin ligases can be altered. In an HCM mouse model with
mutantMybpc3, the muscle specific E3 ligase Asb2β showed
decreased mRNA levels compared to wild-type mice [99].
Since one of its targets is desmin, accumulation of desmin
could contribute to the HCM phenotype, as observed for
desmin-related CMs.

A large HCM patient cohort and matched healthy controls
were screened for genetic variants in all three members of the
MuRF family, since mutations in the gene encoding MuRF1
were reported to cause HCM [18]. In this study, a higher
prevalence of rare variants of the cardiac-specific E3 ligases
MuRF1 and MuRF2 was found in HCM patients [95]. These
were associated with earlier disease onset and higher pene-
trance implying that disturbances of the UPS might act as a
disease modifier contributing to HCM.

In contrast to HCM, in DCM, the reportedUPS derailments
could not yet be linked to sarcomeric mutations. A likely
reason for this is that the DCM patient samples did not carry
a sarcomeric mutation and/or the underlying disease cause
was not known. Tissue analysis from explanted DCM hearts
revealed increased expression of both E1 and/or E2 enzymes
[47, 108]. Further evidence of increased ubiquitin-conjugating
enzyme activity was detected in end-stage DCM. Here, in-
creased levels of MuRF1 and MAFbx were associated with
increased UPS degradation activity, which might be the cause
of ventricle wall thinning as observed in end-stage DCM pa-
tients [9]. In line with the increased ubiquitin-conjugating en-
zyme levels, increased levels of polyubiquitinated proteins
have been detected in DCM samples [11, 47, 72, 108]. This
finding is further supported by a 2.3-fold reduced expression
of the deubiquitinating enzyme isopeptidase-T in DCM pa-
tients [47]. Furthermore, increased proteolytic activity of the
26S proteasome as well as the 20S subunit peptidase activity
has been found [9, 11, 72].

In contrast to HSPs, the answer to the question whether
UPS activation or inhibition would be beneficial in HCM
and DCM is not as straight forward. In an HCM phenotype,
proteasome activation might improve the hypertrophic pheno-
type due to increased mutant protein degradation. However, in
DCM, increased proteasome function might augment wall
thinning, and therefore, DCM might benefit from proteasome
inhibition.

Unresolved role of the autophagic response
in cardiomyopathies

Autophagy is a crucial mechanism in CMs that only fulfills its
cytoprotective mechanisms when it is in balance [50].
Moderate activation of autophagy has beneficial effects in
CM patients by removing aggregates and supplying the cell
with energy.

However, protein degradation due to excessive autophagy
has been associated with different types of CM, including
HCM, DCM, ischemic CM, and chemotherapy-induced CM
[22, 44, 55, 58, 71, 89]. This could lead to loss of myofibrils, as
observed in end-stage HCM and DCM patients [40, 70]. In a
recent study, the expression of vacuolar protein sorting 34
(Vps34), an important autophagy regulator, was shown to be
decreased in the myocardium of HCM patients and deletion of
Vsp34 resulted in a HCM-like phenotype in mice.
Furthermore, decreased expression of Vsp34 impaired the
HSP-autophagy axis, as indicated byαB-crystallin-positive ag-
gregates [44]. HCM patients with mutations in MYBPC3 or
MYH7 revealed an upregulation of autophagic vacuoles and
markers, indicated increased autophagic activity [92]. In a ho-
mozygous Mybpc3-mutant HCM mouse model, levels of au-
tophagy markers were increased at the protein level implying
autophagic activation. However, mRNA levels of these
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markers were not increased. This rather suggests an accumula-
tion of autophagic proteins due to defective autophagic-
lysosomal degradation instead of activation on transcriptional
level [85]. In explanted hearts from DCM patients, the imbal-
ance of high ubiquitination rate and insufficient degradation
may contribute to autophagic cell death [47]. Vacuolization in
CMs has been reported with mutations in ACTN2, MYBPC3,
and NEBL [31, 75, 109]. This observation suggests that the
accumulation of autophagic vacuoles implies cardiomyocyte
stress. However, the interpretation of vacuole accumulation
remains unclear, since it could reflect an increase in autophagic
activity or an impairment of autophagosome-lysome fusion.

For a correct interpretation of the role of autophagy in CM,
autophagic flux in combination with gene and protein expres-
sion data have to be studied in the future.

Environmental stressors influencing the proteostasis
network

Besides the above mentioned effects of the sarcomeric gene
mutations on the PQC, other environmental stressors, includ-
ing physiological stress, genetic and epigenetic pathways, and
inflammation, can also impair its function [82, 120]. In CM
patients with a sarcomeric mutation, these stressors can act as
second hit and thereby determine disease severity. Since most
of CM patients become symptomatic only in a later stage of
their life, the influence of drugs directed at the PQC system as
treatment modality for co-morbidities and the age-related de-
cline of the PQC are discussed below.

Several anti-cancer agents block the PQC to cause a lethal
proteotoxicity in cancer cells. Anthracyclines, for example,
directly impair its function by enhancing proteasomal degra-
dation due to increased expression of E3 ligases and increased
proteasome activity as well as inhibition of autophagy in
cardiomyocytes [2, 27, 51, 63]. Furthermore, they disturb
Ca2+ homeostasis, leading to endoplasmic reticulum stress,
which derails protein folding [27]. In CM patients, dealing
already with a sarcomeric mutation, treatment of another
non-cardiac disease can trigger the onset of CM or worsen
the clinical outcome. Cardiotoxic side effects of
anthracyclines can lead to anthracycline-associated cardiomy-
opathy (AACM), which presents as LV dysfunction and DCM
in adults and RCM in children [53, 61]. Treatment with a low
dose of anti-cancer agents induced CM in cancer patients
without a history of cardiac disease. Genetic screening of
these patients revealed truncating titin variants, which are
known as a genetic cause of DCM. These variants may in-
crease the susceptibility for anti-cancer agents-induced CM
[52]. In general, patients having a genetic predisposition for
DCM are more prone to develop AACM after anthracycline
treatment [100, 107]. It can be speculated that the impairment
of the PQC due to the anti-cancer treatment is an additional
burden to the cardiomyocyte. The clinical cardiac phenotype

is caused by insufficient clearance of the mutant protein via
UPS and/or autophagy. Therefore, these findings suggest that
PQC impairment by anthracyclines can act as catalysts in the
development of CM in patients with underlying sarcomeric
gene mutation.

Aging represents another cellular stressor leading to toxic
mutation effects because of the late disease onset and devel-
opment of symptoms in inherited CMs. Clinical characteris-
tics, such as wall thickness and diastolic function, worsen with
increasing age [57]. This could be related to an age-associated
decline in proteostatic function, which is supported by the
presence of damaged macromolecules and mitochondria in
aged cardiomyocytes [98]. Dysfunctional mitochondria gen-
erate high levels of reactive oxygen species, which promote
proteotoxic stress and accelerate detrimental effects on the
cardiomyocyte [90]. Also, the activity of the 26S proteasome
is decreased during aging, which is possibly caused by oxida-
tion of its components [21, 29, 30, 42]. The age-dependent
decline in proteasome function increases the burden for the
autophagic pathway. However, not only the proteasome, but
also the autophagy-lysosomal system declines during aging
[81]. As an example, mTOR, a negative regulator of autoph-
agy, was upregulated during aging in a mouse study which
indicates decreased autophagic activity [4]. As a result, the
activity of the autophagic response might not be sufficient.
However, similar to findings related to the UPS, autophagy
was enhanced during aging in some animal models, suggest-
ing an increased need for autophagy in aged cells [113].
Further research is warranted to investigate whether the age-
related decline of the PQC is causative for CM onset and/or
progression.

Future therapeutic implications

To improve the clinical outcome of CM patients, modulation
of PQC components might serve as a novel therapeutic strat-
egy. Figure 3 summarizes the three different ways and illus-
trates how a sarcomeric gene mutation can lead to PQC de-
railment. In case of a direct mutation effect on the PQC as well
as in combination with secondary hits, targeting of the PQC
would be most beneficial and the most direct way to prevent
cardiomyocyte dysfunction. In case where the PQC derail-
ment is a consequence of mutation-induced cellular distur-
bances, it is important to also target the cellular dysfunction
to prevent further worsening of the PQC.

As extensively discussed in this review, PQC alterations in
CMs are disease- and mutation-specific leading to either in-
creased or reduced function in one or several of its compo-
nents. Therefore, personalized treatment strategies are re-
quired to restore a balanced proteostasis. Potentially, all three
PQC components can be therapeutically targeted with the ap-
propriate compounds.
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HSP express ion can be induced by the drug
geranylgeranylacetone. In animal models of desmin-related
CM, the induction of HSP expression by geranylgeranylacetone
resulted in a beneficial effect on heart function because desmin-
aggregate formation was reduced [83]. This example suggests
that activation of HSPs might also be beneficial in other types
of inherited CMs, since HSPs play a crucial role in coping with
the mutant protein.

The derailment of the UPS is context dependent:
proteasomal function is decreased in HCM, RCM, and
desmin-related CM and increased in DCM [9]. Decreased
proteasomal function suggests that the misfolded proteins ham-
per the UPS by overwhelming it due to permanent degradation
of misfolded proteins. As a consequence, the activity of the
UPS is reduced. Therefore, UPS activation might be a benefi-
cial therapeutic strategy in HCM and desmin-related CM [9]. In
line with this, in HCM patients with a TNNT2 mutation in-
creased proteasomal activity was correlated with a better clin-
ical outcome [30]. In contrast, over-activation of the UPS indi-
cates a direct response of the UPS to the misfolded proteins to
ensure optimal clearance. However, excessive activation of the
UPS transforms the initially beneficial effects into a detrimental
maladaptation that possibly contributes to loss of myofibrils
[9]. Nevertheless, complete proteasome inhibition itself trig-
gered cardiac dysfunction and a CM-like phenotype in healthy
pigs [38]. Therefore, it is important to achieve a moderate UPS
response in DCM to prevent the detrimental effects of complete
proteasome inhibition.

The altered autophagic flux in CMs can be caused on the
one hand directly by the misfolded protein itself or on the
other hand indirectly by compensating for the impaired func-
tionality of the UPS. To optimize the degradation response,
the autophagic activity needs to be pharmacologically titrated
into its proteostasis promoting range [114].

Conclusion

The PQC is crucial for cardiac health and requires the collabo-
ration of all its components to be functional. Key modulators of
the PQC are disease- and mutation-specifically altered and
derailed in CM. Pharmacological targeting of PQC components
represents a novel therapeutic strategy to treat CMs. Since most
of the described findings are retrieved from single CM patients
or experimental animal models, systematic studies in larger
CM patient populations are warranted to untie the knot of
disease- and mutation-specific derailments of the PQC.
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