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Abstract
The Casimir Effect is a physical manifestation of quantum fluctuations of the electromagnetic vacuum. When two
metal plates are placed close together, typically much less than a micron, the long wavelength modes between them
are frozen out, giving rise to a net attractive force between the plates, scaling as d−4 (or d−3 for a spherical-planar
geometry) even when they are not electrically charged. In this paper, we observe the Casimir Effect in ambient
conditions using a modified capacitive micro-electromechanical system (MEMS) sensor. Using a feedback-assisted
pick-and-place assembly process, we are able to attach various microstructures onto the post-release MEMS,
converting it from an inertial force sensor to a direct force measurement platform with pN (piconewton) resolution.
With this system we are able to directly measure the Casimir force between a silver-coated microsphere and gold-
coated silicon plate. This device is a step towards leveraging the Casimir Effect for cheap, sensitive, room temperature
quantum metrology.

Introduction
One of the most commonly used technologies enabled

by micro-electromechanical systems (MEMS) are inertial
sensors1,2. These devices are a part of our everyday lives,
from sensing the orientation of smartphones (low g) to
detecting collisions in automobiles in order to deploy
airbags (high g). Current state-of-the-art low g MEMS
inertial sensors are capable of sensing sub milli-g accel-
erations with noise densities of around 0.1 mg/Hz1/2 or
less3–5. The proof-mass of these sensors typically weigh
around 1 μg, meaning the devices are capable of resolving
forces below 1 pN. Such force sensitivity is comparable to
the performance of an atomic force microscope (AFM),
but is realized on a single millimeter-scale chip and costs
just tens of dollars per device. In this work, we show that
by attaching a silver-coated microsphere to its proof-
mass, a commercial MEMS inertial sensor can measure

the Casimir force that is exerted onto the microsphere,
and therefore directly onto the proof-mass of the sensor,
due to its interaction with an external metallized plate.
The Casimir Effect, first derived by Hendrik Casimir in

1948, is a quantum fluctuation force that exists between
conducting surfaces separated by hundreds of nan-
ometers6. In its simplest case (two perfectly smooth,
perfectly conducting planar surfaces), the Casimir Effect
manifests itself as an attractive force between the two
objects, which scales as one over separation to the fourth
power. The physical origin of this phenomenon is purely
quantum mechanical, arising from zero-point fluctuations
exerting a net pressure on the conducting surfaces.
Because of the small scale of this effect (pN forces at
nanometer separations), Casimir force detection nearly
always involves a micromechanical system of some kind.
Most commonly a modified AFM setup is used, in which a
cantilever is adapted to measure forces exerted on it due
to Casimir interactions7–10. Other work using MEMS has
made use of torsional resonators11–13. Additionally,
devices that can integrate both Casimir surfaces onto a
single chip14 are less prone to low-frequency noise and
thermal drift due to smaller components and higher
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mechanical resonant modes, but come at the cost of
reduced interaction area and limited separation ranges.
The main advantage of a modified commercial MEMS

sensor is the pre-optimized design of the MEMS, and
the supporting integrated circuitry simplify the device
fabrication and apparatus immensely. Despite using an
external piezo-mounted plate, we are able to clearly see
the Casimir force in ambient conditions. Compared
to AFM, the size and cost is superior by orders of
magnitude and the linear transduction of an applied
force to an electronic output signal is a built-in feature
of the sensor.
The ability to measure the Casimir Effect with com-

mercial MEMS devices is an exciting prospect because it
indicates that this effect could be used as a practical,
controllable engineering tool within a MEMS system. For
example, it has been suggested that a MEMS oscillator
parametrically driven by the Casimir force would exhibit a
gain that scales as one over the Casimir cavity size to the
fifth power or as applied direct current (DC) voltage to the
tenth power15. In addition to providing a means of
investigating the Casimir Effect itself, this system could be
useful for temperature sensing, alternate current (AC)
voltage measurements, low-impedance current measure-
ments, or probing any measurand, which could be cou-
pled into a physical movement of the sensor proof-mass.
Successfully integrating a Casimir cavity into a well-
developed, scalable MEMS device is an important step in
realizing Casimir-enabled sensors as a practical, room
temperature quantum metrology tool.

Results
Casimir cavity integration with MEMS
Micro-gluing onto post-release MEMS
Because the modification involves bonding objects to a

post-release MEMS device, great care must be taken in
keeping mechanical forces exerted on the freely moving
parts to a minimum. We present a technique that allows
us to glue microspheres directly to the proof-mass of a
MEMS inertial sensor without compromising its func-
tionality. In this work, we use an accelerometer from
Analog Devices (ADXL203), pictured in Fig. 1a.
Outlined in Fig. 1b is our process which involves

depositing picoliter volume droplets of ultraviolet (UV)
curable epoxy using a micro-pipette attached to a piezo-
electric actuator onto the proof-mass then placing a
microsphere onto the droplet using a probe tip (contact
forces are sufficient to pick up the microsphere). The
pipette or probe tip can be moved in plane with a
micromanipulator, while the Z position is controlled with
nanometer precision using the piezoelectric actuator. The
advantage of assembling onto post-release MEMS is that
we can sense when contact with the proof-mass occurs by
actively monitoring the noise on the outputs of the device

(see Fig. 1b). This feedback is what allows us to deposit
droplets gently onto the proof-mass without forcing liquid
into the release holes or breaking the springs. As can be
seen in Fig. 1c, the proof-mass (shown in blue) provides
only a few small areas over which droplets can be placed
without interfering with other parts of the MEMS such as
the sensing fingers or the springs. In order to attach larger
objects, we use one or more spheres (Au-coated solid
barium titanate glass) as supports for other objects to be
set upon, like legs of a table. Once these “legs” are formed,
one can then attach a wide variety of microscale objects,
provided they do not interfere with the MEMS and are
able to be picked up and placed gently. For example, it is
possible to place a sub-millimeter neodymium rare-earth
magnet on top of the support spheres for high-resolution
gradient magnetometry (on going work). For the device
presented in this paper, two 30 µm diameter solid spheres
were glued onto the proof-mass as a platform for the rest
of the assembly discussed below.

Casimir force detection
The functional component of our device is a conductive

microsphere attached to the proof-mass of the inertial
sensor that forms one-half of the Casimir cavity. Doing
this results in a device that can not only measure accel-
erations applied to the device body (as was originally
intended) but also forces exerted directly onto the sphere,
namely electrostatic and Casimir forces. The sphere is
55 µm in radius and made of hollow borosilicate glass
coated with 50 nm of Ag and has a mass of roughly 0.1 µg.
It was found that Ag-coated hollow spheres had much
lower surface roughness than Au-coated solid spheres
(Supplementary information S1), so an Ag sphere was
used in the Casimir cavity, while two smaller Au spheres
(about 0.5 µg each) were used as supports. It should be
noted that the mass added to the proof-mass does not
affect the functionality of the device at DC. For dynamic
measurements, however, the added mass does lower the
overall bandwidth of the device.
One requirement in any Casimir device is the ability to

control the electric potential on the interacting surfaces.
This is due to the presence of residual electrostatic forces,
which are caused by trapped charges, adsorbates, and the
poly-crystalline nature of the metallic surfaces16–18. The
latter results in local differences in the work function of
the materials (also known as patch potentials), which sum
up to a non-zero effective potential difference, even when
the materials are electrically connected19. This overall
residual potential is a common source of error in Casimir
force measurements if not controlled for. To do this, a
500-nm-thick serpentine ribbon wire connects the surface
of the Ag microsphere to an open bonding pad on the
ceramic package. The conductivity of the wire provides a
means of controlling the voltage on the sphere and its
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flexible geometry ensures a low spring constant, thus
allowing for minimal restriction of the motion of the
proof-mass and the restoring force of the polysilicon
springs. The effect that the wire has on the overall
effective spring constant of the system (and therefore the
force sensitivity) is minimal and easily accounted for as
the post-modification force sensitivity is re-calibrated by
using known electrostatic forces between the sphere and

the plate. Additionally, because the electrostatic calibra-
tion is done with the sphere and plate in the same con-
figuration as the Casimir force measurement, any
rotational movement of the proof-mass due to torque
applied from the sphere (which is not perfectly centered)
will be accounted for. The process of assembling this
device is shown schematically in Fig. 1d and discussed
further in Methods.
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Fig. 1 Modification of post-release MEMS sensor. a Top-view optical image of the ADXL203 die inside the package with the lid removed. The
octagonal proof-mass can be seen in the center. Highlighted red box indicates the area of the proof-mass shown in the scanning electron
microscope (SEM) image in (c). b Schematic of feedback-assisted attachment of microspheres onto the proof-mass. (i) ADXL output is monitored
while a piezoelectric actuator lowers a micro-pipette (30 µm tip diameter) containing epoxy. Upon contact, surface forces draw out a few picoliters of
epoxy and the pipette is automatically retracted. (ii) Schematic of sphere placement. ADXL output monitored as before while the sphere is lowered
into the droplet. Once contact is made, the epoxy is cured by ultraviolet (UV) exposure. c Colorized SEM image of one quadrant of the micro-
electromechanical system (MEMS) with a microsphere glued to the proof-mass using the micro-gluing technique. The interdigitated sensing
electrodes and anchoring springs of the proof-mass can also be seen. All of the MEMS structures are 4 µm thick. d Schematic of device assembly
steps. The lithography mask (i) for the nano-ribbon wire is designed with a 2 mm nominal length, 25 µm lateral width, and a 58 µm radius circle at
each end for attachment. After fabricating the wires out of a 500 nm layer of evaporated Au on oxide with standard lithography and etching (ii–iv),
the device is assembled (v–viii) by attaching a microsphere to one end of the wire, peeling the wire off the substrate with a pipette, then lowering
the Au nano-ribbon wire (with the Ag sphere attached) onto two smaller support spheres, which have been previously bonded to the ADXL203
proof-mass using the micro-gluing technique shown in (b). e Colorized SEM image of an example of a fully modified ADXL203 (not the device used
in this work)
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The second half of the Casimir cavity is formed from
a Au-coated plate mounted on a linear piezoelectric
actuator. For the device used in this paper, the plate
approaches the sphere along the X-axis of the sensor. The
entire setup is mounted on an optical breadboard and
contained in a temperature-controlled enclosure on top of
an active vibration isolation table. A schematic of the
device and apparatus can be seen in Fig. 2b.

Device performance
Electrostatic characterization of residual potential and force
calibration
Electrostatic forces are used to measure the residual

potential difference, V0, between the sphere and the plate
and to calibrate the force sensitivity, γ, which relates the
sensor output voltage, S, to the applied force according to
F= γS. In Fig. 2c we plot the voltage output in the X
direction, SX, as we vary the potential applied between the
grounded plate and the microsphere (Vbias) at different
separations between 200 nm and 1 µm where electrostatic

forces are much larger than the Casimir force. The
minima of these voltage sweeps indicate the bias that
cancels residual potential between the metal surfaces, and
the curvature of the sweeps give a calibration coefficient
between the sensor voltage output and force, which can
then be used for Casimir force measurements (see further
discussion on this approach in Methods).
Both the residual potential and the force sensitivity of

the device appear to be functions of separation and are
approximately linear. Over the full 800 nm scan range, it
is observed that V0 varies by 9% and γ varies by 20%, with
average values of 0.21 V and 33.5 pN/mV, respectively.

Casimir force measurement
The data in Fig. 3 is a measurement of the force applied

to the proof-mass along its X axis as a function of
separation between the Ag-coated microsphere (which
is attached directly to the proof-mass) and an external
Au-coated plate. Electrostatic contributions have been
minimized according to the methodology discussed in the
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Fig. 2 Apparatus and calibration. a Optical image of the modified ADXL203 used to collect the data presented in this paper. Also pictured is the
external Au-coated plate mounted on a piezoelectric actuator (out of frame). b Schematic of full setup. The sensor X and Y outputs are fed through
an 8-pole low-pass filter with a 3 Hz cutoff to isolate the desired direct current (DC) signal and then read by a 16-bit Analog to Digital Converter
(ADC). The Casimir force acts along the X direction for this particular device. INSET: Diagram of Casimir cavity geometry showing sphere-plate
separation (d) and sphere radius (R). For simplicity, the two support spheres are not pictured. In reality, the Ag sphere is sitting 20–30 µm above the
proof-mass. c Sensor signal data as Vbias is varied at different separations. Circles are measured data and the solid lines are second order polynomial
fits to the data. d. V0 and γ versus separation. These values are computed from the minima and curvature of parabolas fit to data in Fig. 2c
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following sections. The red and black data points are the
same set of data fit to either the ideal Casimir force theory
(solid red line) given by Eq. 8 or the corrected Casimir
force theory (solid black line) given by Eq. 12 with only xs
(i.e., where separation d= 0) as a free parameter.
According to the ideal fit, the last measured data point at
635.5pN is 65 nm away from d= 0. According to the
corrected Casimir fit, the last measured data point is 63
nm away from d= 0.

Discussion
Distance dependence of residual potential and sensitivity
The separation dependence of the residual potential is a

well-known occurrence20–22 as the potential measured is
an effective sum of the contributions from different
regions across the surfaces of each metal. As the separation
changes, these contributions will sum differently due to the
inverse square dependence of the electrostatic force. The
linear dependence of the force sensitivity of the device is
due to the interaction of the grounded Si plate with the
fringe fields of the interdigitated capacitor fingers of the
sensor. The capacitive sensing relies on a small AC signal
applied between the fixed fingers and the movable fingers.
Because the plate is held at the same ground as the device,
it will deflect fringe field lines from this applied voltage and
result in an out-of-plane force exerted on the grounded
fingers23,24. As the plate’s position is varied it will overlap
with more fringe fields, thus exerting a larger out of plane
force and decreasing the sensitivity. This effect is more
prominent the closer the plate is to the fingers (see Sup-
plementary information S2). Therefore, there is an ideal
range of plate heights at which the experiment can be

performed, where the fringe field interactions are
minimized while also ensuring adequate area of interaction
between the side of the sphere and the plate.

Casimir force comparison with theory
In Fig. 3 it can be observed that the measured data is

modeled more accurately by the ideal Casimir theory
(root mean squared error of 7.4pN) compared to the
corrected theory (root mean squared error of 10.5pN).
While the corrected theory takes into account the finite
conductivity and non-zero temperature of the surfaces,
the perturbation approach used in ref. 25 is in fact only
valid for separations ranging from a few hundred nan-
ometers to several micrometers. At short separations, the
dielectric permittivity of the respective metals at high
frequencies contributes to the force magnitude and
changes the scaling with separation (V.M. Mostepanenko,
personal communication, October 26, 2018). As a result,
although the ideal theory overestimates the measured
force in the 80 to 200 nm range, the corrected model in
Eq. 12 underestimates it by far greater. More accurate
fitting may be possible by performing a numerical calcu-
lation of the Lifshitz formula using optical data for the
complex index of refraction of the metal surfaces, but
such analysis is outside the scope of this work.
Considering random measurement errors, the linear fits

shown in Fig. 2d returned root mean square errors to the
data of 1.8mV and 0.6pN/mV for V0 and γ, respectively.
Assuming a mis-calculated V0 off by three standard
deviations (5.4 mV) at the closest point of approach of
60 nm, we would be introducing an unwanted additional
electrostatic force of 0.74 pN, which is just 0.1% of the

0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

600

700

0.05 0.1 0.2 0.3 0.4 0.5
100

101

102

103

Ideal Casimir force
Corrected Casimir force
Data (xS from equation 8 fit)
Data (xS from equation 12 fit)

d (µm)

F
or

ce
 (

pN
)
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Casimir force measured at that point. This value is also
much less than the random error in the force measure-
ment due to uncertainty in the product γSX (whose com-
bined errors propagate to as high as 60 pN at the closest
measured point). It is therefore likely that the discrepancy
between measurement and theory in this distance range
are not due to imperfectly canceled electrostatic forces, as
the Casimir force is the dominant interaction.
The reason for this discrepancy is most likely due to

the assumptions of the geometry of the cavity, both at
the microscale (i.e., sphere and plate shapes and
arrangement) and at the nanoscale (surface roughness).
The sphere radius, R, is used in both the electrostatic
calibration analysis as well as the theoretical Casimir fits.
In both cases, we use R in the framework of the proxi-
mity force approximation (PFA), which assumes a per-
fectly spherical surface and an infinite plane in the d « R
limit26. Because of this, both the calibration factor and
the Casimir force are proportional to R, so any errors in
the value of R (which was measured optically) do not
affect the fitting. However, if the sphere is not perfectly
spherical, then we would expect both the electrostatic
force and the Casimir force to scale differently depend-
ing on the exact shape27. Additionally, due to physical
constraints of our setup, the plate is limited to extend
only ∼80–90 µm below the central plane of the sphere.
Because the PFA assumes an infinite plane, this asym-
metry may result in a systematically overestimated force
sensitivity of the device.
The surface roughness also becomes very important in

Casimir interactions at separations <∼ 100 nm28,29. The
AFM scans taken were on separate samples (see supple-
mentary information S1), which went through the same
coating processes as the sphere and plate used in this
device. While this may be useful for capturing average
roughness values, it is not specific to this exact cavity,
which may have extreme asperities that cause deviation
from the expected scaling below 100 nm separations. To
improve both of these geometry-related systematic
uncertainties, characterization of individual spheres
would need to be done prior to subsequent assembly.
Nevertheless, our results show that an Ag surface and

an Au surface in our atmospheric MEMS system exhibit
an interaction that can be described quite well by the ideal
Casimir force model. This is a promising finding as we
move forward with Casimir-enabled sensing devices, such
as that described by Imboden et al15. The results pre-
sented here imply that approximating this interaction as a
simple inverse cubic relation is quite sufficient for further
analysis and modeling.

Conclusions
The purpose of this work was two-fold: First, we have

successfully integrated a Casimir cavity onto a MEMS

system, which is capable of resolving piconewton forces.
This system provides the experimenter with a customiz-
able apparatus for investigating the Casimir Effect with
non-trivial geometries, materials, or surface morphologies
such as nanostructures or chiral metamaterials30–34.
Additionally, this work is an important stepping stone in
our goal to leverage the extraordinary distance depen-
dence of the Casimir force to provide an enhancement in
the sensitivity of the device through parametric techni-
ques. Second, we have shown that it is possible to perform
highly sensitive quantum metrology in ambient condi-
tions with off-the-shelf consumer MEMS sensors, which
are widely available and very inexpensive. Once functio-
nalized, these devices can be used as a novel tool for
experimenters—a literal platform capable of performing a
variety of interesting micro- and nanoscale low-force
experiments. Using the feedback-assisted micro-gluing
process we have developed, one can re-purpose the sensor
to transduce any measurand that can be coupled into a
displacement of the proof-mass.

Materials and methods
MEMS sensor
The fundamental building block of our Casimir mea-

surement system is a MEMS accelerometer from Analog
Devices (ADXL203)—a two-axis capacitive accelerometer
with analog voltage outputs for the in-plane X and Y
directions with a sensitivity of ∼ 1 V/g along both axes5.
The polysilicon MEMS consists of an octagonal proof-
mass (760 µm in width and 4 µm in thickness) that is
anchored to the substrate via four serpentine springs with
a total effective spring constant of roughly 1 N/m. The
proof-mass/spring system has a fundamental resonant
mode at 5.4 kHz with a quality factor of 10 in air and 1000
in vacuum (∼1 × 10−4 Torr). The proof-mass also has four
sets of finger electrodes, forming an interdigitated differ-
ential capacitor with another set of fingers anchored to
the substrate. Any force applied to the proof-mass moves
it, thus changing this capacitance. The proof-mass is
surrounded by integrated circuitry on the same chip
that demodulates the signals from the differential
capacitance measurements and rectifies them into two
independent output voltages (nominally 2.5 V with zero
applied acceleration) that are proportional to the position
of the proof-mass in the X and Y directions. Because the
springs obey Hooke’s Law, the outputs are linearly
proportional to the forces on the proof-mass. This
platform has been optimized with its sensing circuit
integrated with the MEMS process to produce a very low
noise system that can resolve forces of ∼1pN applied
directly to the proof-mass. The package is easily opened
with a straight edge razor blade. After the lid is removed,
the MEMS proof-mass and electronics can be seen as
shown in Fig. 1a.
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Device assembly
To assemble this device, the following process (outlined

in Fig. 1d) was developed: (1) a serpentine wire with cir-
cular ends is fabricated by lithographically patterning and
etching a 500-nm-thick layer of Au on top of a 2 µm layer
of thermally grown oxide. The wire is then released by
removing the oxide in hydrofluoric acid (i–iv). 2) A single
55-µm radius hollow borosilicate glass sphere coated with
50 nm of Ag (from Cospheric Technologies), which will
function as one-half of the Casimir cavity, is glued to one
end of the serpentine wire using Ag epoxy (Lake Shore
Cryotronics, cured by heating at 80 °C for 3 h). This
provides electrical connection between the wire and the
surface of the sphere. (3) The wire is picked up by the end
opposite to the sphere by gluing it to the end of a glass
micro-pipette using UV curable epoxy (v, vi). (4) The
wire/sphere is lifted off of the substrate, dipped in UV
curable epoxy (Norland Optical NOA81), and positioned
over the support spheres. (5) The wire/sphere is lowered
using a piezoelectric actuator. Contact is determined by
monitoring the noise on the X and Y outputs of the
sensor, as with the gluing process shown in Fig. 1b. When
contact is made, the epoxy is cured by UV exposure with a
365 nm light-emitting diode source (vii). (6) The other
end of the wire which is glued to the micro-pipette is
brought over to a pad on the ceramic package and glued
down using Ag epoxy. (7) Finally, the wire is released by
breaking off the end of the micro-pipette (viii). An
example of a fully assembled device can be seen in Fig. 1e.
The device used for the results in this paper (along with
the external Au-coated plate) can be seen in the optical
image in Fig. 2a.
The plate is fabricated from a 300-µm-thick silicon

wafer, etched into a tapered shape using photolithography
and DRIE, and then coated with 10 nm Cr adhesion
layer followed by 150 nm of Au using electron beam
evaporation.

Apparatus and experimental details
The modified ADXL203 is mounted on an XY transla-

tion stage attached to an optical breadboard. On the same
breadboard is another XYZ stage on which the plate is
mounted. This stage has its Z position controlled by a
Newport Picomotor stick-slip piezoelectric actuator. An
additional Newport NPC3SG piezoelectric stack actuator
controls the fine position of the plate in the X direction.
The apparatus is contained inside a polystyrene foam
container along with a 50Ω power resistor and resistance
temperature detector for Proportional-Integral-Derivative
controlled temperature with a 28 °C setpoint. Due to
building heaters cycling on and off, the maximum tem-
perature variations inside the enclosure over long periods
of time are ∼12m°C; however, for shorter time periods
(2 h or less), the temperature can be held within ∼3 m°C

(see Supplementary information S3). The container is set
upon an active vibration isolation table (Herzan TS-140).
The potential between the sphere and plate is controlled

by grounding the plate and applying a voltage on the
sphere through the nano-ribbon wire using a 1 mV
resolution power supply (Keithley Instruments). Due to a
proprietary polymer coating on the ADXL203 MEMS and
the insulating UV curable epoxy, there is no electrical
connection between the sphere and the proof-mass.
The sensor voltage output is fed directly into a

low-pass filter (Stanford Research Systems SR650) with
a 3 Hz cutoff frequency and unity gain. The filter output
is then sampled by an ADC (National Instruments
NIDAQ).

Measurement and calibration theory and methods
Electrostatic force
As discussed previously, electrostatic forces are present

between the sphere and plate metal surfaces, even when
the two metals are shorted together. By applying a voltage
equal and opposite to the residual potential, this unwan-
ted electrostatic effect can by minimized. Additionally, by
applying known electrostatic forces between the plate and
the sphere, the force sensitivity of the output can be
calibrated.
The forces acting on the sphere are assumed to be only

due to electrostatic and Casimir interactions. For the
following equations, we define the separation: d= xp− xs,
where xp is the absolute position of the plate and xs is the
absolute position of the sphere. Assuming a simple elec-
trostatic model, we can write:

Fðd;VbiasÞ ¼ ε0πRðV0 þ VbiasÞ2
d

þ FCasimirðdÞ; ð1Þ

where ε0 is the permittivity of free space, V0 is the residual
potential, Vbias is the applied DC voltage between the
sphere and plate, and R is the radius of the sphere.
Equation 1 uses the PFA for a sphere-plate geometry,
which assumes d « R. At large separations (typically >
200 nm) and large applied voltages (V0+Vbias > 100mV),
the Casimir force term is negligible, and the force scales as
Vbias

2. The residual potential can be measured by
sweeping the bias voltage and finding the value of Vbias at
which the force is minimized. At this minimum, the
applied bias is equal and opposite to the residual potential.
The sensor outputs an analog voltage, so to get a

measurement in units of force, a calibration must be
performed. Because of the linear response of the device,
the output signal, S, is proportional to the force applied on
the proof-mass by a constant, γ:

F d;Vbiasð Þ ¼ γS d;Vbiasð Þ: ð2Þ

For large separations and voltages, we can ignore the
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Casimir term in Eq. 1 and can now write:

S d;Vbiasð Þ ¼ 1
γ

ε0πRðV0 þ VbiasÞ2
d

: ð3Þ

We can then write γ in terms of the second derivative of
the signal with respect to Vbias:

γ ¼ 2πε0R
d

∂2S
∂V 2

bias

� ��1

: ð4Þ

From these relations, the residual potential and force
sensitivity can be measured by fitting the raw signal data,
S, to the function S= c1Vbias

2+ c2Vbias+ c3. Using the
returned fitting parameters we can calculate:

V0 ¼ c2
2c1

; ð5Þ

γ ¼ ε0πR
c1d

; ð6Þ

provided we are in a region where the electrostatic force is
dominant over the Casimir force.
The procedure for a single measurement is as follows

—first the plate is moved by steps of 20 nm towards
the sphere until contact is sensed. The plate is
then retracted by 1 µm and Vbias is swept, tracing
out a parabola as shown in Fig. 2c, according to Eq. 3.
More sweeps are taken as the plate is moved closer by
steps of 100 nm. Every data point is the average
of 50,000 samples taken in 0.5 s by the ADC with
standard deviations between 0.6 and 0.7 mV. The whole
electrostatic measurement takes 3.5 min. Over this
period of time, thermal drift is negligible (see Supple-
mentary information S3). Fitting a second-order poly-
nomial to these data sets provides measurements of
the residual potential, V0, as well as the sensitivity, γ,
according to Eqs. 5 and 6. These values are plotted in
Fig. 2d.

Casimir force
For ideal conditions (absolute zero temperature and

perfectly smooth infinitely conducting surfaces), the
Casimir force between two plates of area A is given by
ref. 6 as:

F0;PP
C ðdÞ ¼ �hcπ2A

240d4
; ð7Þ

where ħ is Planck’s reduced constant, c is the speed
of light in vacuum, and A is the overlap area between
the surfaces. Using PFA for a sphere-plate geometry,
this becomes:

F0
CðdÞ ¼

�hcπ3R
360d3

; ð8Þ

provided d « R, as in the electrostatic case. In addition to
this ideal case, we consider a corrected model from

Geyer et al.25, which accounts for more realistic physical
effects such as non-zero temperature and the finite
conductivity of both metallic surfaces. In this model, a
perturbation expansion in powers of the relative pene-
tration depths of electromagnetic oscillations into each
metal (using a plasma model) provides a corrected
equation for the Casimir force given as:

FP
C dð Þ ¼ F0

C dð Þ 1þ 45ζ 3ð Þ
π3t3

� 1
t4
� 2

δ

d
2� 45ζ 3ð Þ

π3t3
þ 2
t4

� ��

þ 72
5
δ2

d2
� 320

7
δ3

d3
1� 2π2

105
1� 3κð Þ

� �

þ 400
3

δ4

d4
1� 326π2

3675
1� 3κð Þ

� ��
:

ð9Þ
Here, ζ is the Reimann zeta function, t is a parameter
given by t= (ħc)(2kBTd)

−1, and δ and κ are optical
parameters given by:

δ � δAu þ δAg
2

; ð10Þ

κ � δAu þ δAg

δAu þ δAg
� �2 ; ð11Þ

where δAu and δAg are the effective penetration depths of
the electromagnetic oscillations into each metal film given
by ħc/ωp, in which we have used ωp= 9 eV for Au and ωp

= 8.6 eV for Ag35. Equation 9 is a limiting case of this
theory in which 1/t « 1, which is a valid approximation at
our operating temperature (T= 301.15 K) and d < 1 µm.
Finally, a second-order correction for surface roughness is
included:7,36

FR
C dð Þ ¼ FP

C dð Þ 1þ 6
Ar

d

� �2
" #

; ð12Þ

where Ar is the stochastic RMS roughness amplitude of
both surfaces. The surface roughness of the plate and
sphere surfaces were found to be 2 and 8 nm,
respectively, using AFM (supplementary informa-
tion S1). The total RMS roughness used in this model
is Ar= (Ar,sphere

2+ Ar,plate
2)1/2= 8.25 nm.

Immediately following the electrostatic measurement,
the plate is retracted back 1 µm away from the sphere
and then stepped forward by 1 nm increments as Vbias is
adjusted according to the linear fit, ensuring that the
first term of Eq. 1 is minimized at every position. At
each plate position, 50,000 samples are taken in 0.5 s
using the ADC. This measurement takes 20 min, which
requires that the enclosure temperature remain within
3 m°C to avoid unwanted thermal drift (see Supple-
mentary information S3).
After subtracting the zero-force signal (c3), the mea-

sured data is scaled to units of force using the calibration
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factor γ(d) measured from the electrostatic data. It is then
fit to either the ideal Casimir theory (Eq. 8) or the cor-
rected Casimir theory (Eq. 12), with xs as the only free
parameter. These results can be seen in Fig. 3.
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