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Aims: Lenalidomide is an immunomodulatory imide drug used broadly in the

treatment of multiple myeloma and lymphoma. It continues to be evaluated in chronic

lymphocytic leukaemia (CLL) at lower doses due to dose‐related toxicities including

tumour flare and tumour lysis syndrome. This study aimed to develop a population

pharmacokinetic model for lenalidomide in multiple cancers, including CLL, to identify

any disease‐related differences in disposition.

Methods: Lenalidomide concentrations from 4 clinical trials were collated (1999

samples, 125 subjects), covering 4 cancers (multiple myeloma, CLL, acute myeloid

leukaemia and acute lymphoblastic leukaemia) and a large dose range (2.5–75 mg).

A population pharmacokinetic model was developed with NONMEM and patient

demographics were tested as covariates.

Results: The data were best fitted by a 1‐compartment kinetic model with absorption

described by 7 transit compartments. Clearance and volume of distribution were

allometrically scaled for fat‐free mass. The population parameter estimates for apparent

clearance, apparent volume of distribution and transit rate constant were 12 L/h

(10.8–13.6), 68.8 L (61.8–76.3), and 13.5 h−1 (11.9–36.8) respectively. Patients

with impaired renal function (creatinine clearance <30 mL/min) exhibited a 22%

reduction in lenalidomide clearance compared to patients with creatinine clearance

of 90 mL/min. Cancer type had no discernible effect on lenalidomide disposition.

Conclusions: This is the first report of a lenalidomide population pharmacokinetic

model to evaluate lenalidomide pharmacokinetics in patients with CLL and compare its

pharmacokinetics with other B‐cell malignancies. As no differences in pharmacokinetics

were found between the observed cancer‐types, the unique toxicities observed in CLL

may be due to disease‐specific pharmacodynamics.
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What is already known about this
subject

• Lenalidomide is approved for use in multiple myeloma,

but not chronic lymphocytic leukaemia

• Using multiple myeloma doses of lenalidomide in

chronic lymphocytic leukaemia patients results in

increased toxicity

What this study adds

• This is the first report on the population

pharmacokinetics of lenalidomide in chronic

lymphocytic leukaemia

• No difference in pharmacokinetics was found between

chronic lymphocytic leukaemia, multiple myeloma and

acute myeloid leukaemia

• Differences in total plasma pharmacokinetics are

unlikely to contribute to the different toxicity profile in

chronic lymphocytic leukaemia

• The nonlinear relationship between creatinine clearance

and total clearance suggests that secretion is an

important clearance pathway for lenalidomide and that

impairment of glomerular filtration may not result in

impaired secretion
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1 | INTRODUCTION

Lenalidomide is a structural analogue of thalidomide belonging to a

class of medications known as immunomodulatory drugs. It works by

binding to cereblon, causing downstream signalling1,2 that results in

antiproliferative and antiangiogenic effects, along with an improve-

ment in immune effector cell functions.3,4 The action of lenalidomide

is well suited for many haematological malignancies and has been

evaluated in numerous clinical trials assessing its safety and efficacy

in multiple cancers as both a single agent and in combination. Based

on clinical data demonstrating superior efficacy over standard of care

at the time, lenalidomide gained approval in multiple myeloma (MM)5

and myelodysplastic disorders6 in the USA, Europe and Australia

among other countries.

Additional clinical trials have investigated the use of

lenalidomide in chronic lymphocytic leukaemia (CLL), mantle‐cell

lymphomas and acute myeloid leukaemia.7 These trials unveiled

unique problems in CLL that were not present when studying other

diseases. Initial trials revealed that doses suited for MM patients

were associated with high toxicity in CLL patients, with many

patients experiencing tumour flare.8 The tumour flare reaction

observed in this study was not seen in other haematological cancers

and presents with swelling of lymph nodes, spleen and/or liver. This

prompted a change in dosing starting at 5 mg (25 mg in MM) and

has shown that the risk of toxicity can be reduced without substan-

tial loss of therapeutic benefit.9-11

Lenalidomide has high oral bioavailability, with 90% of the dose

absorbed into the blood when taken under fasting conditions.12 It also

shows a rapid absorption when fasting, with maximum concentrations

(Cmax) occurring at 1 hour after the dose. In the fed state a reduction in

both the Cmax and area under the plasma concentration–time curve

(AUC) of lenalidomide were observed, with the values being 50%

and 80%, respectively, when compared to fasted values.13 The time

to Cmax was also delayed by 1.63 hours. This implies that food slowed

the rate of absorption of lenalidomide, with a relative decrease in

bioavailability of 20%. The magnitude of the food effect was deemed

clinically insignificant and, as a result, lenalidomide can be taken with

or without food according to the product information.14

As lenalidomide has linear pharmacokinetics, plasma concentra-

tions scale linearly with the quantity of absorbed drug. The apparent

volume of distribution as determined in young healthy volunteers

ranged from 75–125 L, indicating that it is moderately distributed into

tissues. Protein binding was low, with mean protein binding ranging

from 22.7–29.2%.14 The predominant excretion pathway of

lenalidomide is the kidneys, accounting for 80% of total clearance.15

The remainder of the drug is either not absorbed or forms inactive

metabolites via hydroxylation.12 Lenalidomide is not a substrate,

inhibitor or inducer of cytochrome P450 enzymes.16 The apparent

clearance of lenalidomide is higher than its glomerular filtration, with

clearances of >200 mL/min seen in healthy volunteers.13 The magni-

tude of the clearance also suggests that both active and passive renal

elimination is involved, with secretion playing a significant part.

Lenalidomide is a weak substrate of P‐glycoprotein,17 but it is unclear
if this transporter is responsible for all of the secretion of lenalidomide

as experimental studies have found no activity with numerous

common secretory transporters. The dependence of lenalidomide on

renal excretion makes renal function an important factor to consider

when dosing and is used at reduced doses in patients with creatinine

clearance <60 mL/min.14

Population pharmacokinetic modelling enables parameter

estimation or concentration time‐course prediction for both the study

population and individual subjects simultaneously.18 Population phar-

macokinetic models already exist for lenalidomide in the literature.

The first published model utilised data from 15 MM patients, where

a 1‐compartment kinetic model with 3 transit absorption was found

to best fit the data.19 Additionally, the investigators found that creat-

inine clearance and body surface area had a significant covariate effect

on clearance (CL) and volume of distribution (Vd), respectively.

An earlier model can be found in abstracts and government

assessment reports for lenalidomide.20,21 It was developed using data

from 147 patients with MM (68 patients), myelodysplastic syndromes

(25 patients) and mantle cell lymphoma (24 patients) and found that a

2‐compartment kinetic model with 2 transit absorption and a lag‐time

best fit the data. Creatinine clearance was found to be a covariate for

CL, while body weight, instead of body surface area, was used as a

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7331
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=768
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covariate on Vd. While this early model cannot be recreated from the

literature, a model using some of the same patient data has been

published.22 It was made using 305 healthy individuals and 83

patients; 60 with MM and 23 with myelodysplastic syndromes. It shares

the same covariates with the early model, but also found that the healthy

study population had higher CL and Vd than the patient population.

No differences were found between cancer types in either model.

There are currently no reported population pharmacokinetic

models for lenalidomide that examine pharmacokinetic differences in

CLL. It was hypothesised that the different dosage required in CLL

may be a result of different exposure to lenalidomide in these patients.

The variation in exposure between cancer types may be a result of

certain cancers changing lenalidomide pharmacokinetics, emphasising

a need for direct comparison and evaluation of potential pharmacokinetic

differences in CLL relative to other diseases. As a result, the aims of this

study were to: (i) develop a population pharmacokinetic model for

lenalidomide covering multiple cancers (including CLL); (ii) determine

the influence of patient characteristics and cancer type on lenalidomide's

pharmacokinetics; and (iii) compare this model to current models in

the literature.
2 | METHODS

2.1 | Clinical dataset

The data discussed in this manuscript was collated from 4 phase I clin-

ical studies conducted at The Ohio State University.23-26 The studies

administered Revlimid lenalidomide capsules daily for 21–28 days of

a 28‐day cycle. The studies did not control for food effect and

included a range of doses and diseases, which are summarised in the

Electronic Supplementary Material. The studies also had varying

inclusion/exclusion criteria depending on the disease and combination

drugs given. Patients across all studies were required to be 18 years or

older, have an Eastern Cooperative Oncology Group performance sta-

tus of 2 or less, have normal organ and marrow function, have a serum

creatinine of <177 μmol/L and have no active infections or uncon-

trolled intercurrent illnesses. All studies collected blood samples in

EDTA tubes at predose and various nominal times up to 24 hours

postdose. Differences between actual sample times and nominal times

were recorded and were used during model development. Plasma

samples were analysed using published liquid chromatography/

tandem mass spectrometry assay for lenalidomide.27
2.2 | Compliance with ethical standards

Ethics approval was attained for all study protocols by The Ohio State

University Institutional Review Board and the National Cancer Insti-

tute Cancer Therapy Evaluation Program, and written informed con-

sent was provided by all trial participants. All procedures performed

in studies involving human participants were in accordance with both

the ethical standards of the institutional research committee and the

1964 Helsinki declaration and its later amendments.
2.3 | Model development

Population pharmacokinetic modelling was conducted using

NONMEM (version 7.3; ICON Development Solutions, Ellicott City,

MD, USA) software and an Intel Composer XE 2013 Fortran com-

piler. Pre‐ and postprocessing of data were conducted using Wings

for NONMEM v73328 and R v3.3.029 with the ggplot2, plyr,

reshape2, stringr, readxl, MASS and MBESS packages.30-36 First

order conditional estimation with interactions (FOCE‐I) was used to

fit models. The modelling procedure was completed in 3 stages: (i)

development of the base structural model describing the data best

without covariates; (ii) development of the covariate model using

statistically significant patient characteristics; and (iii) evaluation

and validation of the model.

The models were evaluated for both 1‐ and 2‐compartment kinet-

ics based on previous models in the literature and visual inspection of

the data. Varying alterations of these candidate models were used to

try to best describe absorption of lenalidomide, including lag and tran-

sit models. For transit models, the methods outlined by Savic et al.37

were used to determine the appropriate number of transit compart-

ments.38 The final number of transit models found by this method

was rounded to the closest whole value, then used directly to improve

both minimisation and simulation of the model.

The pharmacokinetic model estimated the following parameters

(as appropriate): apparent clearance (CL/F), apparent volume of distri-

bution (Vd/F), absorption rate constant (ka), transit compartment

absorption rate (kTR) and absorption lag time. Population parameter

variability was added to structural model parameters to model differ-

ences in these parameters between patients. This between‐subject

variability was assumed to be log‐normally distributed (Equation 1).

θi ¼ θpop·eηi ηieN 0;ω2
θ

� �
(1)

where θi is the individual parameter value for the ith individual, θpop is

the population parameter value, ηi is an independent random variable

with a mean of zero and variance ω2. Between‐occasion variability

was also trialled.

Random unexplained variability was tested as proportional

residual error models with and without additive residual error. CL/F

and Vd/F were scaled according to allometric theory,39 with total

body weight and fat free mass (FFM) being tested. FFM was

calculated with the method proposed by Janmahasatian et al.40

During initial model development, outliers were flagged using

visual inspection of the data and the conditional weighted residuals

of the base model (conditional weighted residuals ≥±6). The model

was fitted again without the outliers, to determine if they had a signif-

icant effect on the model parameters. The outliers were considered

influential if parameter estimates differed by 15% or more. If the

outliers were found to have an insignificant effect on the model, they

would remain in the clinical dataset. In the case where they were

influential, all subsequent models would be designed without

these observations.
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Tested covariates were chosen based on prior lenalidomide

models19,22 and plausibility. Continuous covariates were normalised

using population median values (Equation 2).

θi ¼ θpop·
COVi

COVmed

� �θcov

·eηi (2)

where COVi is the covariate value for the ith individual, COVmed is the

covariate median and θcov is a parameter determining the covariate

effect. Categorical covariates were modelled to determine the differ-

ence between patient groups (Equation 3).

θi ¼ θpop· 1þ θcovð Þ·eηi (3)

where mathematical terms are the same as the equation for continu-

ous covariates however θcov is dependent on the category of the indi-

vidual. One category was used as a baseline (θcov = 0), while the others

either increased (θcov > 0) or decreased (θcov < 0) the individual param-

eter value. Covariates that were considered included creatinine clear-

ance, cancer type (CLL, acute myeloid leukaemia, acute lymphoblastic

leukaemia, MM), age, sex, clinical study and interactions between

these covariates. Creatinine clearance was calculated using the

Cockcroft–Gault formula.41

While there were no data on fasted or fed status, it is known that

that food can affect the pharmacokinetics of lenalidomide.13 This lack

of data had the potential to result in a bimodal distribution for param-

eters describing absorption. Therefore, a mixture model was trialled to

determine if 2 distinct fed and fasted populations could be observed in

the data. Food effect was tested on both relative bioavailability and

transit rate constant; alone and in combination.

Model selection was guided by: (i) the Akaike information crite-

rion42; (ii) standard goodness‐of‐fit plots; (iii) the parameter estimate

plausibility; (iv) the standard error of estimated values (obtained by

parametric methods); (v) prediction‐corrected visual predictive checks

(pcVPC)43; and (vi) noncompartmental analysis visual predictive checks

(NCA VPCs). Goodness‐of‐fit plots included plots of observed concen-

trations vs. either population‐ or individual‐predicted concentrations,

plots assessing weighted residuals over ranges in time and concentra-

tion and distribution plots of random effects in the model.

pcVPCs were used due to the large range of dosages used in the study

(2.5–75 mg). pcVPCs were made using the original data and 1000 sim-

ulations of the final model and were plotted using time after last dose

due to the short half‐life of lenalidomide and low likelihood of

accumulation. NCA VPCs were used to assess the model's ability to

estimate AUC, Cmax and tmax by determining these metrics for the

1000 simulations of the final model and comparing them to the NCA

results from the observed data.

2.4 | Model evaluation and comparison

The model was evaluated using bootstrapping and simulation–

estimation methods. Bootstrap resampling was performed 1000 times

sampling with replacement using the original data. Population param-

eters were obtained by fitting to each of these datasets. The median
and 95% confidence intervals of the model parameters were then

calculated. Stochastic simulation and estimation were used as a

retrospective power analysis to confirm negative conclusions during

covariate analysis. When no covariate relationship was found, the final

model was simulated including the proposed covariate relationship

creating a dataset that would result in a positive finding. This model

was simulated 1000 times, which each of those simulations fitted

using the final model with and without the supposedly absent covari-

ate relationship. Each set of estimated model pairs were compared to

determine whether the inclusion of the covariate resulted in a statisti-

cal improvement over its exclusion, thus demonstrating that, if the

covariate effect existed in the original dataset, it would have been

found during covariate analysis.

The model was compared to the 2 pharmacokinetic models cur-

rently in the literature; the Guglieri‐López model and the Connarn

model.19,22 These models were initially externally evaluated with the

clinical dataset used for model development. pcVPCs and NCA VPCs

were created using the process utilised in model evaluation. Additional

comparison was performed using a simulated dataset of 15 000 MM

patients. The patient demographics from the Guglieri‐López model

were used as patient characteristics for the simulation. The patients

were split into groups of 15 to create 1000 study datasets. The

patient's weight and height were sampled from a multivariate log‐

normal distribution and were strongly correlated (correlation coeffi-

cient 0.7). Patient age and serum creatinine were sampled from a nor-

mal and log‐normal distribution respectively. Patient sex and dose

were weighted according to study proportions and then randomly

sampled with replacement. The creatinine clearance was calculated

from these patient characteristics using the Cockcroft–Gault equation.

Final patient values outside of the ranges described by Guglieri‐López

et al.19 were resampled. Using these covariates, simulations were con-

ducted for each model and compared by overlaying the VPCs.
2.5 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY,44 and are permanently archived in the Concise Guide to

PHARMACOLOGY 2017/18.45
3 | RESULTS

3.1 | Study population

The pharmacokinetic data were obtained from 125 subjects across 4

phase I clinical trials, with participants contributing 1999 lenalidomide

plasma concentrations. The number of observations per patient

ranged from 9 to 26, with a median of 17 observations. There

were no data for 10.8% of observations. As these samples had no

differentiation between missing and below limit of quantification, they

were all assumed to be missing. Missing samples were located

http://www.guidetopharmacology.org


TABLE 1 Demographic and clinical information for clinical trials

Mean SD Median Range

Age (years) 58.2 12.8 61 22–79

TBW (kg) 88.8 22.7 86 48–152

Height (cm) 171 22.7 171 150–196

FFM (kg) 57.7 12.8 58.4 32–84

Creatinine (μmol/L) 82.8 21.4 80.4 42–147
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predominantly near trough concentrations. Plasma lenalidomide con-

centrations of individuals receiving the same dose were variable, as

seen in Figure 1. Demographic and clinical information for the patients

are summarised in Table 1. No data on fed or fasted status were avail-

able for the study population. Other than this, there were no missing

covariate data for the phase I clinical trials. Where dose time data

were missing, they was imputed assuming each dose was taken

24 hours after the first dose time.

CrCl (ml/min) 80.1 29.5 75.5 36–211

Count Percentage (%)

Dose (mg)

2.5 38 30.4

5 5 4

7.5 3 2.4

15 1 0.8

20 6 4.8

25 39 31.2

30 11 8.8

35 9 .2
3.2 | Model development

The best model that fit the lenalidomide concentrations was a

1‐compartment kinetic model with a 7‐transit compartment

absorption model (Electronic Supplementary Material). The population

parameter estimates for apparent clearance, apparent volume of

distribution and transit rate constant were 12 L/h (10.8–13.6), 68.8 L

(61.8–76.3) and 13.5 h−1 (11.9–36.8) respectively. Population

parameters were found to be best allometrically scaled using FFM as
FIGURE 1 Plasma lenalidomide concentration–time profiles
normalised for dose. The coloured dots represent each data point,
with the colours corresponding to the dose ranges A, or cancer type B,
according to the legend. ALL, acute lymphoblastic leukaemia; AML,
acute myeloid leukaemia; CLL, chronic lymphocytic leukaemia; MM,
multiple myeloma

50 10 8

75 3 2.4

Type of cancer

ALL 3 2.4

AML 53 42.4

CLL 49 39.2

MM 20 16

Sex (n)

Female 49 39

Male 76 61

SD, standard deviation; TBW, total body weight; FFM, fat free mass;
CrCl, creatinine clearance; ALL, acute lymphoblastic leukaemia; AML,
acute myeloid leukaemia; CLL, chronic lymphocytic leukaemia; MM,
multiple myeloma.
opposed to total body weight (comparative reduction in objective

function value of 5.9). Between‐subject variability was implemented

on apparent clearance (CL/F), apparent volume of distribution (Vd/F)

and the transit compartment rate constant kTR, using a correlation

matrix for CL/F and Vd/F. Due to the high percentage of lenalidomide

excreted unchanged in the urine,15,46 clearance was assumed to be

entirely renal. A proportional error model best fit the data when

compared to a combined additive and proportional error model.

Despite data being available from multiple doses, between‐occasion

variability did not improve the overall fit of the model and was not

included in further model development.

Upon visual inspection and consideration of conditional weighted

residuals, 24 concentrations were considered outliers. These outliers

were associated with imputed dose times, resulting in concentrations

resembling maximum concentrations occurring before a dose and

troughs occurring after a dose. The removal of these data resulted in

CL/F increasing by 20%, meeting the criteria for removal of the out-

liers. Additionally, between‐subject variability and residual unex-

plained variability were reduced by up to 15.7%. As a final check, a

pcVPC was produced with this reduced dataset and showed obvious
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visual improvement. This dataset and model were used for subsequent

analysis of covariates.

The examination of covariate effects on pharmacokinetic parame-

ters identified no significant difference between different cancer

types. The use of a mixture model failed to determine fed or fasted

status from their respective absorption rate constants. Creatinine

clearance was found to have a nonlinear covariate effect on CL/F

and was the only significant covariate in the final model. The final

equation used was:

CL ¼ 12·
CRCL
90

� �0:224

·eηi (4)

where CL is the predicted clearance for an individual, CRCL is the cre-

atinine clearance for an individual and ηi is an independent random

variable with a mean of zero and coefficient of variance of 54.4%.

The relative standard error of the final population parameters, param-

eter variability and covariates were satisfactory, indicating good esti-

mation of the final parameter estimates (Table 2).

The goodness‐of‐fit plots for the final model showed that the data

was well represented by the predicted concentrations (Figure 2). Slight

misspecifications in the model can be seen at low concentrations and

early time points. It is likely that these are due to erroneous dosage

times, resulting from availability of dosage times being limited to the

initial dose. The pcVPC from the final model showed concordance

between the observed and simulated data, with the median and 90%

confidence intervals of the observed data sufficiently matching the

95% confidence intervals of the simulated data (Figure 3). The NCA

VPC also showed adequacy in estimating the distributions of AUC,

Cmax and tmax (Figure 4).

Several study effects were found during covariate analysis. A

study containing 20 MM patients (the only patients in the dataset to

be from this disease category) were found to have absorption rate

constants on average 47% lower than other studies. Another study

containing 14 CLL patients had a distinctly larger amount of variability

in CL/F and Vd/F parameters. While the study effects were
TABLE 2 Population parameter estimates for base, final and bootstrap m

Parameter
Base model
[%RSE]

CL/F (L/h) [θ*(FFM/55)0.75] 12.4 [5.2]

CrCl covariate effect [*(CrCl/90)θ]

Vd/F (L) [θ*(FFM/55)1.0] 75.4 [5.1]

KTR (h−1) 13.5 [5.8]

Correlation between CL/F and Vd/F 0.856

BSV CL/F (%CV) 55.3 [9.9]

BSV Vd/F (%CV) 52.8 [9.9]

BSV KTR (%CV) 60.7 [6.4]

Proportional RUV (%CV) 43 [4.2]

BSV, between‐subject variability; CI, confidence intervals; CL/F, apparent clear
stant; RUV, residual unexplained variability; Vd/F, apparent volume of distrib
%RSE, percentage relative standard error.
statistically significant, their addition caused no improvement in diag-

nostic plots or pcVPCs. As no clinically significant disease effects could

be elucidated from them, they were not included in the final model.
3.3 | Model evaluation and comparison

The results of the 1000 bootstraps showed adequate confidence

intervals for the majority of parameters, with 993 of the bootstraps

successfully minimising (Table 2). Given the negative result finding

cancer type, the power of the analysis to detect such a finding was

prospectively determined. The stochastic simulation and estimation

method simulated the final model with the inclusion of a 20% reduc-

tion in total clearance for CLL patients. This relationship was found

to be statistically significant in 829 of the 1000 covariate analysis

model pairs, demonstrating that the original covariate analysis had

an 82.9% power to determine whether different cancers had different

pharmacokinetics.

The pcVPCs produced from external evaluation of existing models

in the literature show that the Guglieri‐López model was unable to

adequately predict patient concentrations for the clinical dataset

(Figure 3). The Connarn model was able to predict terminal concentra-

tions better than the present model; however, this model had pre-

dicted higher concentrations in the absorption phase than were seen

in our data. The NCA VPCs of each model presented similar results,

with the median and 95% confidence intervals for AUC, Cmax and tmax

being superior for the present model (Electronic Supplementary

Material).

The MM datasets that resulted from simulating the patient demo-

graphics in Guglieri‐López et al.19 had similar covariate summary sta-

tistics as the patient population from which they were simulated.

The resulting VPCs (Figure 5) showed that the model developed in this

paper simulated similar terminal concentrations to the Connarn model,

although the current model had differing absorption profiles. The

Guglieri‐López model simulation shows a similar absorption curve to

that of the Connarn model. However, the terminal concentrations of

the Guglieri‐López model deviate greatly from the other 2 models.
odels

Final model
[%RSE]

Bootstrap
[95% CI]

12.0 [5.0] 12.0 [10.8–13.6]

0.224 [31.6] 0.226 [0.046–0.396]

68.8 [5.0] 68.8 [61.8–76.3]

13.5 [5.8] 13.4 [11.9–36.8]

0.862 0.870 [0.686–0.933]

54.4 [10.7] 54.2 [42.8–66.7]

53.3 [10.3] 53.1 [43.0–64.6]

60.6 [6.4] 60.8 [52.3–120]

43 [4.2] 43.1 [39.5–47.5]

ance; CrCl, creatinine clearance; FFM, fat free mass; KTR, transit rate con-
ution; θ, estimated parameter; %CV, percentage coefficient of variation;



FIGURE 2 Goodness‐of‐fit plots both
comparing observed concentrations with
population and individual predicted
concentrations and observing conditional
weighted residuals (CWRES) over time and
across population predicted concentrations.
The data points are coloured according to the
cancer type as shown in the legend. The red
line represents the loess smoothed mean, with
the grey ribbon representing the 95%
confidence intervals of the smooth. ALL, acute
lymphoblastic leukaemia; AML, acute myeloid

leukaemia; CLL, chronic lymphocytic
leukaemia; MM, multiple myeloma
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4 | DISCUSSION

A population pharmacokinetic model has been developed to describe

plasma concentrations for lenalidomide using data from 4 different

pharmacokinetic phase I clinical studies. This model is the first

lenalidomide population pharmacokinetic model to include data from

CLL patients to be presented in the literature. The final model was

found to have 1‐compartment kinetics like other models in the litera-

ture. However, the structure for the absorption models differed with

the Guglieri‐López model using a transit model with 3 compartments

instead of 7 and the Connarn model opting for 1st order absorption

with a lag‐time.

Comparisons between the models show that the present model

and the Connarn model described similar concentration–time profiles

and adequately predict patient concentrations. The Guglieri‐López

model showed large differences compared to the other 2 models

and performed poorly in visual predictive checks. These large differ-

ences are expected, given that the model was developed using 15
patients taking lenalidomide outside of a clinical trial, where conditions

are often different due to no strict inclusion criteria. The data used to

develop this model had no time points beyond 6 hours, while the data

in both the present model and the Connarn model had time points up

to 24 hours and beyond. Additionally, the lower limit of quantification

for the assay used in obtaining the data for the Guglieri‐López model

was higher than the other models (100 ng/mL vs 0.3–5 ng/mL). As a

result, the Guglieri‐López model was able to represent the absorption

phase of the drug with reasonable accuracy but, with a lack of

extended data in the elimination phase, it was unable to predict

beyond 6 hours.

The use of cancer type as a covariate is not present in any of the

current models. The comparison between models seen in Figure 3 and

4 showed that the Connarn model could adequately predict concen-

trations in CLL patients, despite being developed with MM and MDS

patients. This suggests that the pharmacokinetics of lenalidomide in

CLL patients is not different to other haematological cancers. This out-

come may be a result of using empirical pharmacokinetic models, and



FIGURE 3 Prediction corrected visual
predictive check. The visual predictive check
was done for each of the 3 models being
compared. Each visual predictive check
compares the mean of the observed data
(Obs) with the median of the simulated data
(Sim) represented by solid lines. The dashed
lines represent the upper and lower 90%
confidence intervals of the data. The blue
points show the binned data concentrations.
The ribbons represent the 95% confidence
intervals around the median and 90%
confidence intervals of the simulation data
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a different modelling method (physiologically based pharmacokinetic

modelling) would help provide more certainty in this conclusion. A

lack of difference in the pharmacokinetics between different cancer

types may also suggest disease‐specific pharmacodynamics in

lenalidomide. Differences in receptor expression due to cancer cell

types or changes in organ physiology, such as spleen composition

changes in CLL patients,47 could be potential vectors for exploring

this idea.

The absorption rate constant had the largest between‐subject

variability out of any parameter for all models, indicating a large range

of absorption constants to adequately represent their respective pop-

ulations. The model presented in this paper and the Guglieri‐López

model both had lower between‐subject variability for the absorption

rate constant than the Connarn model (60 and 62% compared to

146% coefficient of variation). This may be due to the use of transit

compartments to model the delay in absorption caused by the food

effect, instead of a lag‐time. The large range of absorption constants

is expected for lenalidomide patients as drug administration was not

controlled for food intake, with the product information stating that

lenalidomide can be taken with or without food.14
The Connarn model was found to over predict concentrations

during the absorption phase for some patients in our dataset. This

could be in part a result of the dataset used to create their model.

The original population of the Connarn model had a large cohort of

healthy individuals that took part in early clinical trials. It is possible

that these clinical trials controlled for food intake (purposefully or

inadvertently), resulting in a model that is better suited for predicting

concentrations in fasted patients. No such controls were in place for

trials producing the data used in the present model, which might then

reflect a mixture of fasted and fed states.

A mixture model was unsuccessful in determining whether a

patient was fed or fasted from their respective absorption rate con-

stants. Theoretically, this could have explained some of the variability

in lenalidomide absorption; however, the nutritional content of the

meal can differ greatly between fed patients making the prediction

of discrete groups difficult. Having data on patient meals from a

lenalidomide study would greatly help in reducing the unexplained

variability in absorption between patients and provide more accurate

predictions. No correlation was found between clearance and the

absorption rate constant while developing the present model.



FIGURE 4 Noncompartmental analysis

(NCA) visual predictive check. The visual
predictive check consists of a histogram for
the NCA metrics estimated from the data
simulated from the model (Sim). The solid
black and grey lines represent the median
value of each metric for the data simulated
from the model and from data used to
develop the model (Obs). The dashed black
and grey lines represent the 5th and 95th

percentiles of each of the datasets outlined in
the legend. NCA metrics compared were: A,
area under the concentration curve (AUC); B,
maximum concentration (Cmax); and C, time of
maximum concentration (tmax). In C, the
median, 5th and 95th percentiles for the
present model (black lines) do not appear as
they are overlapped by the same values for
the observed data (grey lines)

FIGURE 5 Visual predictive check of simulated multiple myeloma
data. The coloured solid line shows the median of the data simulated
from each of the models, while the dashed coloured lines represent
the 90% confidence intervals of that data. The ribbons represent the
95% confidence intervals around the median of the simulation data
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Therefore, it is unlikely that the variability in absorption has a signifi-

cant impact on the ability to predict lenalidomide exposure using the

present model and the Connarn model.

The final estimate for CL/F in the developed model was sub-

stantially higher than the median creatinine clearance for each

patient. When taking this into consideration along with

lenalidomide's fraction bound to plasma protein and that renal clear-

ance makes up 80% of total clearance, approximately 60% of renal

clearance may be due to secretion. Creatinine clearance was found

as a nonlinear covariate for CL/F in all models but differed in the

magnitude of its effect. This finding is reflected in the label

approved by the FDA, where dose adjustment is required in patients

with moderate or severe renal impairment. The low effect of creati-

nine clearance may be a result of the secretion pathway of

lenalidomide's clearance.13,24,46

A recent investigation into glomerular filtration and tubular secre-

tion found that the proportional impairment of the 2 renal processes

correlated poorly.48 The creatinine clearance covariate value
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suggested by this investigation was not substantially different from

that presented in this study (0.28 vs 0.224). The nonlinear covariate

relationship presented in this study further supports the conclusion

by Wright et al., suggesting that tubular secretion may be partly

independent of impairment to glomerular filtration.49

A population pharmacokinetic model was developed for

lenalidomide. This model demonstrates the nonlinear effect of creati-

nine clearance on renal elimination and the wide range of absorption

rates present in lenalidomide patients. It is the first model to represent

patients with CLL and has shown that there are no major differences

in lenalidomide pharmacokinetics between cancer types. While this

suggests that the increased lenalidomide toxicity in CLL patients is

not due to unique lenalidomide plasma pharmacokinetics, but instead

is due to either disease‐specific pharmacodynamics or altered pharma-

cokinetics in CLL cells.
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