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Introduction
Theranostics in the context of nuclear medicine aims to iden-
tify the appropriate molecular targets in neoplasms, so that 
the optimal ligands and radionuclides with favorable label-
ling chemistry can be selected for personalized management 
of disease, taking into consideration the specific patient.1,2 
Personalized medicine improves tailoring and timing of 
preventive and therapeutic measures by utilizing biological 
information and biomarkers at the level of molecular disease 
pathways, genetics, proteomics, and metabolomics.3 Thera-
nostics using PET/CT (or PET/MRI) as an in vivo companion 
diagnostic for decision-making and monitoring of therapy 
with radiolabeled ligands, is part and parcel of personalized 
medicine.2,4 The successful application of 68Ga for diagnosis, 
and 177Lu and 90Y for radionuclide therapy using the same 
peptide for targeting somatostatin receptors in neuroendo-
crine neoplasms, has paved the way to other indications of 
theranostics.1 The recently published results of the randomized 
controlled NETTER-1 trial revealed a fivefold improvement in 
response with 177Lu-DOTATATE (Lutathera™) compared with 
conventional treatment of gastroenteropancreatic neuroendo-
crine tumors.4

Using a ligand targeting, the prostate-specific membrane 
antigen (PSMA), which is overexpressed in a majority of 
prostate cancer (PCa)  cells, enables effective molecular 

imaging and targeted radioligand therapy of PCa, with 
acceptable toxicity. The PSMA ligand labeled with a posi-
tron emitter like 68Ga/18F helps not only to select patients 
who are likely to benefit from the PSMA-radioligand 
therapy (PRLT) using later on the same ligand labeled with 
a βbeta emitter like 177Lu or an α-emitter like 225Ac, but 
also enables detection of recurrent and metastatic disease 
(staging), assessment of molecular response to therapy, and 
long-term follow-up after the initial diagnosis. In addi-
tion, pre- and/or post-therapeutic dosimetry ensures the 
optimum balance between risk and therapeutic benefit, and 
helps to predict toxicity.1

PCa is the second most common cancer in males world-
wide and causes an estimated 90,000 deaths per year in 
Europe.5 The primary treatment for localized PCa is radical 
prostatectomy, following which salvage radiotherapy and 
lymphadenectomy are the options with a curative approach 
in patients with residual or recurrent PCa.6 However, 
20–40% of the clinically localized PCa patients will present 
with rising prostatic-specific antigen (PSA) after surgery, 
which is referred to as biochemical recurrence.7–9 In fact, 
about 60% of patients with stage pT3 PCa have biochem-
ical recurrence within 5 years of surgery, indicative of local 
tumor progression and/or metastatic disease. The appro-
priate time point to initiate a multimodal therapy is vital, 
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Abstract

Alterations at the molecular level are a hallmark of cancer. Prostate cancer is associated with the overexpression of pros-
tate-specific membrane antigen (PSMA) in a majority of cases, predominantly in advanced tumors, increasing with the grade 
or Gleason’s score. PSMA can be selectively targeted using radiolabeled PSMA ligands. These small molecules binding the 
PSMA can be radiolabeled with γ-emitters like 99mTc and 111In or positron emitters like 68Ga and 18F for diagnosis as well as 
with their theranostic pairs such as 177Lu (β-emitter) or 225Ac (α-emitter) for therapy. This review summarizes the theranostic 
role of PSMA ligands for molecular imaging and targeted molecular radiotherapy, moving towards precision oncology.
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since the course of biochemical recurrence after surgery varies, 
and does not necessarily correlate with clinical recurrence.10,11

The conventional imaging modalities like CT and MRI have a 
limited role, especially when the PSA levels are low.12 Indeed, 
the current guidelines do not recommend additional imaging for 
staging low-risk PCa due to the poor accuracy of conventional 
imaging, e.g. in detecting small lymph nodes.13 Pelvic multi-
parametric MRI and abdominopelvic cross-sectional imaging 
are recommended in the staging of high-risk localized or locally 
advanced PCa. Multiparametric MRI has a high accuracy in PCa 
with higher Gleason score and a larger volume of disease, and is 
also used to guide biopsy.14,15 However, its performance is limited 
in the identification of extraprostatic extension of disease. The 
guidelines recommend bone scan for the screening of metas-
tases.13 But this is constrained, especially, by a lack of specificity 
and the inherent inability to detect extraosseous disease.

Androgen deprivation therapy is an established treatment option 
after salvage surgery or radiotherapy. However, at some point of 
time, the disease continues to progress with rise of PSA under 
hormone therapy, indicating castration resistance. Metastatic 
castration-resistant prostate cancer (mCRPC) has a poor prog-
nosis and is responsible for nearly all PCa-specific deaths.16 
Abiraterone acetate and enzalutamide, targeting the androgen 
receptor (AR) signaling, have demonstrated encouraging results 
in mCRPC.17–19 Randomized controlled clinical trials in mCRPC 
have demonstrated a small benefit in the overall survival (OS) 
with taxane-based chemotherapy and the therapy of skeletal 
metastases with the α-emitter 223Radium.20–23

Molecular imaging
The unmet need in PCa has been to identify local recurrence, 
lymph node, bone and visceral metastases with high sensitivity 
and specificity in patients with biochemical relapse after initial 
curative therapy. Molecular imaging with PET/CT or PET/
MRI has a great potential to counter the drawbacks of conven-
tional imaging and consequently improve the overall diagnostic 
accuracy.

18F-FDG PET/CT has limitations in the evaluation of PCa.24 
However, a recent study concluded that assessment of glycolytic 
activity in addition to the AR expression, had prognostic impli-
cations in mCRPC.25 Most of the mCRPC lesions express ARs, 
consistent with initial benefit of androgen receptor-signaling 
inhibitors. On a patient basis, 49% had at least one FDG-positive 
lesion, the imaging phenotype with the most negative effect on 
survival, possibly due to androgen receptor-signaling inhibitors 
resistance.25 11C-choline PET/CT has demonstrated a poten-
tial in the therapy response assessment after chemotherapy in 
mCRPC.26 A meta-analysis revealed a pooled detection rate of 
62% for biochemical recurrence in PCa, although the detect-
ability was poor when the PSA levels were lower (<2 ng ml−1).27 
Primary staging with choline PET/CT is limited by the non-spe-
cific uptake in benign prostatic hyperplasia.28

PSMA is a Type II transmembrane glycoprotein with an intra-
cellular, transmembrane, and an extensive extracellular domain, 

which is overexpressed in PCa, especially in poorly differenti-
ated mCRPC.29–31 Radiolabeled monoclonal PSMA antibodies 
such as J591 have been demonstrated to have a role in PCa.32 
However, their long half-life and poor tumor penetration repre-
sent a significant limitation of monoclonal antibodies in imaging 
and therapy. On the other hand, the 68Ga labeled urea-based 
PSMA inhibitors have nearly ideal pharmacokientics.30,33 The 
major uses of PET/CT using PSMA ligands in PCa are: detection 
of biochemical recurrence, primary staging, radioguided surgery, 
selection of patients and monitoring the response/follow up after 
PRLT. Most of the studies reported so far have been using 68Ga-
PSMA PET/CT.

The pooled detection rates of biochemical recurrence for 68Ga-
PSMA-11 PET/CT in a meta-analysis were found to be 58 and 
76% for PSA levels of 0.2–1 and 1–2 ng ml−1, respectively.34 
Afshar-Oromieh et al reported a detection rate of 88.1% on 
a patient basis in a retrospective study of 319 patients, with a 
sensitivity of 76.6% and a specificity of 100%.35 In a head-to-head 
comparison with 11C-/18F-choline, 68Ga-PSMA-11 demonstrated 
a superiority for the PET/CT detection of biochemical recur-
rence.36–38 Many studies have revealed a higher detection rate 
for 68Ga-PSMA-11 PET/CT than any other imaging modality 
for PSA levels less than 0.5 ng ml−1.39 This enables an early and 
effective salvage treatment modality, e.g. lymphadenectomy or 
radiotherapy.

18F has lower mean positron energy than 68Ga, resulting in a 
higher intrinsic spatial resolution. In first-in-human studies 
by the group of Pomper, the two 18F-labeled tracers DCFBC 
and DCFPyL demonstrated a favorable dosimetry and biodis-
tribution, as well as a superior efficiency for the detection of 
PCa.40–43 18F-DCFPyL PET/CT revealed additional lesions in 3 
of 14 patients (21.4%), who had either negative or inconclusive 
findings on 68Ga-PSMA-11 PET/CT.44 More recently, Giesel et al 
published their findings using a 18F-labeled PSMA ligand PSMA-
1007, demonstrating a lesion detectability as good as with 68Ga-
PSMA PET/CT.45

PSMA PET/CT plays an important role in the primary staging, 
especially the detection of lymph node and distant metastases. 68Ga-
PSMA-11 PET was found to be significantly better than cross-sec-
tional imaging for lymph node staging in 130 patients with primary 
intermediate- to high-risk PCa.46 The specificity was greater than 
95%, which was also confirmed by another study in patients who 
underwent salvage lymphadenectomy.47 The intraprostatic tumor 
could be localized by 68Ga-PSMA-11 PET/CT, and the findings 
also correlated with histopathology.48–50 The positive segments 
demonstrated a significantly higher uptake of 68Ga-PSMA-11 
than the negative segments.48,49 Combination of 68Ga-PSMA-11 
PET and mpMRI in 53 intermediate-/high-risk patients revealed 
a significantly better performance than mpMRI or 68Ga-PSMA-11 
PET alone, in terms of sensitivity and specificity for localization of 
tumor.51 Therefore, hybrid PET/mpMRI may enable an accurate 
image-guided biopsy of the most relevant area within the prostate.

68Ga-PSMA PET/CT could have significant impact on the 
therapy planning, e.g. standard or extended lymph node 
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dissection and change in radiotherapy planning and systemic 
treatment (Figure 1).52–54 Radioguided surgery is feasible using 
pre-operative labeling of lymph node metastases with a γ-emit-
ting PSMA-ligand (e.g. 111In-PSMA I&T), allowing detection 
and resection of very small metastatic lesions.55,56

Precision molecular radiotherapy using 
PSMA ligands
PRLT involves selective binding of a radioligand to PSMA, which 
is overexpressed in mCRPC, in order to increase tumor dose and 
to spare the normal tissue.57 Internalization and retention within 
the tumor cell are essential mechanisms for the cell-killing effect 
of this molecular radiotherapy (also called endoradiotherapy), 
which has the advantage of selectively targeting multiple 
metastases.58 PRLT is based on the principle of theranostics. 
The overexpression of PSMA in tumors can be confirmed by 
pre-therapeutic molecular imaging using 68Ga-PSMA PET/
CT (Figure  2). Therefore, we treat what we see. 177Lu, being a 
γ-emitter, permits post-therapy imaging for the assessment of 
biodistribution, intensity of uptake as well as dosimetry. Hence, 
we can see what we treat. 68Ga-PSMA PET/CT can be used as 
a sensitive and specific imaging modality for patient selection, 
response assessment and follow up after PRLT.

The patients currently receive PRLT under compassionate basis 
after treatment failure following chemotherapy and newer anti-
hormonal agents, but also possibly after exhaustion of mono-
clonal antibody therapy or 223Ra-chloride therapy. Distant 
metastases with high PSMA expression confirmed on pre-therapy 
68Ga-PSMA PET/CT, and progressive disease despite extensive 
previous treatments, are currently the essential inclusion criteria, 
as stated in the consensus recommendations of the German 
society of nuclear medicine, which were published in 2016.59

Dosimetry
Individualized dosimetry is imperative for precision molecular 
radiotherapy using 177Lu-PSMA. The kinetics of a certain ligand 
varies in patients and depends on a number of factors like renal 
function and tumor load, to name a few. There is additionally 
a significant intrapatient variability due to tumor responses and 
varying tumor loads between different therapy cycles.60 There-
fore, for the direct comparison of the different PSMA ligands, 
patient-specific factors need to be considered. A differential 
analysis for PSMA I&T and PSMA-617 revealed comparable 
results for both ligands. In a dosimetry study of 18 patients 
receiving 1–4 PRLT cycles using 177Lu-PSMA-I&T, Okamoto et 
al demonstrated organ- and tumor-absorbed doses comparable 
to 177Lu-PSMA-617.61 However, they found relatively constant 
doses among the four different treatment cycles, quite contrary 
to the results by our group.61,62 Kabasakal et al also stressed the 
need for individual dosimetry based on the large inter-individual 
variation in a study using 177Lu-PSMA-617.63

The organs at risk are the salivary glands, lacrimal glands and 
the kidneys. The highest dose was demonstrated for the lacrimal 
glands (1–3.8 Gy GBq-1) followed by the salivary glands (0.5–1.4 
Gy GBq-1) and then the kidneys (0.53–0.88 Gy GBq-1).57,61–67 In 
fact, the dosimetry with the red marrow was the most favorable 

(0.01–0.04 Gy  GBq-1). Therefore, the threshold absorbed dose 
of 2 Gy to the red marrow for severe hematotoxicity, implies a 
maximal tolerated cumulative activity of at least 45 GBq.67,68 
Considering the threshold for renal toxicity, a cumulative activity 
of 40 GBq would be safe.69,70 Whereas, a maximal dose limit of 
45 Gy for salivary dysfunction would allow the administration 
of a cumulative activity of around 50 GBq of 177Lu-PSMA.71 
However, it must be stressed that no universal dose limits have 
yet been defined for a molecular radiotherapy, and the ones 
mentioned above are only extrapolated from the external radi-
ation therapy.

Adverse effects
The potential adverse effects to be kept in mind are hematolog-
ical, renal and salivary gland toxicities. Overall, 177Lu-PRLT is 
tolerated well by all the patients with no severe acute or long-
term adverse events. Short-lasting mild fatigue was the most 
common immediate side effect.60 Long-term side effects seem to 
be relatively mild with transient xerostomia, being a non-hema-
tological side effect in about 5–10% of the patients, and grade 3/4 
hematological toxicity being reported in a few cases.60,72–76

Docetaxel, the most commonly used chemotherapeutic agent in 
mCRPC, is associated with different adverse effects impairing 
also the quality of life.77 One or more serious adverse events 
were observed in 26% of the patients receiving docetaxel every 
3 weeks including two (0.3 %) treatment-related deaths.78  The 
most common severe (grade ≥3) side effects of the second-line 
chemotherapy with cabazitaxel were neutropenia, leukopenia, 
anemia, and thrombocytopenia, with neutropenia being the most 
common, in 82% of the patients. On the other hand, diarrhea was 
the most common non-hematological adverse event, seen in 47% 
of the patients. 18 patients (5%) died due to the side-effects.79 
The most common adverse events with abiraterone include fluid 
retention/ edema, hypokalemia, hypertension, cardiac disor-
ders, atrial fibrillation, and an increase in liver enzymes.80 On 
the other hand, fatigue, diarrhea, hot flashes, musculoskeletal 
pain, headache, cardiac disorder, seizure (<1%), and myocardial 
infarction (<1%) were associated with enzalutamide.81

In a systematic review of third-line treatment and 177Lu-PRLT, 
G3-4 hematological toxicities were reported in about 2% of the 
patients undergoing PRLT.82 On the other hand, the first study of 
177Lu-PSMA I&T reported only G1-2 anemia/pancytopenia and 
no G3-4 hematological toxicity.57 Indeed, renal insufficiency may 
also increase the risk due to a higher circulation time and hence 
dose to the bone marrow. The risk of development of hemato-
toxicity increases with extensive bone marrow involvement 
and previous chemotherapy or 223Ra-treatment.60,65 Long-term 
low-dose concept, i.e. fractionation, may be beneficial to avoid/
minimize bone marrow toxicity.

Since 2013, we have not seen any clinically significant nephro-
toxicity in long-term follow-up of over 200 patients treated with 
up to 12 cycles of PRLT, even in the more than 15 patients with 
a single functioning kidney.83 Yordanova et al found elevated 
cystatin C in 32/55 patients (58%); however, 14 of who already 
had elevation of cystatin C before treatment. The renal function 
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Figure 1. A 76-year-old patient with progressive mCRPC s.p. prostatectomy, pelvic lymphadenectomy, ADT as well as enzaluta-
mide and 16 cycles of docetaxel chemotherapy. After 3 cycles of 177Lu-PRLT (cumulative administered activity 21.8 GBq), there was 
PR of the LNM (oblique arrows) as well as of the primary tumor (horizontal arrow). (A) 68Ga-PSMA MIP image before PRLT; (B) 
after two cycles and (C), after three cycles; (D,F) axial PET/CT images; (E,G) contrast-enhanced CT images. There was response to 
PRLT (PR) according to RECIST 1.1 as well as EORTC criteria (reduction of uptake) of the left iliac LNM (D,E, before PRLT; F, G, after 
three PRLT cycles) and of the primary tumor. ADT, androgen deprivation therapy; LNM, lymph node metastases; mCRPC, meta-
static castration-resistant prostate cancer; PR, partial remission; PRLT, PSMA radioligand therapy; PSMA, prostate-specific mem-
brane antigen. 
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Figure 2. A 75-year-old patient with progressive mCRPC, s.p. prostatectomy, ADT and enzalutamide as well as docetaxel chemo-
therapy (wheel-chair bound with pain and low Karnofsky performance status) with disseminated osseous as well as extensive liver 
metastases (hepatomegaly) exhibiting very high PSMA expression. After 3 cycles of 177Lu-PSMA-radioligand therapy (cumulative 
administered activity 22.7 GBq), excellent response of the multiple liver metastases (PR according to RECIST 1.1 and EORTC cri-
teria) with significant decrease in size of the lesions as well as of the whole liver occurred. The general condition of the patient 
improved remarkably (coming for follow-up studies driving his own car) and he lived for another 2 years after the last PRLT cycle. 
(A) 68Ga-PSMA MIP image before PRLT; (C), after two cycles and (E), after three cycles; (B,D,F) contrast-enhanced CT images. 
(G,I) axial PET/CT images; (H,J) coronal PET/CT images; (G,H) before PRLT; (I,J) after 3 PRLT cycles. ADT, androgen deprivation 
therapy; LNM, lymph node metastases; mCRPC, metastatic castration-resistant prostate cancer; MIP, maximum intensity protec-
tion; PR, partial remission; PRLT, PSMA radioligand therapy.
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significantly correlated with age, hypertension and prior renal 
disease.84 The renal specific PSMA-binding can be blocked by 
PMPA (2- (phosphonomethyl)pentanedioic acid), a PSMA-in-
hibitor, which has been validated in pre-clinical studies.85 But 
due to its lack of availability and also the possibility of concur-
rent blockade within the tumor, this compound is not in routine 
clinical use.

Reversible xerostomia has been reported in about 5–10% of 
patients treated with 177Lu-PRLT, and is likely to be caused by high 
PSMA-specific binding of the tracer in the salivary glands.60,72–76 
This was objectively assessed by Scarpa et al, who found a signif-
icant reduction in the SUVmax on 68Ga-PSMA PET/CT as well 
as a decrease in the volume of the salivary glands after PRLT.67 
The SUVmax on 68Ga-PSMA PET/CT decreased on cooling of the 
glands.86 A possible significant breakthrough for salivary gland 
protection, especially crucial in the context of targeted α therapy 
using 225Ac-PSMA, was the demonstration of reduced ligand 
uptake 45 days after injection of botulinum toxin into the sali-
vary gland unilaterally.87 The SUVmean on Ga-68 PSMA PET/
CT in the injected parotid gland showed a highly significant 
decrease of up to 64% compared with the other side. The vascu-
larization of the salivary glands on Doppler was demonstrated to 
remained unchanged after botulinum use by Coskun et al.88 This 
implies that additional mechanisms might be playing part in the 
action of Botulinim toxin, probably a post-denervation atrophy, 
causing a decrease in PSMA expression.89

Efficacy
The excellent tumor response is attributable to the high doses 
delivered to metastases based on the specific 177Lu-PSMA tumor 
uptake. High uptake can be demonstrated pre-therapy on 68Ga- 
PSMA PET/CT, which is an important pre-requisite for PRLT. 
PSMA PET/CT, therefore, plays an important role in the selection 
of patients for PRLT. Tumor doses exceeding 50 Gy and ranging 
up to 500 Gy have been reported.60,67 Significant PSA decline 
(by ≥50%) was observed in 30–60% of the patients.57,60,72–76 von 
Eyben et al noted that177Lu-PSMA RLT caused a best decline of 
PSA ≥50% twice as often as the third-line treatment with a higher 
frequency of objective remission as well as fewer side effects than 
third-line treatment.82 Patients undergoing PRLT tended to live 
longer than patients given third-line treatment (median of 14 
months vs 11 months), but the difference was not statistically 
significant. Third-line treatment was stopped more often due to 
adverse effects.

68Ga-PSMA PET/CT is a very sensitive and specific modality for 
the early assessment of response in comparison with the morpho-
logical imaging like CT, since molecular response precedes 
morphological changes (Figure  3). Lymph node metastases of 
mCRPC responded better to PRLT than bone metastases.60 This 
may be explained by a higher and more uniform absorbed radia-
tion dose by lymph node metastases, which—in general—exhibit 
a higher uptake (SUV) on 68Ga-PSMA PET/CT as compared to 
bone lesions. In addition, the biological differences in radiation 
sensitivity might be an influencing factor. 68Ga-PSMA PET/CT 
is also superior in response assessment of skeletal metastases 
compared to CT alone, in which the actual size of the osteoblastic 

metastases is difficult to measure and change in size is difficult to 
appreciate.

Only a few studies have reported response as assessed 
according to morphological (RECIST) or molecular imaging 
criteria.57,60,67,74,90,91 Often, there is a discordance between the 
PSA levels and the PET/CT imaging findings implying that PSA 
alone is definitely not a reliable parameter for the assessment of 
therapy response.57,60,65,67 Yadav et al demonstrated according 
to molecular imaging criteria, a complete remission (CR) in 
2/6 patients, PR in 3/6 patients and stable disease (SD) in 1/6 
patients.90 An overall assessment of bone and soft tissue metas-
tases by Heck et al revealed a CR in 5% of patients, SD in 63% 
and PD in 32%.91 On the other hand, Fendler et al used RECIST 
to define response and found PR in 4/15, SD in 6/15, and PD 5/15 
patients after two PRLT-cycles with177Lu- PSMA-617.74 Scarpa 
et. al showed an objective molecular and radiological response 
in half of the patients (5/10), wherein in addition to PR and 
SD, they also defined a mixed response as patients responding 
remarkably to PRLT at one metastatic lesion site, but developing 
new lesions at another site.67

In an analysis of 224 patients with metastatic PCa treated at 
our center since April 2013, we observed any PSA reduction 
in 157/224 (70 %) patients; 121/224 patients (54%) demon-
strated a PSA decline by >50% and the best response was CR 
with undetectable PSA. The response according to RECIST was 
as follows: CR in 9 patients (4%), PR in 53 patients (23.7%), 
SD in 91 patients (40.6%), and PD in 71 patients (31.6%). 
According to  the molecular imaging criteria, CR was noted in 
10 patients (4.5%), PR in 78 (34.8 %), SD in 61 (27.2 %) and PD 
in 75 patients (33.5%). The median OS in all patients was 27 
months and the median progression-free survival (PFS) was 11.5 
months. First-line PRLT (with no previous hormone therapy) 
was associated with the longest OS (median not reached at 55 
months, all 18 patients are alive). Chemotherapy-pre-treated 
patients lived significantly shorter (median OS 19 months) as 
compared to chemotherapy naive patients (38 months, p < 0.05). 
OS was also shorter in patients with previous 223Ra treatment 
(17 months). Addition of abiraterone or enzalutamide provided 
a significant prolongation of survival (40 months, p < 0.05). On 
the other hand, prior surgical or radiation treatment of primary 
tumor had no significant effect on the OS (30 months, p > 0.05). 
In patients demonstrating a PSA decline of >50% after at least 
two PRLT cycles, the OS was significantly longer (38 months). 
The significantly shorter OS reported by other groups might be 
due to use of PRLT as last line after exhaustion of other therapy 
options (newer antiandrogen agents, chemotherapy).72,76 On the 
other hand, patients treated at an earlier stage of the disease had 
a favorable outcome in our study, leading to a significantly longer 
median OS.

Prognostic factors influencing the outcome of PRLT have been 
studied. In the retrospective multicenter German study, negative 
predictors were elevated alkaline phosphatase and the presence 
of visceral metastases, whereas the total number of therapy cycles 
were associated with a favorable outcome.75 Ahmadzadehfar et 
al found that patients with any PSA decline had a significantly 
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longer OS than patients without PSA decline (68 vs 33 weeks).72 
The median OS is significantly longer in patients without hepatic 
involvement, with high levels of albumin and Hb and low levels 
of aspartate aminotransferase and a decline in PSA levels of 
more than 14% was the most important response parameter with 
regard to OS.92 Bräuer et al noted that PSA decline after the first 
therapy cycle was associated with a longer OS and only alkaline 
phosphatase <220 U l−1 lended a longer PFS (median PSA-PFS 18 
weeks).73 On the other hand, a lack of PSA response after the first 
therapy cycle should not preclude further treatments, since these 
patients did respond after the second or third therapy cycle.93

α-emitter labeled PSMA ligands
Despite the high doses delivered to tumors, approximately a 
fourth to a third of the patients are refractory to treatment with 
177Lu-PSMA, presenting with primary progression under PRLT 
(Figure  4). Hematological toxicity tends to be frequent after 
177Lu-PSMA in patients having disseminated bone and bone 
marrow involvement. The application of α-emitters with a short 
range and high linear energy transfer is a very promising option 
to overcome this limitation, as has been demonstrated by an 
excellent therapy response using 225Ac-PSMA in the above-men-
tioned two scenarios.94,95

Figure 3. A 77-year-old patient (first diagnosis in 1998) with progressive mCRPC and initial osseous metastases, s.p. orchiectomy, 
ADT and abiraterone, repeated external beam radiotherapy and chemotherapy with docetaxel and cabazitaxel. After 3 cycles of 
177Lu-PSMA PRLT (cumulative administered radioactivity 12.9 GBq) between October 2015 and March 2016, the patient experi-
enced nearly complete remission (with no toxicity), persisting for 2 years after the last cycle. This patient presented with chronic 
renal insufficiency and G2 anemia before PRLT, which did improve (!) after PRLT. 68Ga-PSMA PET/CT images: (A), October 2015; 
(B) March 2016; (C), July 2016 and (D) December 2017; upper panel, MIP images; middle panel, CT images revealing no significant 
change over time in the osteosclerotic iliac bone lesions; lower panel, fused 68Ga-PSMA PET/CT images after PRLT exhibiting a 
significant decrease in PSMA expression of the metastases (arrow showing metastasis in the right iliac bone), related to treatment 
response according to molecular imaging criteria. ADT, androgen deprivation therapy; mCRPC, metastatic castration-resistant 
prostate cancer; MIP, maximum intensity protection; PRLT, prostate-specific membrane antigen; PSMA, prostate-specific mem-
brane antigen.
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A first-in-human study reported by Sathekge et al demonstrated 
a marked response in one patient after two cycles of 213Bi-PSMA-
617 using a cumulative activity of 592 MBq.96 In our experience 
using 213Bi-PSMA with the administered radioactivities per 
cycle [median 390 MBq (155–623 MBq)], no significant acute/
subacute toxicity was noted and minor responses could be 
demonstrated. However, higher activities or more frequent cycles 
of Bi-213 PSMA might be required due to very short half-life of 
213Bi (46 min) to achieve the desired response to therapy, which 
was constrained in our study due to the limited available activity 
and very high cost of the generator. 225Ac must be considered the 
first-choice isotope for PSMA-TAT in the setting of PCa.97

The efficacy and toxicity of salvage therapy using four different 
administered radioactivities of 225Ac- PSMA-617 was compared, 
namely 50 kBq kg-1 (n = 4), 100 kBqkg-1 (n = 4), 150 kBq kg-1 (n 
= 2), 200 kBq kg-1 (n = 4). Severe xerostomia was the dose-lim-
iting toxicity for activities exceeding 100 kBq  kg-1 per cycle. 
Therefore, an administered activity of 100 kBqkg-1 225Ac-PSMA-
617 per cycle every 8 weeks was concluded to be a reasonable 
trade-off between toxicity and biochemical response.94

Kratochwil et al further retrospectively analyzed the remarkable 
antitumor activity of 225Ac-PSMA-617 therapy in 40 patients, 
demonstrating a promising duration of tumor control (median 
9 months).95 A significant PSA response (>50%) was noted 
in 24/38 (63 %) of the patients. Five patients presented with 
enduring responses of >2 years. Xerostomia was the main reason 
to discontinue therapy (in 4/38 patients) as in the case of non-re-
sponders (in 5/38 patients). Hence, they concluded that further 

modifications of the treatment regimen regarding the adverse 
events were necessary to yield maximal response.

Personalized PRLT—on the way to 
precision medicine
A growing literature supports the use of PRLT in advanced PCa 
with potential benefit in OS and acceptable side-effects, when 
compared with the competing modalities. In clinical practice, 
we frequently observe good responses despite progression under 
extensive pre-treatments like newer antihormonal agents, 223Ra 
and chemotherapy, and poor performance status. The currently 
unmet need in metastatic PCa is to determine the optimal choice 
and sequencing of therapy. An ideal patient for PRLT could 
possibly be one receiving PRLT before chemotherapy with good 
baseline bone marrow function and a good baseline performance 
status.60

Patients can be effectively selected and the likely response to 
therapy predicted as well as assessed with molecular imaging 
(PET/CT or PET/MRI), making use of the same PSMA ligand. 
In contrast to this theranostic approach, a conventional chemo-
therapy regimen, e.g. is standardized not personalized and 
pre-defined by a previous randomized controlled clinical trial 
in a typical patient cohort. A personalized approach using the 
theranostic concept can be tailored towards an individual patient 
rather than the concept of “one size fits all”.

Various factors like adjusting the administered activity, number 
of cycles and interval between the cycles are important for 
obtaining favorable therapeutic responses, e.g. a large volume of 
disease necessitates administering higher radioactivities and vice 
versa. We define herewith, the imaging phenotypes α or β for 
choosing the isotope. An α imaging phenotype would be exten-
sive bone and bone marrow involvement or superscan and/or 
status post-chemotherapy, where a PSMA-targeted α radioligand 
therapy may be more suitable in terms of efficacy and toxicity, 
than the β phenotype with strongly PSMA-positive, relatively 
limited disease amenable to PRLT using βbeta emitters like 177Lu.

At our center, restaging is performed using 68Ga-PSMA PET/
CT 3–4 months after PRLT. In case of a stable disease or remis-
sion (complete or partial), the patient is restaged with PET/CT 
every 6 months until disease progression is evident on imaging. 
PRLT can be resumed after detection of progression after a 
therapy interruption, what we refer to as the next phase of PRLT 
(Figure  5). Additionally, laboratory parameters (erythrocytes, 
hemoglobin, platelets, leucocytes, creatinine, BUN, SGOT, 
SGPT, bilirubin, SAP, TSH, γ-GT and PSA) are evaluated prior 
to each cycle and at restaging. Renal function is monitored by 
tubular extraction rate using 99mTc-MAG3 renography. We also 
assess the function of the parotid and submandibular salivary 
glands by dynamic salivary gland scintigraphy, which is a very 
useful and easy to perform imaging modality for the objective 
evaluation of xerostomia following 177Lu-PRLT.98

It must be emphasized that PRLT of metastatic PCa involves a 
multidisciplinary management with close collaboration with the 
referring urologists/oncologists as well as palliative medicine 

Figure 4.  A  56-year-old patient with mCRPC, s.p. orchiec-
tomy and 20 cycles of docetaxel/cabazitaxel chemotherapy 
(stopped due to severe anemia, neutropenia and fatigue). 
The patient underwent 177Lu-PSMA RLT as a last line ther-
apy option, however, experiencing progression under PRLT, 
with disseminated bone and bone marrow involvement 
(which could be an indication for therapy with the α-emitter 
225Ac-PSMA ). (A)68Ga-PSMA PET/CT MIP image before PRLT; 
(B) after two cycles and (C) after four cycles of PRLT. mCRP-
C,metastatic castration-resistant prostate cancer; MIP,  max-
imum intensity protection; PRLT, PSMA radioligand; PSMA, 
prostate-specific membrane antigen.
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physicians. Treatment as a last line option implies that many 
patients present in a relatively poor general condition, which 
necessitates also the treatment of accompanying symptoms, 
commonly pain and anemia (administration of packed red blood 
cells).

Future perspectives
Early initiation of 177Lu-PRLT may be effective in metastatic 
PCa and may offer a significant survival benefit. Randomized 
controlled studies are required to best determine the place of this 
agent (e.g. before chemotherapy) in the management of mPC. 
Administration of higher activities or hyperfractionation may 
be considered for a better efficacy. A total activity of 30 GBq 
given 6–10 weeks apart was proved to be safe, considering dose 
limit to the kidney and bone marrow.67 Adjusting the amount of 
177Lu administered during each cycle is important in contrast to 
a standardized approach of a fixed activity for each cycle.99 We 
analyzed the intrapatient variability in the absorbed doses during 
different therapy cycles and noted that the mean absorbed tumor 
dose demonstrated a significant reduction during subsequent 
cycles. Hence, applying a higher radioactivity in the first cycle 

seems to be logical in order to obtain the maximal antitumor 
effect.99

Future clinical studies should address the enhancement of the 
efficacy of PRLT by the combination with radiosensitizers, 
PARP inhibitors, immune-checkpoint inhibitors etc. Targeted 
multimodality options like combination with external beam 
radiation therapy (a concept which we refer to as COMBIERT, 
combined internal–external radiation therapy) or with 
bone-targeting agents like 177Lu labeled bisphosphonates 
(in case of a discordance between PSMA expression and the 
osteoblastic activity) must be considered for the maximal ther-
apeutic effect. Treatment with newer agents like abiraterone 
or enzalutamide, which inhibit the AR signaling, leads to the 
upregulation of PSMA (Figure  5).100 Therefore, 177Lu-PS-
MA-RLT may produce a synergistic effect  in combination with 
these agents.101

The preliminary results with 225Ac-PSMA-PRLT are definitely 
highly encouraging. Further studies to overcome the potential 
side effects, predominantly xerostomia, are urgently warranted. 

Figure 5. A 60-year-old patient with mCRPC, s.p. brachytherapy, ADT and enzalutamide, experiencing partial remission of the 
extensive lymph node and bone metastases after 3 cycles (21.2 GBq) of PRLT (A, 68Ga-PSMA PET/CT MIP image after the third 
cycle). The disease progressed 6 months later (B) and he underwent a second phase (fourth and fifth PRLT) of treatment (salvage 
PRLT) with 7.9 and 8 GBq, respectively and concurrent treatment with abiraterone. The combination therapy had an effect/PR 
(C, 68Ga-PSMA PET/CT MIP image after the fourth cycle and D, after the fifth cycle) without any toxicity after a cumulative admin-
istered activity of 37.1 GBq. G1 anemia (present before PRLT) improved over time. ADT, androgen deprivation therapy; mCRPC, 
metastatic castration-resistant prostate cancer; MIP, maximum intensity protection; PRLT, PSMA radioligand therapy; PSMA, pros-
tate-specific membrane antigen.
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