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inTroducTion
Background
Technological advances have led to an abundance of novel 
diagnostic techniques and imaging modalities available 
to oncology.1 Additional complexity is added by genetic2 
and micro  environmental3 heterogeneity of tumours and 
between patients.4 Due to the large volumes and complexity 
of modern data,5 new methods to facilitate clinical deci-
sion-making are required.

Precision (or personalised) medicine describes preventive 
and treatment procedures that take into account an indi-
vidual patient’s characteristics together with their specific 
disease(s).6 A common approach to precision medicine is 
data  mining, i.e. discovering patterns in large databases 
of diversified cohorts using powerful computational tools 

such as  machine learning. Patterns can be discovered 
within the variability of patient populations that allow 
for the stratification of patient groups and the identifica-
tion of the ideal treatment for the individual patient,7 thus 
improving patient outcome.8–10 However, this requires 
large databases of patients in order to cover as much of the 
variations within a population as possible.

An important source of large-scale data that could be used 
are radiological images derived during routine oncolog-
ical examinations. Tumours exhibit phenotypical differ-
ences which can be visualised through routine medical 
imaging,11 which in turn allows for visualisation of the 
entire tumour volume or subregions on a macroscopic 
level, at baseline and longitudinally. However, imaging in 
a clinical setting is primarily used qualitatively, and clinical 
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absTracT

The growing complexity and volume of clinical data and the associated decision-making processes in oncology 
promote the advent of precision medicine. Precision (or personalised) medicine describes preventive and/or treatment 
procedures that take individual patient variability into account when proscribing treatment, and has been hindered in 
the past by the strict requirements of accurate, robust, repeatable and preferably non-invasive biomarkers to stratify 
both the patient and the disease. In oncology, tumour subtypes are traditionally measured through repeated invasive 
biopsies, which are taxing for the patient and are cost and labour intensive. Quantitative analysis of routine clinical 
imaging provides an opportunity to capture tumour heterogeneity non-invasively, cost-effectively and on large scale. 
In current clinical practice radiological images are qualitatively analysed by expert radiologists whose interpretation 
is known to suffer from inter- and intra-operator variability. Radiomics, the high-throughput mining of image features 
from medical images, provides a quantitative and robust method to assess tumour heterogeneity, and radiomics-based 
signatures provide a powerful tool for precision medicine in cancer treatment. This study aims to provide an overview 
of the current state of radiomics as a precision medicine decision support tool. We first provide an overview of the 
requirements and challenges radiomics currently faces in being incorporated as a tool for precision medicine, followed 
by an outline of radiomics’ current applications in the treatment of various types of cancer. We finish with a discussion 
of possible future advances that can further develop radiomics as a precision medicine tool.
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decision-making is based on visual assessments of the tumour by 
radiologists. Radiomics offers a quantitative alternative to assess 
tumour heterogeneity quantitatively. Radiomics is an advanced 
image feature analysis methodology, which formats standard 
clinical images from CT, MRI and/or positron emission tomog-
raphy (PET) into a multidimensional source for data mining.12 A 
large number of image features are extracted from imaging data 
using various mathematical algorithms. These features, together 
with gold standard information, are used by machine-learning 
algorithms, computational methods that “learn” correlations 
from data, creating models that automate and improve classifi-
cation of tumour phenotype and genomic profile13–15 as imaging 
biomarkers.

Radiomics-based imaging biomarkers have shown to outper-
form common prognostic models based on clinical parameters 
such as the Tumor-Node-Metastasis staging system (TNM).13 
However, radiomics does not intend to replace current clinical 
decision-making, but rather aims to provide a supplement to 
current measures such as clinical, treatment and genomic data, 
all incorporated into a decision support system.16 To do so, a 
robust, repeatable and cost-effective method to clinically imple-
ment radiomics is required.

Radiomics workflow
A typical radiomics analysis starts with data selection: choosing 
the image to analyse, the imaging protocol to use and the 
correlated outcome. The image typically contains the primary 
tumour volume, which is analysed and linked to  a certain 
outcome, such as tumour type, overall survival, or tumour 
recurrence. Proper data selection is important to create useful 
models, as it needs to be reproducible and applicable across 
sizeable cohorts. Large heterogeneous datasets are required to 
provide enough data to validate the model on different subsam-
plings of the data (cross-validation).17 In addition, the quality of 
the data is dependent on the image acquisition protocols used 
in clinical centres, which can often vary extensively, as well as 
the imaged site, scanner properties, reconstruction methods 
and motion artefacts.18,19 Guidelines for image acquisition and 
standardised protocols are therefore beneficial for producing 
large, high-quality datasets.20 In the case of non-standardised 
imaging protocols, sharing of imaging protocols should be 
encouraged.

After image acquisition and volume reconstruction, a region of 
interest is defined, usually, but not necessarily, through slice-by-
slice delineation of the tumour in the case of three-dimensional 
images. This is a labour-intensive process, and the variance 
caused by inter- and intra-operator variability is an issue.21,22 
A (semi-) automatic segmentation method to reduce workload 
and uncertainty caused by human error is therefore preferred. 
Besides operator variability, image segmentation, protocol stan-
dardisation, slice interval, reconstruction method, time-point 
and respiratory motion have all been found to have effects on 
feature reproducibility.23–35 Methods to improve reproduc-
ibility include multiple segmentations by different clinicians and 
phantom studies to determine the effects caused by different 
scanners.

Since the values of extracted features (mostly mathematical 
formulas using pixel/voxel intensities as input) depend on image 
reconstruction and pre-processing methods, proper reporting of 
methods such as filtering techniques, intensity discretisation and 
voxel resampling is critical for inter-operability of the radiomics 
features. Many of the extracted features are noise driven and 
need to be removed to improve model performance. The same 
applies to features that are highly correlated with other features 
or existing clinical parameters, as they do not provide any mean-
ingful addition to the model. Test-retest studies which repeat the 
imaging processes after a short period of time are indispensable, 
as they measure the amount of variation inherent in the measure-
ments. Stability and correlation tests can be used to make a selec-
tion based on the most robust, repeatable and non-redundant 
features.36,37 

The extracted features are fed into machine-learning methods 
together with clinical outcomes or pathology results to construct 
classification, predictive, or prognostic models. Prognostic 
models aim to predict a certain outcome regardless of therapy, 
while predictive models provide information about the effects 
of a certain therapeutic intervention. However, the number of 
extracted features is often larger than the number of patients 
included in a cohort, which risks overfitting the model. The 
best solution to prevent overfitting is to increase the number of 
samples used to train the model. While clinical data is abundant 
compared to research trial data, sharing between institutes has 
proven to be difficult due to various ethical, political and admin-
istrative issues.38 An alternative to large datasets is to reduce 
the number of features to a subset of the most relevant features. 
Various filtering-based techniques for feature selection can be 
used, such as the univariate Fisher score and Gini index tests, or 
multivariate algorithms such as mutual information or Condi-
tional infomax feature extraction,39 which identify and select a 
subset of features based on predictive power. Valid predictive 
modelling requires separate independent datasets for training 
and validation.

Various different machine-learning models are available, such 
as neural networks, decision trees, support vector machines and 
multiple regression techniques. The modelling procedure has 
been shown to affect performance of prediction models based on 
radiomics features.39) Common measures of predictive perfor-
mance of models are discrimination and calibration.40 Discrimi-
nation is a measure of the model to assign a higher risk-prediction 
to patients positive to a certain outcome, compared to patients 
without the outcome, which can be quantified using the sensi-
tivity, specificity, or through the area under the curve (AUC) of 
the receiver operating characteristic. The AUC is equal to the 
probability that a positive event is correctly labelled as a posi-
tive event, and is given in the range of 0 to 1. Alternatively, the 
Concordance Index (CI), a measure of goodness of fit for classi-
fication models with binary outcome ranging from 0 to 1, can be 
used. Both AUC and CI show a perfect predictive performance at 
1, while at 0.5 the predictive performance is completely random. 
Calibration is an internal measure of the model’s agreement 
between observed outcomes and predicted outcomes. The cali-
bration is usually assessed through a calibration slope, where 
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different resamplings of observed outcomes are plotted against 
predicted outcomes. If 100% agreement between these two is 
found at multiple samplings, then the calibration slope will be 
1. Finally, a log-rank test is usually used to test the significance 
of the difference between survival curves of two patient groups. 
This is used when separating patients in low- and high-risk 
groups based on radiomics features.

These measures of predictive performance are used to internally 
and externally validate the model. Internal validation is neces-
sary to estimate and reduce the optimism in model performance, 
which is the degree a trained model fits worse on new data than 
it does on the data used to train the model. Internal validation 
uses the data used to train the model, and can be performed 
through methods such as bootstrap analysis or cross-valida-
tion.41 External validation uses an independent, external dataset 
to validate the accuracy of the predictive model, and to assess 
the generalisability of a predictive model.41 Figure  1 shows an 
overview of the steps involved to train and validate a predictive 
model.

Effective and transparent radiomics studies require rigorous 
compliance with several guidelines, including effective valida-
tion. The Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRIPOD) initia-
tive is a set of guidelines made for studies creating and/or vali-
dating prediction models.42 There are guidelines for the source 
and specific information of data, the type of predictive model, 
procedures for building the model and the method for internal 
validation and measurements of model performance. Whereas 
the TRIPOD initiative covers prediction models in general, the 
Radiomics Quality Score (RQS)43 is being developed specifically 
for radiomics studies. The RQS assesses the quality of a study 
using a checklist and reports compliance as a percentage. Some of 
the guidelines include robust segmentations, test-retest stability 
of the determined features, the standardisation or thorough 
description of imaging protocols used, valid feature selection and 

internal/external validation.44 An overview of the different steps 
and the RQS criteria is shown in Figure 2.

The aim of these guidelines is to provide key details of model 
development and validation, which in turn allows for better 
reproducibility and critical appraisal of predictive models. For 
future and past studies, authors should check the RQS score and 
TRIPOD initiative to determine the quality of their methodology 
and allow the field of radiomics to mature. The ultimate objec-
tive of precision medicine is to link the tumour phenotype to 
a certain clinical endpoint, with the goal of improving clinical 
decision-making. Therefore, the next section will describe the 
use of radiomics in various studies and their efficacy in deter-
mining clinical endpoints.

role in precision medicine
Aerts et al13 performed a radiomics analysis on a large CT dataset 
(N = 1019) of lung- and  head and neck (h-n) cancer patients. Using 
a feature selection algorithm to reduce the number of features 
from 440 to a prognostic signature of 4 features, they found that 
a model built using this signature was significantly more prog-
nostic of overall survival (OS) than a measure of tumour volume, 
and combining the radiomics signature with tumour volume also 
provided a better prognostic ability. The model was validated on 
different patient groups and cancer types.13 The radiomics signa-
ture showed slightly higher prognostic performance when vali-
dated in an external lung dataset than TNM or tumour volume 
(CI of 0.65 vs 0.63 and 0.60 respectively). For two external  h-n 
cohorts, the signature showed higher performance compared to 
volume or TNM in one case (CI of 0.69 vs 0.65 and 0.66 respec-
tively), and similar performance in the other (CI = 0.69 vs 0.68 
and 0.69 respectively). This radiomics signature was also exter-
nally validated in a study by Leijenaar et al.45 on a large set of 
oropharyngeal squamous cell carcinoma patients (N = 542).45 
The signature showed good discrimination and calibration (CI 
= 0.628 and calibration slope of 0.855), and after the population 
were split in two groups using the median value of the signature 

Figure 1.  Overview of the steps involved to train and validate a predictive model.
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score, significant differences in OS (long rank p-value = 2e-5) 
could be observed.

Furthermore, CT radiomics features have been shown to be 
prognostic of distant metastasis and 12-month survival in glio-
blastoma,46 and pathological response to treatment,47 local 
recurrence,48,49 histology subtype,50,51 OS36,50 and prediction 
of radiation induced pneumonitis52,53 for lung cancer. In h-n 
squamous cell carcinomas, radiomics has proven to improve 
the prediction overall and progression free survival, and deter-
mining Human papillomavirus (HPV) status.54 

Delta-radiomics is an alternative analysis which measures the 
change of radiomics features longitudinally. Certain features 
have been proven to change during treatment, indicating that 
this may be an additional source of information.55 Delta-radio-
mics on CT has shown to be prognostic in non-small cell lung 
cancer  (NSCLC) for OS, local recurrence and distant metas-
tasis.56 For  h-n cancer patients, delta-radiomics features have 
proven to be a predictive and prognostic biomarker, as well 
provide additional information of the presence of HPV for 
patient stratification.36,54,57,5836,54,57–59 

An additional source of routine medical images for radiomics 
analysis are cone-beam CT (CBCT) images, often used in radio-
therapy for daily positioning before treatment. Van Timmeren 
et al57 have used CBCT data of NSCLC patients to validate a 
previously constructed CT radiomics signature. The signature 
was found to be predictive of OS in three different independent 
CBCT datasets (CI = 0.59–0.66), indicating CBCT could poten-
tially be a useful source of information for radiomics analysis.57 

Fludeoxyglucose-PET  (FDG-PET)-based quantitative image 
analysis shows promise in improving prognosis in pancreatic 
cancer. A study by Cui et al used quantitative imaging features 
to predict OS, and showed better prognostic compared to the 
use of conventional prognostic variables of tumour volume and 
maximum  standardised uptake value  (CI of 0.66 vs 0.48-0.64).60 
FDG-PET-based radiomics features correlate to mortality, local 

failure and distant metastasis for pancreatic cancer,61 and have 
also shown to be predictive in oesophageal cancer,62 tumour 
response in cervical cancer63,64 and local control65 and OS63 in  
h-n cancer.

MRI-based radiomics has shown promise in prostate cancer: a 
study by Shoshana et al. (2016) used T2 weighted MRI radiomics 
features to differentiate between peripheral and transition zone 
prostate tumours (AUC = 0.61–0.71), in a patient dataset from 
three different institutions.66 Furthermore, a study by Vallières et 
al67 use a combination of FDG-PET and MRI texture features to 
predict the lung metastasis in soft-tissue sarcomas. They found 
that a multivariable model was highly predictive of lung metas-
tasis in soft-tissue sarcomas (AUC = 0.98), validated through 
bootstrapping procedures. However, the study lacked external 
validation for a valid conclusion.67 In the context of glioblas-
toma, several studies using MRI data have shown that a radio-
mics model may accurately detail the molecular subtype of the 
tumour,68–70 OS69–71 and predict short vs long-term survival.72 
Finally, for an imaging method outside of radiology, Zhang et 
al.73 proposed a radiomics approach to ultrasound elastography, 
to use the density of tumour tissue for classification as benign 
or malignant. A signature of seven features, out of a total of 364 
extracted features, was able to accurately (AUC = 0.92) discrimi-
nate between benign and malignant tumour tissue.73 

To reduce inter- and intra-observer delineation variability and 
to reduce workload, a number of (semi-) automatic segmentation 
methods have been proposed and tested in radiomics studies in 
recent years. Several studies have shown that (semi-) automatic 
segmentation methods reduce inter-observer delineation vari-
ability compared to manual segmentation of lung lesions.74–77 
For example, a study by Parmar et al.77 compared the robust-
ness of 56 radiomics features derived with manual segmentation 
of tumour volume by five experts to a semi-automatic method 
performed two times by three experts, and showed that semi-au-
tomatically derived features have significantly higher reproduc-
ibility compared to manually derived features.77 Full automatic 
segmentation of tumours is also a possibility, as shown by Li et 

Figure 2.  Overview of steps of a Radiomics analysis (top) with corresponding RQS score criteria for each step (bottom). RQS, Radi-
omics Quality Score.
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al.78 This study used radiomics features in a random forest model 
to classify tumour tissue on a voxel level. The algorithm was 
trained and tested on publically available datasets, and showed 
promising accuracy in classifying tumour tissue, necrosis, 
normal tissue and oedema.78 

Semantic features, unique qualitative characteristics that provide 
information about the prognosis and (sub) type of lesions, are 
an alternative method to describe tumour (sub) type, and could 
be useful in improving prediction of certain endpoints. Some 
examples of semantic features are the presence of cavitation or 
calcification in the tumour, or features describing the roundness 
or spiculation of the tumours. In a study on NSCLC, Yip et al79 
studied 9 semantic features, consisting of 3 binary features and 
6 categorical classifiers, and 57 radiomics features describing 
NSCLC cancer phenotypes. To study the correlation between 
features they used Spearman’s Rank-Order Correlation, which is 
a measure of the strength and direction of association between 
two variables. Spearman’s rank ranges from −1 to 1, with both 
extremes signifying perfect correlation between two variables. 
The study found significant association between radiomics 
features and binary semantic features (AUC = 0.56–0.76), but no 
or weak correlation was found between classification semantic 
and radiomics features (Spearman’s correlation = 0.002–0.65). 
This indicates that radiomics and semantic features have comple-
mentary but distinct roles in outcome prediction, as they have 
both been proven to be able to significantly improve prediction 
outcomes.79 

Lastly, deep learning tools, such as convolutional neural 
networks (CNNs), could be a method to augment radiomics 
analysis. Deep learning algorithms are able to learn features 
from imaging data without much manual input, provided that 
a large amount of data is available. Deep learning has been 
successfully implemented in a number of different studies using 
medical imaging data.80,81 Orlando et al82 used a combination 
CNN-learned and hand-crafted discriminative features to detect 
red lesions (a collective term for micro aneurysms and haem-
orrhages), one of the earliest signs in diabetic retinopathy. The 
combination of features was used in a random forest classifier to 
discriminate between true and false red lesion candidates, and 
compared against either set of features separately. The combi-
nation achieved higher AUC values compared to the separate 
feature prediction models (AUC of 0.89 vs 0.79/0.73 for CNN 
and hand-crafted features respectively). Recently published 
articles have already shown that radiomics analysis may benefit 
from incorporating deep learning methods.(82-85) For example, 
Lao et al83 used a combination of hand-crafted and deep 
radiomics features to predict OS for Glioblastoma Multiforme 
patients on MRI images. After feature selection, a radiomics 
signature was created, using exclusively deep-learned features, 
that was able to accurately predict OS in an independent valida-
tion dataset (AUC = 0.71). Deep learning augmented radiomics 
analysis has also been reported to be effective in assessing treat-
ment response in bladder cancer,84 where conversely a signa-
ture built solely on hand-crafted features was found to have 
better prognostic performance. These results indicate that deep 
learning will have an increasingly important role in predictive 

modelling,82 and have a complementary role with hand-crafted 
features in a radiomics analysis framework.

discussion
Radiomics has been shown to be suitable for classification, predic-
tion and prognosis of various clinical endpoints and tumour 
types. Many studies show a clear improvement over conventional 
measures predicting clinical endpoints, although variation in 
feature stability due to different scanners, imaging protocols and 
tumour motion still leaves a lot of room for improvement.13,60 
The segmentation of tumours also proves to be a small but 
persistent obstacle, as it is a labour- and time-intensive process 
and is heavily influenced by inter- and intra- segmentation vari-
ation.21,22 However, numerous studies have reported methods to 
allow for a more automatic approach to segmentation,74–78 which 
in turn could lead to a more robust radiomics analysis.

Combining radiomics features with deep learning features or 
semantic features may be able to further improve prognostic 
performance. Several studies have proven the effectiveness of 
using these features independently in predictive modelling.80–87 
In studies comparing the prognostic performance of these 
features to hand-crafted radiomics features, results were found 
to be mixed, indicating these methods may have distinct and 
complementary roles in improving prognosis.

A larger hurdle for radiomics is the transition to clinical imple-
mentation. While routine delineation is already in place in radio-
therapy settings, a clinical platform to easily perform radiomics 
analysis during routine check-up/treatment is not. The main 
challenge of precision treatment is to correctly integrate various 
sources of data quantitatively and subsequently use this data to 
provide specific clinical predictions that accurately and robustly 
estimate outcomes as a function of the possible decisions. 
Numerous methods, besides radiomics, are currently in use that 
make use of novel biomarkers, as well as conventional clinical 
factors. However, many of these methods lack external validation 
of their legitimacy, reproducibility, or clinical validity.88 Radio-
mics offers a solution that integrates multiple measures into one 
prediction of outcome, with the added benefit of automation, 
which could save time and money in a clinical environment.

While many radiomics studies include external validation 
steps, sharing of clinical data is still an issue.89 The difficulty in 
sharing data may be overcome through a centralised database, 
or conversely through decentralised distributed learning plat-
forms.90 To facilitate a centralised database, data has to be made 
available in accordance with the FAIR principles: Findability, 
Accessibility, Inter-operability and Reusability.89 An example of 
an effort to increase data shareability is through the development 
of ontologies to describe radiomics features.29

The distributed learning method instead aims to solve the 
problem of sparse data by avoiding the numerous ethical, legal 
and administrative issues involved in sharing data between insti-
tutes. Instead of the images being collected from numerous insti-
tutes in one central location, the model is sent and trained on site 
without any data leaving a particular institute. The trained models 

http://birpublications.org/bjr


6 of 9 birpublications.org/bjr Br J Radiol;91:20170926

BJR  Keek et al

references

 1. Burstein HJ, Krilov L, Aragon-Ching JB, 
Baxter NN, Chiorean EG, Chow WA, et al. 
Clinical cancer advances 2017: annual 
report on progress against cancer from the 
American society of clinical oncology. J Clin 
Oncol 2017; 35: 1341–67. doi: https:// doi. org/ 
10. 1200/ JCO. 2016. 71. 5292

 2. Gerlinger M, Rowan AJ, Horswell S, Math 
M, Larkin J, Endesfelder D, Gronroos 
E, et al. Intratumor heterogeneity and 
branched evolution revealed by multiregion 
sequencing. N Engl J Med 2012; 366:  
883–92. doi: https:// doi. org/ 10. 1056/ 
NEJMoa1113205

 3. Milosevic MF, Fyles AW, Wong R, Pintilie 
M, Kavanagh MC, Levin W, et al. Interstitial 
fluid pressure in cervical carcinoma: within 
tumor heterogeneity, and relation to oxygen 
tension. Cancer 1998; 82: 2418–26.

 4. Curtis C, Shah SP, Chin SF, Turashvili G, 
Rueda OM, Dunning MJ, et al. The genomic 
and transcriptomic architecture of 2,000 
breast tumours reveals novel subgroups. 
Nature 2012; 486: 346–52. doi: https:// doi. 
org/ 10. 1038/ nature10983

 5. Abernethy AP, Etheredge LM, Ganz PA, 
Wallace P, German RR, Neti C, et al. Rapid-
learning system for cancer care. J Clin Oncol 
2010; 28: 4268–74. doi: https:// doi. org/ 10. 
1200/ JCO. 2010. 28. 5478

 6. Garraway LA, Verweij J, Ballman KV. 
Precision oncology: an overview. J Clin Oncol 
2013; 31: 1803–5. doi: https:// doi. org/ 10. 
1200/ JCO. 2013. 49. 4799

 7. Collins FS, Varmus H. A new initiative on 
precision medicine. N Engl J Med 2015; 
372: 793–5. doi: https:// doi. org/ 10. 1056/ 
NEJMp1500523

 8. Aerts HJ, Bussink J, Oyen WJ, van Elmpt W, 
Folgering AM, Emans D, et al. Identification 
of residual metabolic-active areas within 
NSCLC tumours using a pre-radiotherapy 
FDG-PET-CT scan: a prospective validation. 
Lung Cancer 2012; 75: 73–6. doi: https:// doi. 
org/ 10. 1016/ j. lungcan. 2011. 06. 003

 9. Aerts HJ, van Baardwijk AA, Petit SF, 
Offermann C, Loon J, Houben R, et al. 
Identification of residual metabolic-
active areas within individual NSCLC 
tumours using a pre-radiotherapy (18)
Fluorodeoxyglucose-PET-CT scan. Radiother 
Oncol 2009; 91: 386–92. doi: https:// doi. org/ 
10. 1016/ j. radonc. 2009. 03. 006

 10. Suit H, Skates S, Taghian A, Okunieff P, Efird 
JT. Clinical implications of heterogeneity 
of tumor response to radiation therapy. 
Radiother Oncol 1992; 25: 251–60. doi: 
https:// doi. org/ 10. 1016/ 0167- 8140(92)90244-
O

 11. Gillies RJ, Kinahan PE, Hricak H. Radiomics: 
images are more than pictures, they are data. 
Radiology 2016; 278: 563–77. doi: https:// doi. 
org/ 10. 1148/ radiol. 2015151169

 12. Lambin P, Rios-Velazquez E, Leijenaar R, 
Carvalho S, van Stiphout RG, Granton 
P, et al. Radiomics: extracting more 
information from medical images using 
advanced feature analysis. Eur J Cancer 2012; 

48: 441–6. doi: https:// doi. org/ 10. 1016/ j. ejca. 
2011. 11. 036

 13. Aerts HJ, Velazquez ER, Leijenaar RT, 
Parmar C, Grossmann P, Carvalho S, et al. 
Decoding tumour phenotype by noninvasive 
imaging using a quantitative radiomics 
approach. Nat Commun 2014; 5: 4006. doi: 
https:// doi. org/ 10. 1038/ ncomms5006

 14. Grossmann P, Stringfield O, El-Hachem N, 
Bui MM, Rios Velazquez E, Parmar C, et al. 
Defining the biological basis of radiomic 
phenotypes in lung cancer. Elife 2017; 6: 
e23421. doi: https:// doi. org/ 10. 7554/ eLife. 
23421

 15. Panth KM, Leijenaar RT, Carvalho S, 
Lieuwes NG, Yaromina A, Dubois L, et al. Is 
there a causal relationship between genetic 
changes and radiomics-based  
image features? An in vivo preclinical  
experiment with doxycycline inducible 
GADD34 tumor cells. Radiother Oncol 2015; 
116: 462–6. doi: https:// doi. org/ 10. 1016/ j. 
radonc. 2015. 06. 013

 16. Lambin P, Zindler J, Vanneste BG, 
De Voorde LV, Eekers D, Compter I, et al. 
Decision support systems for personalized 
and participative radiation oncology. Adv 
Drug Deliv Rev 2017; 109: 131–53. doi: 
https:// doi. org/ 10. 1016/ j. addr. 2016. 01. 006

 17. Kumar V, Gu Y, Basu S, Berglund A, Eschrich 
SA, Schabath MB, et al. Radiomics: the 
process and the challenges. Magn Reson 
Imaging 2012; 30: 1234–48. doi: https:// doi. 
org/ 10. 1016/ j. mri. 2012. 06. 010

are then collected, analysed and integrated into a single model. 
Several proof-of-concept studies have proven that a distributed 
learning approach is feasible using clinical parameters,90–92 and 
the next step would be to integrate radiomics features, by sending 
a platform to extract radiomics features on-site in conjunction 
with the untrained predictive model. This way, a distributed 
learning method could provide the necessary volume and variety 
in data to achieve a machine-driven approach to medicine.

conclusion
In conclusion, radiomics provides a novel non-invasive method 
of assessing tumour subtype, using the mostly untapped 
source of data of routine clinical images. The technique is often 
hampered by studies with small sample sizes and lack of external 
validation. In addition, variability in features caused by differ-
ences in imaging modality, protocols and respiratory motion, 
and a lack of inter-operability, may decrease the generalisability 
of the created radiomics models. In the future, research should 
be informed by guidelines such as RQS and TRIPOD, which 
improve the validity of radiomics as a clinically accepted field. 
The clinical value of the technique has already been described 

for a wide range of tumours and a number of different clinical 
outcomes. The added fact that the analysis can be performed in 
an automated fashion makes the technique attractive for clin-
ical implementation to reduce workload. Performing studies on 
different tumour sites/types in future research may prove the 
generalisability of the method, and consequently lead to radio-
mics becoming a standard method clinically. In the future, larger 
volumes of data will be available for use in Radiomics studies by 
means of centralised, publically accessible datasets and distrib-
uted learning. Combining radiomics with other parameters will 
lead to high-quality decision support systems, and deep learning 
and semantic feature approaches may be combined with radio-
mics analyses to increase predictive accuracies of these models 
even further. Radiomics has a way ahead before full implemen-
tation in clinic is a reality, but may prove to be invaluable in real-
ising precision medicine in cancer treatment.
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