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Abstract

The determination of a substrate or enzyme activity by coupling one enzymatic reaction with 

another easily detectable (indicator) reaction is a common practice in the biochemical sciences. 

Usually, the kinetics of enzyme reactions is simplified with singular perturbation analysis to derive 

rate or time course expressions valid under the quasi-steady-state and reactant stationary state 

assumptions. In this paper, the dynamical behavior of coupled enzyme catalyzed reaction 

mechanisms is studied by analysis of the phaseplane. We analyze two types of time-dependent 

slow manifolds – Sisyphus and Laelaps manifolds – that occur in the asymptotically autonomous 

vector fields that arise from enzyme coupled reactions. Projection onto slow manifolds yields 

various reduced models, and we present a geometric interpretation of the slow/fast dynamics that 

occur in the phase–planes of these reactions.

Keywords

Enzyme kinetics; coupled enzyme assays; Michaelis–Menten reactions; time-dependent slow 
manifold; Sisyphus manifold; Laelaps manifold; differential-algebraic equation; asymptotically 
autonomous vector field

1. Introduction

Biochemical reactions inside cells are generally catalyzed by enzymes, which accelerate the 

conversion of substrates into products under physiologi-cal conditions. Most of the complex 

chemical processes occurring inside cells or organisms that are necessary for the 

maintenance of life are catalyzed by enzymes. Consequently, the experimental measurement 

of enzyme activity through in vitro assays plays a substantial role in understanding the dy-

namics of biochemical processes inside cells [1]. Often however, the activity of numerous 

enzymes cannot be observed experimentally through direct ob-servation of their reaction. 

Instead, these non-observable enzyme catalyzed reactions must be observed indirectly by 
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coupling it to another enzyme cat-alyzed reaction that is used to indicate the progress of the 

non-observable reaction. The observable enzyme catalyzed reaction is known as the 

indicator or monitor reaction [2]. The non-observable enzyme catalyzed reaction can be of 

varying complexity; it may contain linear inhibition or exhibit enzyme degradation [3]. 

Regardless of the nature of the non-observable reaction, there are two general mechanisms 

employed to couple enzyme reactions: the coupled auxiliary enzyme reaction mechanism 

[4], and zymogen activation coupled to its enzyme catalyzed reaction [5].

To set the stage, and explain how the coupling mechanisms between a non-observable and 

an indicator reaction operate, let us assume (for simplicity) that the non-observable reaction 

follows the Michaelis–Menten (MM) singleenzyme, single-substrate mechanism of action 

[6]

E1 + S1 k−1

k1
C1

k2 E1 + S2, (1)

from which we need to indirectly measure the activity of E1 through means of an indicator 

reaction (S1 denotes the substrate of the non-observable reaction, C1 denotes the complex, 

and S2 is the substrate generated in the non-observable reaction). In the coupled auxiliary 

enzyme reaction mechanism, the product of the non-observable reaction (S2) is catalyzed by 

an auxiliary enzyme, E2, in the indicator reaction [4]:

E2 + S2 k−3

k3
C2

k4 E2 + P . (2)

In the above mechanism, k1,k−1,k3,k−3,k2 and k4 are rate constants. The coupled auxiliary 

enzyme reaction is by far the most common type of coupled assay, and there are many 

examples reported in the literature (see, Tables II and III in [3] and Table 4.5 in [2]). One 

specific example is the phosphoryla- tion of glucose to glucose-6 phosphate. The primary 

reaction is catalyzed by hexokinase, and is non-observable in typical steady-state kinetic 

experiments. Therefore, to investigate the hexokinase activity, its reaction is coupled to the 

catalytic conversion of glucose-6 phosphate into 6-P gluconolactone with the enzyme 

glucose 6-P dehydrogenase, which serves as the indicator reaction.

A less common coupled assay is the zymogen activation coupled to its enzyme catalyzed 

reaction. In a zymogen activation reaction coupled to its enzyme reaction, the product of the 

non-observable reaction is the indicator enzyme, E2, which binds with the auxiliary 

substrate, S2, to form a product [5]:

E1 + S1 k−1

k1
C1

k2 E1 + E2, (3)
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E2 + S2 k−3

k3
C2

k4 E2 + P . (4)

Reactions of the form (3)-(4) often occur in vivo. For example, the phys- iologic response to 

a vascular lesion entails a number of enzymatic steps that lead to clot formation. These 

enzymatic steps are a cascade of enzyme catalyzed reactions that follow a sequence of 

zymogen activation steps as de-scribed above [7]. In the laboratory, the activity of thrombin, 

one of the blood coagulation enzymes, has been studied with a zymogen activation coupled 

to an enzyme catalyzed reaction assay. Thrombin catalyzes the activation of protein P, which 

is non-observable using steady-state kinetic laboratory assays. However, the formation of p-

nitroaniline from substrate S2266 is cat-alyzed by activated protein P, and is observable 

through steady-state kinetic progress curve experiments. By coupling the two reactions, 

thrombin func-tion is studied with a zymogen activation coupled to its enzyme catalyzed 

reaction [8].

As mentioned, the overall aim of an assay is to measure the enzyme activity of a specific 

reaction. When the reaction can be observed experimentally, the MM equation, (5), is 

usually employed to measure the enzyme kinetics:

dp
dt =

V1s1
KM1

+ s1
. (5)

In (5), V1 is the limiting rate of the primary reaction, and KM1
 is its Michaelis constant [9, 

10]. The Michaelis constant is defined operationally as the con-centration of the substrate at 

which the rate of the reaction is half of the limiting rate; that is, dp/dt = 0.5V1. The enzyme 

specificity is character-ized by the specificity constant, which is the result of dividing k2 by 

KM1
 [11, 12, 13]. The kinetic constants (V1 and KM1

) are generally estimated through initial 

rate or time course experiments [14, 2] by mathematically solving an inverse problem [15, 

16]. In the case of coupled enzyme assays, the caveat with this procedure is that the primary 

reaction is not experimentally observable. Thus, V1 and KM1
 need to be estimated through 

means of indirect measures of data recorded from the indicator reaction. From a theo-retical 

point of view, the demand is obvious: a mathematical theory must be developed that is 

capable of accurately describing the relationship between the non-observable reaction and 

the indicator reaction. Most enzyme kinetic analyses developed to study coupled enzyme 

assays assume that the coupled enzyme reactions follow first-order kinetics [17, 18, 19, 20, 

21]. The limiting fact with this assumption is that first order models are typically only valid 

during the lag time of the reaction, which is effectively the length of time it takes before 

measurable formation rates of P become experimentally detectable. If the indicator reaction 

is fast, then first order models are only valid over very small timescales; this limits the 
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duration of time over which useful (in the context of the inverse problem) experimental 

measurements can be made.

In order to develop experimental protocols that yield an accurate quantification of enzyme 

activity in a non–observable reaction, a mathematical model must be developed, conditions 

for its validity must be established, and timescales that characterize the lengths of transient 

and steady–state regimes must be approximated. Qualitatively, the most useful tool that can 

be employed to study the mathematical structure of a chemical reaction is phase–plane 

analysis; in contrast, the most influential quantitative tool is the combination of scaling and 

asymptotic analysis [22]. The single–enzyme, single–substrate MM reaction is well 

understood in terms of scaling and asymptotic analyses [23, 24, 25], and the geometric 

picture of the phase– plane dynamics is also well defined [26]. While scaling/asymptotic 

analysis has recently been applied to coupled enzyme reactions [5, 4], a clear picture of the 

phase–plane geometry is lacking. The phase–plane description of a reaction is useful in that 

it illustrates the reaction visually as a two-dimensional play whose characters are 

trajectories, attracting manifolds, and fixed points. The overall goal of this paper is to 

describe the previously mentioned coupled reaction mechanisms geometrically, and illustrate 

what certain results from scaling analysis say about what is happening in the phase–plane. 

The unique feature of the phase-plane descriptions of the reaction mechanisms discussed in 

this work is that the indicator reaction (in both reactions) is described by an asymptotically 
autonomous vector field [27]. Consequently, while the phase–plane analysis of the single–

enzyme, single–substrate MM reaction presents a phase-plane with fixed points and 

manifolds that are stationary, the phase–planes of the indicator reactions studied in this 

paper are best analyzed by moving nullcline analysis. In the sections that follow, we 

illustrate the geometric interpretation of the quasi-steady-state assumption (QSSA), and the 

reactant-stationary assumption (RSA) of the indicator re-actions utilized in the auxiliary 

enzyme assay and zymogen activation assay.

2. Analysis of the coupled auxiliary enzyme reaction mechanism

We start our analysis with the coupled auxiliary enzyme reaction mec-hanism represented by 

the chemical equations (1)–(2), which consists of a single-substrate, single-enzyme non-

observable reaction followed by another single-substrate, single-enzyme observable reaction 

(indicator reaction). In this mechanism, the product of the non-observable reaction becomes 

the substrate of the indicator reaction. By applying the law of mass action to (1)–(2), we 

obtain a nonlinear system of differential equations with three conservation laws [4]. We 

begin our analysis by scaling the mass action equations.

2.1. Scaling of the coupled auxiliary enzyme reaction

After eliminating redundant expressions using the conserved quantities s1
0, e1

0, and e2
0, the 

mass action equations that model the coupled auxiliary enzyme mechanism are:

ṡ1 = − k1 e1
0 − c1 s1 + k−1c1, (6a)
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ċ1 = k1 e1
0 − c1 s1 − k−1 + k2 c1, (6b)

ṡ2 = − k3 e2
0 − c2 s2 + k−3c2 + k2c1, (6c)

ċ2 = k3 e2
0 − c2 s2 − k−3 + k4 c2 . (6d)

The lowercase letters in (6) denote the concentrations of the uppercase letters in (1)–(2). 

Notice equations (6a)-(6b) are autonomous and independent of s2 and c2. In this regard, the 

first catalyzed reaction drives the second catalyzed reaction; thus, the indicator reaction can 

be viewed as a non-autonomous system with forcing term k2c1(t). Moreover, since limt→∞ 
c1 = 0, the vector field that governs the flow of the indicator reaction is asymptotically 

autonomous [27].

The complete catalyzed coupled auxiliary enzyme reaction (6) can be characterized by three 

timescales (tc1
, ts1

, and ts2
) [4]:

tc1
≡ 1

k1 KM1
+ s1

0
, ts1

≡
KM1

+ s1
0

V1
, ts2

≡
KM2

+ s1
0

V2
. (7)

In (7), KM1
 and KM2

 denote the Michaelis constants

KM1
≡

k−1 + k2
k1

, KM2
≡

k−3 + k4
k3

, (8)

V1 and V2 are the limiting rates

V1 ≡ k2e1
0, V2 ≡ k4e2

0, (9)

and s2
max denotes the maximum concentration of unbound s2. The timescales tc1

 and ts1
define, respectively, the temporal order of magnitude of the initial fast transient and the 

approximate length of non-observable reaction [23]. Likewise, ts2
 is a rough estimate of the 

indicator reaction’s depletion timescale when it is sufficiently slow. We cautiously note that 
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ts2
 has no direct physical interpretation when the indicator reaction is fast; however, ts2

 is 

useful in terms of scaling analysis, and we will illustrate this utility in the upcoming 

sections.

The slow/fast dynamics of autonomous vector fields is typically the result of disparate 

timescales that admit the existence of a slow invariant manifold. In the non-autonomous 

context, slow manifolds are generally referred to as slow integral manifolds. For simplicity, 

we will use the term “slow manifold” to describe both slow manifolds (the autonomous 

version) and slow integral manifolds (the non-autonomous version). To establish the 

presence of slow manifolds, we rescale the mass action equations with respect to the 

dimensionless variables

T = t
ts1

, s1 =
s1
s1
0 , c1 =

KM1
+ s1

0

e1
0s1

0 c1, (10a)

τ = t
ts2

, s2 =
s2

s2
max , c2 =

KM2
+ s2

max

e2
0s2

max c2 . (10b)

In dimensionless form, the mass action equations (6) that govern the non-observable reaction 

are:

ds1
dT = 1 + σ1 1 + κ1

σ1
1 + σ1

c1 − 1 s1 +
α1

1 + σ1
c1 , (11a)

ε
dc1
dT = 1 + σ1 1 + κ1 1 −

σ1
1 + σ1

c1 s1 − 1
1 + σ1

c1 . (11b)

The dimensionless equations that describe the indicator reaction are:

ds2
dτ = 1 + σ2 1 + κ2

σ2
1 + σ2

c2 − 1 s2 +
α2

1 + σ2
c2 + Λδsc1, (12a)

λmaxdc2
dτ = 1 + σ2 1 + κ2 1 −

σ2
1 + σ2

c2 s2 − 1
1 + σ2

c2 . (12b)
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The variables σ2, σ1, σ2, κ1, and κ2 are given by,

σ2 ≡
s2
max

KM2
, σ1 ≡

s1
0

KM1
, σ2 ≡

s1
0

KM2
, κ1 ≡

k−1
k2

, κ2 ≡
k−3
k4

, (13)

and the constants α1 and α2 are dependent on κ1 and κ2:

α1 = κ1/ 1 + κ1 , α2 = κ2/ 1 + κ2 . (14)

The additional constants, ε and λmax, are dependent on the initial enzyme and maximum 

substrate concentrations, as well the Michaelis constants

ε =
e1

0

KM1
+ s1

0 , λmax =
e2

0

KM2
+ s2

max . (15)

The remaining constants, Λ and δS, are ratios:

Λ =
s1
0

s2
max , δs =

ts2
ts1

. (16)

Scaling the indicator reaction with respect to τ = t /ts2
 is no accident. This is because, as 

mentioned previously, ts2
 gives a very good estimate of the completion timescale 

corresponding to the indicator reaction when the non-observable reaction is extremely fast in 

comparison. Moreover, the ratio δS should give a good indication of how well the indicator 

reaction “keeps up” with the non-observable reaction. Since the completion of the indicator 

reaction cannot occur before the completion of the non-observable reaction, it stands to 

reason that if δS ≪ 1, then the completion of the indicator reaction will occur at roughly the 

same time as the non-observable reaction [4].

The ratio Λ will be very large if the indicator reaction is fast, since s2 should quickly bind 

with e2 and form product. Consequently, the maximum concentration of unbound s2 should 

be much less than the initial non-observable substrate s1
0. In contrast, if the indicator reaction 

is slow (i.e., if ts2
≫ ts1

), then Λ ≈ 1.

If ε, λmax ≪ 1, then there exist slow manifolds ℳε, ℳλ, such that
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ṡ1 ≃ −
V1

KM1
+ s1

s1, (17a)

ṡ2 ≃ −
V2

KM2
+ s2

s2 + k2c1, (17b)

are good zeroth order approximations to the mass action equations on the T and τ 
timescales, respectively. Moreover, after the initial fast transient of the non-observable 

reaction, equation (17b) becomes

ṡ2 ≃ −
V2

KM2
+ s2

s2 +
V1

KM1
+ s1

s1 . (18)

The validity of (17a) is well-established [28], and we will not go into the details of this here. 

Further reduction of (18) is possible when the speeds of the non-observable and indicator 

reaction significantly differ, and in the subsequent sections we will convey the geometric 

interpretation of the reduced models that arise from (18) when the indicator reaction is very 

fast or, in contrast, very slow.

2.2. The coupled auxiliary enzyme reaction exhibits a Sisyphus manifold

Under appropriate conditions, the phase-plane of the indicator reaction exhibits what we call 

a Sisyphus manifold. What we see computationally is the solution starting on the c2-

nullcline (when experimental initial conditions are prescribed) and essentially moving up 

and down the c2-nullcline. Since the c2-nullcline resembles a hill, we refer to the slow 

manifold ℳλ (that lies close to the c2-nullcline) as the Sisyphus manifold, after the Greek 

mytho-logical king who was sentenced for eternity to push a stone up a hill only to have it 

roll back down as it neared the top (see FIGURE 1 and MOVIE 1 in the Supplementary 

Material).

We invoke moving nullcline analysis to geometrically illustrate why solutions roll up and 

then slide down the c2-nullcline. Starting with some basic notation, we will denote the 

respective s2 and c2 nullclines as

s2, c2 ∈ ℝ2:c2 −
k3e2

0s2 − k2c1
k3s2 + k−3

= 0 ≡ 𝒩s2
t , (19a)
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s2, c2 ∈ ℝ2:c2 −
e2

0

KM2
+ s2

s2 = 0 ≡ 𝒩c2
, (19b)

where the superscript “t” in (19a) denotes the time-dependency of the s2-nullcline. If we 

consider snapshots of the s2–c2 phase–plane at different points in time (i.e., let t = tn), we see 

that the intersection of the nullclines, x*(tn),

x* tn = 𝒩c2
⋂𝒩s2

t = tn, (20)

slides, like a bead on a wire, up and down the c2-nullcline. Algebraically, the coordinates of 

the intersection “x*(t)” are

s2* =
KM2

V2 − k2c1
k2c1, c2* =

k2c1
k4

. (21)

An important observation can be made from (21): as the indicator reaction becomes 

extremely fast (with respect to the speed of the non-observable reaction), the maximum 

distance from x* to the origin becomes negligibly small:

S2*, C2* ≈ (0, 0) . (22)

What phase-space trajectories do is follow x* and, under appropriate conditions (to be 

defined), the phase-plane trajectory will follow x* along a path that is extremely close to the 

c2-nullcline. This typically occurs in three stages: (1) the trajectory chases the fixed point up 

the c2-nullcline, (2) the trajectory “catches” x*, at which time both s2 and c2 reach their 

maximum values and, (3) the trajectory follows x* back down the c2-nullcline (see 

FIGURES 2a–2d for another visualization of the Sisyphus manifold). Since the relative 

speed of the indicator reaction determines how far x* can travel away from the origin, it 

follows that s2
max will be much less than s1

0 when the indicator reaction is fast.

2.3. Analysis of slow and fast coupled auxiliary indicator reactions

We now want to consider the cases when the indicator is very fast (or very slow) in 

comparison to the non-observable reaction. We again emphasize that the completion of the 

indicator reaction cannot occur before the completion of the non-observable reaction for the 

coupled auxiliary enzyme reaction mechanism. Thus, a fast indicator is taken to be 

synonymous with a small maximum displacement of x*.

2.3.1. Analysis of extremely fast indicator reactions—The first form of the 

indicator reaction we will consider is the case when k3 and k4 are very large (in comparison 
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to k1 and k2), and the indicator reaction is incredibly fast. What phase-space trajectories do 

in the case of the coupled auxiliary enzyme reaction is chase x*. Given the limits computed 

in (22), we expect the phase plane trajectory to “catch” x* very quickly when the indicator 

reaction is fast. This means that the coordinates given in (21) will serve as a very good 

approximation to the mass action equations over measurable timescales. In fact, we can 

simplify the expression even further in the limiting case: if the phase–plane trajectory slides 

down the c2–nullcline at a distance from x* that is negligibly small, then

ṗ = k4c2 ≃ k4 ⋅
k2c1
k4

≃
V1

KM1
+ s1

s1, tc1
≲ t . (23)

Equation (23) holds provided ε ≪ 1 and the non-observable reaction is in a QSS for the 

duration of the reaction. Therefore, the rate expression for the product formation is 

equivalent to the rate expression for the single-enzyme, single-substrate reaction when the 

indicator reaction is extremely fast. Notice that it is not necessary that λ ≪ 1 in order to 

impose the QSSA, and the restriction that e2
0 be less than s1

0 is not required: the QSSA will be 

valid as long as the phase–plane trajectory closely adheres to x*, and this will occur provided 

the indicator reaction is sufficiently fast, even if the initial auxiliary enzyme concentration 

(e2
0) is large.

Quantitatively, s2 (during its accumulation to s2
max) is expressible in terms of a Lambert-W 

function (when the indicator reaction is fast, see [4] for details),

s2 = s2
max 1 + ΩW −Ω−1exp −Ω−1 − ϕt , ϕ ≡

V2 − γ 2

V2KM2
(24)

where Ω ≡ (V2/V1) · (1 + σ1)/σ1 and γ ≡ s1
0/ts1

. If Ω−1 ≪ 1, then (24) is asymptotic to

s2 ≃ s2
max 1 − exp −Ω−1 − ϕt , (25)

and the characteristic timescale that arises from (25) is

ts2
χ =

KM2
+ s2

max

V2
. (26)

Under the condition that the indicator reaction is fast, it is straightforward to show that
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s2
max =

KM2
k2c1

max

V2 − k2c1
max , c1

max = εs1
0 . (27)

Geometrically, the maximum values defined in (27) follow from the fact that the non-

observable reaction is in QSS when the phase–plane trajec-tory catches x*; thus, c1 will be 

on the order of its maximum value when the trajectory reaches x*.

If the QSSA is valid when s2 and c2 reach their threshold concentrations, what role does 

λmax ≪ 1 play in establishing the validity of the QSSA? Rescaling the mass action 

equations with respect to T χ = t /ts2
χ  yields

λmax dc2
dT χ = 1 + κ2 1 + σ2 1 −

σ2
1 + σ2

c2 s2 − 1
1 + σ2

c2 . (28)

Thus, if λmax ≪ 1, then the approach to x* will occur (approximately) along the c2-nullcline 

in the phase-plane. However, if λmax is order unity, then the trajectory will move (although 

not initially along the c2-nullcline) until it catches x*, at which time the indicator reaction 

will remain in a QSS. Thus, if λmax is large enough, a transient window occurs before QSS 

can be imposed, which is interpreted (geometrically) as the approach to x* in the phase-

plane. In either case, we have an inner solution that approximates the approach to x*, and an 

outer solution that closely follows x* as it rolls back to the origin:

s2 ≃ s2
max 1 − exp −Ω−1 − ϕt , t ≲ ts2

χ (29a)

s2 ≃
KM2

c1

V2 − k2c1
, ts2

χ ≲ t . (29b)

To ensure that initial conditions are met, it again follows that if V2 ≫ V1, then (29a) is

s2 ≃ s2
max 1 − exp −V2t /KM2

. (30)

Together, equations (29a) and (29b) comprise a composite solution, s2
comp:
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s2
comp = −

KM2
ṡ1

ε

V2 + ṡ1
ε − s2

maxexp −V2t /KM2
, ṡ1

ε ≡ −
V1

KM1
+ s1

s1 . (31)

The validity of (31) is easily verified numerically (see FIGURES 3a–3b), and is the 

appropriate composite solution to employ when tc1
≪ ts2

χ ≪ ts1
.

2.3.2. Analysis of slow indicator reactions—The indicator reaction will be slow in 

comparison to the non-observable reaction if ts2
≫ ts1

. Consequently we take δS ≫ 1 in the 

slow regime. Since ts1
 is now fast relative to ts2

, we rescale the indicator reaction mass 

action equations with respect to T:

ds2
dT =

1 + σ2 1 + κ2
δs

σ2
1 + σ2

c2 − 1 s2 +
α2

1 + σ2
c2 + c1 (32a)

λ
dc2
dT =

1 + σ2 1 + κ2
δs

1 −
σ2

1 + σ2
c2 s2 − 1

1 + σ2
c2 (32b)

In (32b), λ ≡ e2
0/ s1

0 + KM2
, since s2

max ≈ s1
0 when the indicator reaction is slow.Looking 

carefully at the scaled equations, we see that if the QSSA holds, or δS ≫ (1 + σ2)(1 + κ2), 

then

ds2 ≃ − ds1, t ≲ ts1
. (33)

If λ ≪ 1, then the QSSA assumption can be imposed when ts1
≲ t, in which case we have an 

inner solution, (34a), and an outer solution, (34b):

ṡ2 ≃
V1

KM1
+ s1

s1, tc1
≤ t ≤ ts1

, (34a)

ṡ2 ≃ −
V2

KM2
+ s2

s2, ts1
< t . (34b)
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Together, equations (34a)–(34b) constitute a composite solution, “s2
uni”, in the form of the 

Schnell–Mendoza equation [29]:

s2
uni ≃ KM2

W σ2exp σ2 − η2t − KM1
W σ1exp σ1 − η1t , (35)

and the validity of (35) is easily verified numerically (see Figures 4a–4b).

3. Zymogen activation coupled to its enzyme catalyzed reaction

We now turn our attention to the zymogen activation coupled to its enzyme catalyzed 

reaction described by the chemical equations (3)–(4). In this type of reaction [30, 31, 32, 33] 

the product of the non-observable reaction is the indicator enzyme E2 [5]. Following the 

same format utilized in the analysis of the coupled auxiliary enzyme reaction mechanism, 

we begin by scaling the mass action equations obtained by applying the law of mass action 

to (3)–(4).

3.1. Scaling of zymogen activation coupled to its enzyme catalyzed reaction

The mass action equations that govern this reaction are:

ṡ1 = − k1 s1
0 − c1 e1 + k−1c1, (36a)

ċ1 = k1 e1
0 − c1 s1 − k−1 + k2 c1, (36b)

ṡ2 = − k3 e2
A − c2 s2 + k−3c2, (36c)

ċ2 = k3 e2
A − c2 s2 − k−3 + k4 c2, (36d)

where e2
A denotes the concentration of activated E2 and is given by

e2
A = s1

0 − s1 − c1, (37)

with s1
0 denoting the initial non-observable S1 concentration. Thus, the indicator reaction is 

described by a non-autonomous set of equations with e2
A(t) as its forcing term. As with the 

coupled auxiliary enzyme reaction, the basic analysis of the zymogen activation assay can be 
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carried out with three timescales: tc1
, ts1

 and ts2
a . The timescales tc1

 and ts1
 are identical to 

those defined earlier in the coupled auxiliary enzyme reaction. The additional timescale,

ts2
a =

KM2
+ s2

0

k4 e2
A , (38)

is the depletion timescale of the indicator reaction (see [5] for details regarding the validity 

of these timescales). The quantity e2
A  is the average amount of enzyme produced by the 

non-observable reaction over the duration of the indicator reaction. Rescaling the indicator 

reactions with respect to ts1
 yields

ds2
dT =

maxe2
A

e2
A

(1 + β) 1 + κ2
ϖ

β
1 + β c2 − e2

A s2 +
α2

1 + βc2 , (39a)

μ
dc2
dT =

maxe2
A

e2
A

(1 + β) 1 + κ2
ϖ e2

A − β
1 + βc2 s2 − 1

1 + βc2 , (39b)

where μ, β, δs
a, s2, max e2

A, e2
A and c2 are given by:

ϖ ≡ ts2
a /ts1

, β ≡
s2
0

KM2
, μ ≡

maxe2
A

KM2
+ s2

0 , e2
A = e2

A/maxe2
A, (40a)

s2 ≡
s2
s2
0 , c2 ≡

KM2
+ s2

0

s2
0maxe2

A c2, maxe2
A ≡ max

t ≤ ts2
a

e2
A . (40b)

The phase–plane description of the zymogen activation assay is markedly different than that 

of the auxiliary enzyme assay. For example, the condition μ ≪ 1 establishes the presence of 

a slow manifold when the indicator reaction is fast. However, unlike the auxiliary enzyme 

reaction, the s2 and c2–nullclines of (39a)–(39b) only intersect at the origin. This means that 

when ϖ ≪ 1, and the depletion timescale of the indicator reaction is much smaller than ts1
, 

that
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0 ≃
maxe2

A

e2
A (1 + β) 1 + κ2

β
1 + βc2 − e2

A s2 +
α2

1 + βc2 , (41a)

0 ≃
maxe2

A

e2
A (1 + β) 1 + κ2 e2

A − β
1 + β c2 s2 − 1

1 + βc2 , (41b)

should still be interpreted to mean that the solution (39a)-(39b) to lies at the intersection of 

both the c2 and s2–nullclines when ts2
a ≲ t; however, since the intersection of the nullclines 

occurs at the origin, the biochemical interpretation is that the indicator reaction has 

completed. Another subtle difference between the phase–plane dynamics of the auxiliary 

enzyme assay and the zymogen activation assay is that both the s2 and c2–nullclines move in 

the phase–plane of the zymogen activation reaction, whereas only the s2–nullcline moves in 

the phase–plane of the auxiliary enzyme reaction.

In the subsections that follow, we will again invoke moving nullcline analysis to study the 

phase–plane dynamics of the zymogen activation assay. We will consider the limiting cases 

when ϖ ≪ 1 and ϖ ≫ 1, and illustrate the geometric interpretation of the RSA and QSSA 

for the zymogen activation assay through moving nullcline analysis.

3.2. The zymogen activation coupled to its enzyme catalyzed reaction exhibits a Laelaps 
manifold

In the case of the zymogen activation coupled to its enzyme catalyzed reaction, the time-

dependent slow manifold propagates (swings) through the phase–plane as long as the non-

observable reaction is producing E2. In this scenario, the c2–nullcline swings through the 

phase-plane almost like a (curved) windshield wiper rotating counterclockwise. The phase-

plane solution to the indicator reaction initially follows behind the swinging c2–nullcline 

until it eventually catches it, at which time c2 reaches its maximum value. After the solution 

catches the c2–nullcline it slides down the c2–nullcline as it approaches the origin (see, 

MOVIE 2 in Supplementary Materials). We refer to this manifold as a Laelaps manifold 

after the Greek mythological dog that always caught what she was hunting. Analogously, the 

solution to the mass action equations “hunts” the moving the c2–nullcline (see FIGURES 

5a–5d).

3.3. Analysis of slow and fast zymogen activation coupled to its enzyme cat 221 alyzed 
reaction

In this section we again consider the extreme cases when the indicator reaction is very fast 

or very slow in comparison to the non-observable reaction for the zymogen activation 

coupled to its enzyme catalyzed reaction. As mentioned, the major difference between the 

zymogen activation coupled to its enzyme catalyzed reaction and the coupled auxiliary 

reaction mechanism is that, while the indicator reaction for the coupled auxiliary enzyme 
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assay cannot complete before the non-observable reaction, the completion of the secondary 

reaction can occur before or after the completion of the primary reaction.

3.3.1. Analysis of fast indicator reactions—If the indicator reaction is extremely 

fast, then ϖ ≪ 1. If μ ≪ 1, then the leading order approximation is

c2 ≃
e2

A

KM2
+ s2

s2, (42)

and the depletion of substrate is given in terms of a Lambert-W function (again, see [5] for 

details regarding this particular solution):

s2 = KM2
W βexp β

k4νt2

2KM2
, ν ≡ εk2s1

0 . (43)

Notice that for fast indicator reactions, it is not necessary that s2
0 ≫ s1

0, as the amount of 

activated enzyme concentration e2 produced by the nonobservable reaction will be small if 

the duration of the indicator reaction is short in comparison to the completion timescale 

(ts1
)of the non-observable reaction.

It is straightforward to determine the approximate time at which the phase-plane trajectory 

catches the moving c2–nullcline when β ≪ 1. If β ≪ 1, then (43) is approximately

s2 ≈ s2
0exp −

k4νt2

2KM2
. (44)

If the QSSA is valid, then it follows that

c2 ≃ − 1
k4

ṡ2 . (45)

Thus, ċ2 ≃ − s̈2/k4, and ċ2 vanishes when s̈2 vanishes:

1
k4

s̈2 = 0. (46)

Inserting (44) into (46) and subsequently solving for t yields the catch time, tc:
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tc =
KM2
V2

⋅ ts1
, V2 ≡ k4s1

0 . (47)

Thus, the phase-plane trajectory will “catch” the c2-nullcline when t ≈ tc, provided the 

indicator reaction is extremely fast and β ≪ 1 (see FIGURES 6a-6b).

3.4. Analysis of slow indicator reactions

The average available enzyme approaches s1
0 as the indicator reaction begins to slow down, 

and for sufficiently slow indicator reactions we take

Ts2
=

KM2
+ s2

0

V2
(48)

to be the appropriate depletion timescale [5]. Applying the previous scaling laws, we obtain

ds2
dT =

(1 + β) 1 + κ2
ϖ

β
1 + βc2 − e2

A s2 +
α2

1 + βc2 , (49a)

μ
dc2
dT =

(1 + β) 1 + κ2
ϖ e2

A − β
1 + β c2 s2 − 1

1 + βc2 , (49b)

where μ and 𝜛 are now given by

μ ≡
s1
0

KM2
+ s2

0 , ϖ ≡
Ts2
ts1

. (50)

By inspection of (49a)–(49b), it is clear that if

ϖ ≫ (1 + β) 1 + κ2 , (51)

then s2 will be a slow variable for the duration of the non-observable reaction [5]. In fact, 

(51) is a RSA for slow indicator reactions. Furthermore, if μ ≪ 1, then we can assume a QSS 

with respect to the Ts2
 timescale:
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c2 ≃
s1
0

KM2
+ s2

s2, ts1
≲ t . (52)

Combining (52) with (51) yields

s2 = s2
0, t ≲ ts1

(53a)

s2 = KM2
W βexp β − η2t , ts1

≲ t, (53b)

which will hold provided μ ≪ 1

Next, we want to determine if the QSSA is valid when t ≲ ts1
. Notice from (49a) that the 

QSSA will not hold for t ≲ ts1
 unless

μϖ ≪ 1 + β2 1 + κ2 . (54)

If we demand that (54) hold, then it follows that

t*
ts1

≪ 1, t* ≡ 1
k3 KM2

+ s2
0

. (55)

Geometrically, the invalidity of the QSSA over the ts1
 timescale is due to the fact that the c2-

nullcline propagates through the phase-plane at a speed that is much faster than the speed at 

which the solution trajectory propagates (see FIGURES 7a–7c for a phase–plane 

illustration).

As a final remark, we point out the subtle relationship between the RSA (51) and the QSSA 

(54). If the QSSA holds for t ≲ ts1
, then

ṡ2 ≥ −
V2

KM2
+ s2

0s2
0 . (56)

If we demand that max ṡ2 ⋅ ts1
≪ s2

0, with
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max ṡ2 =
V2

KM2
+ s2

0s2
0, (57)

then it follows that the depletion of s2 over the ts1
 timescale will be negligible as long as 

ts1
≪ Ts2

. Thus, (51) is sufficient but not necessary for the validity of the RSA. In short, the 

separation t* ≪ ts1
≪ Ts2

 will ensure that both the QSSA and the RSA are valid for t ≲ ts1
.

4. Discussion

In this work, two types of coupled enzyme reaction mechanisms – the coupled auxiliary 

enzyme mechanism and zymogen activation coupled to its enzyme catalyzed reaction – have 

been studied through scaling analysis. The main contribution of this paper is the geometric 

understanding of how scaling laws and how singularly perturbed problems can be analyzed 

when multiple timescales contribute to the phase-plane dynamics in biochemical systems.

In the case of the indicator reaction of the coupled auxiliary enzyme reaction mechanism, we 

have shown that if the indicator reaction has adequate speed, then the mass action equations 

can be approximated by the intersection of the nullclines, x*. Thus, the QSSA is a natural 

consequence of the phase–plane geometry, and the requirement that the initial substrate 

concentration (s1
0) be in excess of the initial auxiliary enzyme concentration (e2

0) is not 

necessary for the validity of the QSSA, provided the indicator reaction has sufficient speed. 

Moreover, for extremely fast indicator reactions, the rate expression for product formation 

reduces to

ṗ ≃
V1

KM1
+ s1

s1,

from which KM1
 and V1 could be estimated by analyzing progress curves generated by the 

indicator reaction. In contrast, we have shown that when the indicator reaction is extremely 

slow, the substrate concentration, s2, admits a composite solution comprised of two Schnell-

Mendoza equations.

Additionally, the analysis of the zymogen activation coupled to its enzyme catalyzed 

reaction has been interpreted in the phase–plane via moving nullcline analysis. Specifically, 

we have illustrated that the invalidity of the QSSA occurs when the c2-nullcline propagates 

through the s2–c2 phase–plane at a speed that temporarily exceeds the speed of the solution.

We hope that the applied mathematics and chemical kinetics communities will continue to 

investigate these types of reactions, as we feel there are still interesting and novel results to 

uncover.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A singular perturbation analysis of coupled enzyme catalyzed reactions is 

performed.

• The catalyzed reactions consist of a non-observable reaction as well as an 

indicator reaction. We show that the indicator reaction has a natural lag time.

• A geometric description of slow/fast coupled reactions is formulated based on 

the motion of slow manifolds relative to the motion of the solution 

trajectories.

• Conditions for the validity of the reduced equations are derived and inter- 

preted both geometrically and biochemically.
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Figure 1: Phase–plane illustration of the Sisyphus manifold for the reaction mechanism (1)–(2).
The numerical solution of the mass action equations (6) (thick black curve that is barely 

visible) moves up, then down, the c2-nullcline (dashed red curve) in the phase-plane for the 

coupled auxiliary enzyme reaction mechanism. Movement is illustrated dynamically in 

Movie 1 available in the Supplementary Material. The dimensionless units used in the 

numerical integration of 6) are: s1
0 = 1000, e1

0 = 1, e2
0 = 1, k1 = 1, k2 = 10, k-1 = 1, k3 = 1, k4 = 

10, k-3 = 1. The concentrations of substrate and complex have been scaled by their 

numerically-obtained maximum values.
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Figure 2: Phase–plane illustration of the mechanism responsible for the Sisyphus manifold for 
the reaction mechanism (1)–(2).
The numerical solution of (6) (black dot) follows the intersection, x∗ (purple dot) of the 

nullclines, along a path that can be approximated by the c2-nullcline (dashed/dotted red 

curves in panels (a)–(d)). Eventually, the solution catches x∗ (panel (c)) and then chases x∗ 

back down the c2-nullcline (d). The s2–nullcline is the dashed/dotted blue curve in (a)–(d). 

In the panels (a)–(d), the initial conditions and parameter values are: e1
0 = 1, s1

0 = 1000, k1 = 

1, k2 = 10 and k-1 = 1. s2
0 = 0, e2

0 = 1, k3 = 10, k4 = 10 and k-3 = 1.
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Figure 3: The validity of the composite solution for fast indicator reactions in the reaction 
mechanism (1)–(2).
The solid black curve (barely visible) is the numerical solution to the mass action equations 

(6), and the dashed/dotted red curve is the numerical solution to the composite solution (31). 

In panel (a), the initial conditions (without units) are: e1
0 = 1, s1

0 = 1000, k1 = 1, k2 = 1 and k-1 

= 1. s2
0 = 0, k3 = 1, = 0, k4 = 100 and k−3 = 1. In panel (b), the initial conditions (without 

units) are: e1
0 = 1, s1

0 = 1000, k1 = 1, k2 = 1 and k-1 = 1. s2
0 = 0, k3 = 10, k4 = 100 and k-3 = 1 

The substrate concentrations in (a) and (b) has been scaled by their maximum values, and 

time has been mapped to the t∞ scale: t∞(t) = 1 − 1/ln(t + e).
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Figure 4: The validity of the composite solution for slow indicator reactions in the reaction 
mechanism (1)–(2).
The solid black curve (barely visible) is the numerical solution to the mass action equation 

(6), and the dashed/dotted red curve is the numerical solution to the composite solution (35). 

In panel (a), the initial conditions (without units) are: e1
0 = 1, e2

0 = 1, s1
0 = 100, k1 = 1, k2 = 

100 and k-1 = 1. s2
0 = 0, k3 = 1, = 0, k2 = 1 and k−3 = 1. In panel (b), the initial conditions 

(without units) are: e1
0 = 1, e2

0 = 1, s1
0 = 1000, k1 = 1, k2 = 100 and k-1 = 1. s2

0 = 0, k3 = 1, k2 = 

1 and k-3 = 1 The substrate concentrations in (a) and (b) has been scaled by their maximum 

values, and time has been mapped to the t∞ scale: t∞(t) = 1 − 1/ln(t + e).
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Figure 5: Visualization of the Laelaps manifold in the phase–plane of the reaction mechanism 
(3)–(4).
The solid black curve is the numerical solution to the mass action equations (36). The solid 

black dot is the numerical solution to (36) at various points in time; the dashed/dotted red 

curve is the corresponding location of the c2–nullcline. Initially, the solution lags just behind 

the c2–nullcline (panel (a)). Eventually, the solution catches the c2–nullcline (panel (b)), and 

then lies just above for the duration of the reaction (panel(c)). Panel (d) is the location of the 

c2–nullcline upon completion of the indicator reaction. A dynamical representation of the 

Laelaps manifold is shown in Movie 2 (Supplementary Materials). The constants (without 

units) used in the numerical simulation are: e1
0 = 1, s1

0 = 100, k1 = 1, k2 = 1 and k−1 = 1. 

s2
0 = 1000, k3 = 1, k4 = 100 and k−3 = 100. The substrate (s2) and complex (c2) 

concentrations have been scaled by their maximum values.
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Figure 6: The “catch time,” tc, for fast indicator reactions when β ≪ 1 in the reaction mechanism 
(3)–(4).
Panel (a): The solid black curve is the numerical solution to the mass action equations (36). 

The solid black dots correspond to the location of the phase-plane trajectory at times: t = 

0.33 · tc, 0.67 · tc, tc, 1.33 · tc and 1.67 · tc The thick, dashed/dotted red curve is the c2-

nullcline at time t = tc, and the thin, dashed/dotted red curves are the locations of the c2-

nullcline at the additional time points: t = 0.33 · tc, 0.67 · tc, 1.33 · tc and 1.67 · tc. Notice the 

phae-plane trajectory lies just below the c2 nullcline for t < tc and just above it for t > tc. 
Panel (b): The evolution of c2 in the concentration/time plane. The black dashed line 

corresponds to = tc, and clearly indicates the time at which c2 reaches its threshold value and 

intercept the c2-nullcline. The constants and initial conditions (both without units) used in 

(a) and (b) are: e1
0 = 1, s1

0 = 100, k1 = 1, k2 = 1 and k−1 = 1. s2
0 = 1, k3 = 1, k4 = 100 and k−3 = 

1. The substrate concentrations in (a) and (b) has been scaled by their maximum values, and 

time has been mapped to the t∞ scale: t∞(t) = 1 − 1/ln(t + e).

Eilertsen et al. Page 28

Math Biosci. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: The QSSA and the RSA on the ts1
 timescale for slow indicator reactions in the reaction 

mechanism (3)–(4).
In (a)–(c), the solid black curve is the numerical solution to the mass action equations (36). 

The solid black dots are the locations of the trajectory at times t = 0.33 · ts1
, 0.67 · ts1

, ts1
, 

0.67 · Ts2
 and 0.67 · Ts2

. The thin, dashed red curves are corresponding snapshots of c2-

nullcline at these time points. The thick, dashed red curve is the stationary c2-nullcline: 

c2 = s1
0s2/ KM2

+ s2 . In panel (a), both the RSA and QSSA fail over the the ts1
 timescale. 

Constants (without units) used in (a) are: k1 = 10, k2 = 100, k−1 = 1, 

s1
0 = 100, e1

0 = 1, s2
0 = 1000, k3 = 0.01, k4 = 1, k-3 = 1. In panel (b), the QSSA holds over ts1

but the RSA fails. Constants (without units) used in (b) are: k1 = 10, k2 = 100, k−1 = 1, 

s1
0 = 100, e1

0 = 1, s2
0 = 1000, k3 = 1, k4= 1, k−3 = 1. In panel (c), both the RSA and QSSA hold 

over the ts1
 timescale. Constants (without units) used in (c) are: k1 = 10, k2 = 100, k-1 = 1, 

s1
0 = 100, e1

0 = 1, s2
0 = 10000, k3 = 0.1, k4 = 1, k−3 = 10. s2 and c2 have been scaled by their 

maximum values.
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