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Abstract

We present a novel family of nonparametric omnibus tests of the hypothesis that two unknown but 

estimable functions are equal in distribution when applied to the observed data structure. We 

developed these tests, which represent a generalization of the maximum mean discrepancy tests 

described in Gretton et al. [2006], using recent developments from the higher-order pathwise 

differentiability literature. Despite their complex derivation, the associated test statistics can be 

expressed rather simply as U-statistics. We study the asymptotic behavior of the proposed tests 

under the null hypothesis and under both fixed and local alternatives. We provide examples to 

which our tests can be applied and show that they perform well in a simulation study. As an 

important special case, our proposed tests can be used to determine whether an unknown function, 

such as the conditional average treatment effect, is equal to zero almost surely.
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1. Introduction

In many scientific problems, it is of interest to determine whether two particular functions 

are equal to each other. In many settings these functions are unknown and may be viewed as 

features of a data-generating mechanism from which observations can be collected. As such, 

these functions can be learned from available data, and estimates of these respective 

functions can then be compared. To reduce the risk of deriving misleading conclusions due 
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to model misspecification, it is appealing to employ flexible statistical learning tools to 

estimate the unknown functions. Unfortunately, inference is usually extremely difficult when 

such techniques are used, because the resulting estimators tend to be highly irregular. In 

such cases, conventional techniques for constructing confidence intervals or computing p-

values are generally invalid, and a more careful construction, as exemplified by the work 

presented in this article, is required.

To formulate the problem statistically, suppose that n independent observations O1, O2, …, 

On are drawn from a distribution P0 known only to lie in the nonparametric statistical model, 

denoted by ℳ. Let 𝒪 denote the support of P0, and suppose that P ↦ RP and P ↦ SP are 

parameters mapping from ℳ onto the space of univariate bounded real-valued measurable 

functions defined on 𝒪, i.e. RP and SP are elements of the space of univariate bounded real-

valued measurable functions defined on 𝒪. For brevity, we will write R0 ≜ RP0
 and S0 ≜ SP0

. 

Our objective is to test the null hypothesis

ℋ0: R0 O =d S0 O

versus the complementary alternative ℋ1 : not ℋ0, where O follows the distribution P0 and 

the symbol =d  denotes equality in distribution. We note that R0(O) =d S0(O) if R0 ≡ S0, i.e. 

R0(O) = S0 (O) almost surely, but not conversely. The case where S0 ≡ 0 is of particular 

interest since then the null simplifies to ℋ0 : R0 ≡ 0. Because P0 is unknown, R0 and S0 are 

not readily available. Nevertheless, the observed data can be used to estimate P0 and hence 

each of R0 and S0. The approach we propose will apply to functionals within a specified 

class described later.

Before presenting our general approach, we describe some motivating examples. Consider 

the data structure O = (W, A, Y) ~ P, where W is a collection of covariates, A is binary 

treatment indicator, and Y is a bounded outcome, i.e., there exists a universal c such that, for 

all P ∈ ℳ, P(|Y| ≤ c) = 1. Note that, in our examples, the condition that Y is bounded cannot 

easily be relaxed, as the parameter from Gretton et al. [2006] on which we will base our 

testing procedure requires that the quantities under consideration have compact support.

Example 1: Random sample size variant of the two-sample test from Gretton et al. 

[2006].

If RP(o) ≜ ay and SP(o) ≜ (1 − a)y, the null hypothesis corresponds to Y|A = 1 

and Y|A = 0 sharing the same distribution. This will differ from the setting 

considered in Gretton et al. [2006] in that, in our setting, the number of subjects 

with A = 0 and A = 1 will be treated as random, while the total number of 

observed subjects is fixed. This is in contrast to Gretton et al. [2006], who 

studied the case where the number of subjects with A = 0 and A = 1 were both 

fixed. This is the simplest example that we will give in this work. In particular, it 

is our only example in which the functions RP and SP do not rely on the 

(unknown) data generating distribution P.
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Example 2: Testing a null conditional average treatment effect.

If RP(o) ≜ EP (Y A = 1, W = w) − EP (Y A = 0, W = w) and SP ≡ 0, the null 

hypothesis corresponds to the absence of a conditional average treatment effect. 

This definition of RP corresponds to the so-called blip function introduced by 

Robins [2004], which plays a critical role in defining optimal personalized 

treatment strategies [Chakraborty and Moodie, 2013].

Example 3: Testing for equality in distribution of regression functions in two 

populations.

Suppose the setting of the previous example, but where A represents 

membership to population 0 or 1. If RP(o) ≜ EP (Y A = 1, W = w) and 

SP(o) ≜ EP (Y A = 0, W = w), the null hypothesis corresponds to the outcome 

having the conditional mean functions, applied to a random draw of the 

covariate, having the same distribution in these two populations. We note here 

that our formulation considers selection of individuals from either population as 

random rather than fixed so that population-specific sample sizes (as opposed to 

the total sample size) are themselves random. The same interpretation could also 

be used for the previous example, now testing if the two regression functions are 

equivalent.

Example 4: Testing a null covariate effect on average response.

Suppose now that the data unit only consists of O ≜ (W , Y). If 
RP(o) ≜ EP (Y W = w) and SP ≡ 0, the null hypothesis corresponds to the 

outcome Y having conditional mean zero in all strata of covariates. This may be 

interesting when zero has a special importance for the outcome, such as when 

the outcome is the profit over some period.

Example 5: Testing a null variable importance.

Suppose again that O ≜ (W , Y) and W ≜ (W(1), W(2), …, W(K)). Denote by W(−k) 

the vector (W(i) : 1 ≤ i ≤ K,i ≠ k). Setting RP(o) ≜ EP (Y W = w) and 

SP(o) ≜ EP (Y W( − k) = w( − k)), the null hypothesis corresponds to W(k) 

having null variable importance in the presence of W(−k) with respect to the 

conditional mean of Y given W in the sense that EP (Y | W) = EP (Y | W(−k)) 

almost surely. This is true because if R0(W) =d S0(W ( − k)), the latter random 

variables have equal variance and so

EP0
VarP0

R0 W W −k = VarP0
R0 W − VarP0

EP0
R0 W W −k

= VarP0
R0 W − VarP0

S0 W −k = 0,
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implying that VarP0
[R0(W) W( − k)] = 0 almost surely. Thus, a test of 

RP(O) =d SP(O) is equivalent to a test of almost sure equality between RP and SP 

in this example. We will show in Section 5 that our approach cannot be directly 

applied to this example, but that a simple extension yields a valid test.

Gretton et al. [2006] investigated the related problem of testing equality between two 

distributions in a two-sample problem. They proposed estimating the maximum mean 

discrepancy (hereafter referred to as MMD), a non-negative quantitative summary of the 

relationship between the two distributions. In particular, the MMD between distributions P1 

and P2 for observations X is defined as

sup
f ∈ ℱ

EP1
f X − EP2

f X . (1)

Defining the MMD relies on selecting a function class ℱ. Gretton et al. [2006] propose 

selecting ℱ to be the unit ball in a reproducing kernel Hilbert space. If the kernel defining 

this space is a so-called universal kernel and the support of X under P1 and P2 is compact, 

then they showed that the MMD is zero if and only if the two distributions are equal. They 

also observe that the Gaussian kernel is a universal kernel. Gretton et al. also investigated 

related problems using this technique [see, e.g., Gretton et al., 2009, 2012a, Sejdinovic et al., 

2013]. In this work, we also utilize the MMD as a parsimonious summary of equality but 

consider the more general problem wherein the null hypothesis relies on unknown functions 

R0 and S0 indexed by the data-generating distribution P0.

Other investigators have proposed omnibus tests of hypotheses of the form ℋ0 versus ℋ1 in 

the literature. In the setting of Example 2 above, the work presented in Racine et al. [2006] 

and Lavergne et al. [2015] is particularly relevant. The null hypothesis of interest in these 

papers consists of the equality EP0
(Y A, W) = EP0

(Y W) holding almost surely. If 

individuals have a nontrivial probability of receiving treatment in all strata of covariates, this 

null hypothesis is equivalent to ℋ0. In both these papers, kernel smoothing is used to 

estimate the required regression functions. Therefore, key smoothness assumptions are 

needed for their methods to yield valid conclusions. The method we present does not hinge 

on any particular class of estimators and therefore does not rely on this condition.

To develop our approach, we use techniques from the higher-order pathwise differentiability 

literature [see, e.g., Pfanzagl, 1985, Robins et al., 2008, van der Vaart, 2014, Carone et al., 

2014]. Despite the elegance of the theory presented by these various authors, it has been 

unclear whether these higher-order methods are truly useful in infinite-dimensional models 

since most functionals of interest fail to be even second-order pathwise differentiable in such 

models. This is especially troublesome in problems in which under the null the first-order 

derivative of the parameter of interest (in an appropriately defined sense) vanishes, since 

then there seems to be no theoretical basis for adjusting parameter estimates to recover 

parametric rate asymptotic behavior. At first glance, the MMD parameter seems to provide 
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one such disappointing example, since its first-order derivative indeed vanishes under the 

null. The latter fact is a common feature of problems wherein the null value of the parameter 

is on the boundary of the parameter space. It is also not an entirely surprising phenomenon, 

at least heuristically, since the MMD achieves its minimum of zero under the null 

hypothesis. Nevertheless, we are able to show that this parameter is indeed second-order 

pathwise differentiable under the null hypothesis – this is a rare finding in infinite-

dimensional models. As such, we can employ techniques from the recent higher-order 

pathwise differentiability literature to tackle the problem at hand.

This paper is organized as follows. In Section 2, we formally present our parameter of 

interest, the squared MMD between two unknown functions, and establish asymptotic 

representations for this parameter based on its higher-order differentiability, which, as we 

formally establish, holds even when the MMD involves estimation of unknown nuisance 

parameters. In Section 3, we discuss estimation of this parameter, discuss the corresponding 

hypothesis test and study its asymptotic behavior under the null. We study the consistency of 

our proposed test under fixed and local alternatives in Section 4. We revisit our examples in 

Section 5 and provide an additional example in which we can still make progress using our 

techniques even though our regularity conditions fails. In Section 6, we present results from 

a simulation study to illustrate the finite-sample performance of our test, and we end with 

concluding remark in Section 7.

Supplementary Appendix A reviews higher-order pathwise differentiability. Supplementary 

Appendix B gives a summary of the empirical U−process results from Nolan and Pollard 

[1988] that we build upon. All proofs can be found in Supplementary Appendix C.

2. Properties of maximum mean discrepancy

2.1. Definition

For a distribution P and mappings T and U, we define

ΦTU P ≜ ∫ ∫ e
− TP o1 − UP o2

2
dP o1 dP o2 (2)

and set Ψ (P) ≜ ΦRR (P) − 2 ΦRS (P) + ΦSS (P). The MMD between the distributions of 

RP(O) and SP(O) when O ~ P, defined in Eq. 1 using ℱ to be the unit ball in the RKHS 

generated by the Gaussian kernel with unit bandwidth, is given by Ψ (P) and is always 

well-defined because Ψ(P) is non-negative. Indeed, denoting by ψ0 the true parameter value 

Ψ(P0), Theorem 3 of Gretton et al. [2006] establishes that ψ0 equals zero if ℋ0 holds and is 

otherwise strictly positive. Though the study in Gretton et al. [2006] is restricted to two-

sample problems, their proof of this result is only based upon properties of Ψ and therefore 

holds regardless of the sample collected. Their proof relies on the fact that two random 

variables X and Y with compact support are equal in distribution if and only if E[f(Y)] = 

E[f(X)] for every continuous function f, and uses techniques from the theory of Reproducing 

Kernel Hilbert Spaces [see, e.g., Berlinet and Thomas-Agnan, 2011, for a general 
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exposition]. We invite interested readers to consult Gretton et al. [2006] – and, in particular, 

Theorem 3 therein – for additional details. The definition of the MMD we utilize is based on 

the univariate Gaussian kernel with unit bandwidth, which is appropriate in view of 

Steinwart [2002]. The results we present in this paper can be generalized to the MMD based 

on a Gaussian kernel of arbitrary bandwidth h by simply rescaling the mappings R and S to 

R/h and S/h.

2.2. First-order differentiability

To develop a test of ℋ0, we will first construct an estimator ψn of ψ0. In order to avoid 

restrictive model assumptions, we wish to use flexible estimation techniques in estimating 

P0 and therefore ψ0. To control the operating characteristics of our test, it will be crucial to 

understand how to generate a parametric-rate estimator of ψ0. For this purpose, it is 

informative to first investigate the pathwise differentiability of Ψ as a parameter from ℳ to 

ℝ.

So far, we have not specified restrictions on the mappings P ↦ RP and P ↦ SP. However, 

in our developments, we will require these mappings to satisfy certain regularity conditions. 

Specifically, we will restrict our attention to elements of the class 𝒮 of all mappings T for 

which there exists some measurable function XT defined on 𝒪, e.g. XT(o) = XT(w, a, y) = w, 

such that

(S1) TP is a measurable mapping with domain XT(o) : o ∈ 𝒪  and range contained in 

[− b, b] for some 0 ≤ b < ∞ independent of P;

(S2) for all submodels dPt/dP = 1 + th with bounded h with Ph = 0, there exists some 

δ > 0 and a set 𝒪1 ⊆ 𝒪 with P0(𝒪1) = 1 such that, for all (o, t1) ∈ 𝒪1 × ( − δ, δ), 

t TPt
(xT) is twice differentiable at t1 with uniformly bounded (in xT) first and 

second derivatives;

(S3) for any P ∈ ℳ and submodel dPt/dP = 1 + th for bounded h with Ph = 0, there 

exists a function DP
T : 𝒪 ℝ uniformly bounded (in P and o) such that 

∫ DP
T(o)dP(o xT) = 0 for almost all o ∈ 𝒪 and

d
dt TPt

xT

t = 0
= ∫ DP

T o h o dP o xT .

Condition (S1) ensures that T is bounded and only relies on a summary measure of an 

observation O. Condition (S2) ensures that we will be able to interchange differentiation and 

integration when needed. Condition (S3) is a conditional (and weaker) version of pathwise 

differentiability in that the typical inner product representation only needs to hold for the 

conditional distribution of O given XT under P0. We will verify in Section 5 that these 

conditions hold in the context of the motivating examples presented earlier.
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REMARK 1. As a caution to the reader, we warn that simultaneously satisfying (S1) and (S3) 
may at times be restrictive. For example, if the observed data unit is O ≜ (W (1), W (2), Y), the 
parameter

TP o ≜ EP Y W 1 = w 1 , W 2 = w 2 − EP Y W 1 = w 1

cannot generally satisfy both conditions. In Section 5, we discuss this example further and 
provide a means to tackle this problem using the techniques we have developed. In 
concluding remarks, we discuss a weakening of our conditions, notably by replacing 𝒮 by 
the linear span of elements in 𝒮. Consideration of this larger class significantly complicates 
the form of the estimator we propose in Section 3. □

We are now in a position to discuss the pathwise differentiability of Ψ. For any elements 

T , U ∈ 𝒮, we define

ΓP
TU o1, o2 ≜ 2 TP o1 − UP o2 DP

U o2 − DP
T o1 + 1 − 4 TP o1 − UP o2

2 − 2 DP
T o1 DP

U o2

e
− TP o1 − UP o2

2
.

and set ΓP ≜ ΓP
RR − ΓP

RS − ΓP
SR + ΓP

SS. Note that ΓP is symmetric for any P ∈ ℳ. For 

brevity, we will write Γ0
TU and Γ0 to denote ΓP0

TU and ΓP0
, respectively. The following 

theorem characterizes the first-order behavior of Ψ at an arbitrary P ∈ ℳ.

THEOREM 1 (FIRST-ORDER PATHWISE DIFFERENTIABILITY OF Ψ OVER ℳ). If R, S ∈ 𝒮, the parameter 
Ψ : ℳ ℝ is pathwise differentiable at P ∈ ℳ with first-order canonical gradient given by 

D1
Ψ(P)(o) ≜ 2 ∫ ΓP (o, o2)dP(o2) − Ψ (P) .

Under some conditions, it is straightforward to construct an asymptotically linear estimator 

of ψ0 with influence function D1
Ψ(P0), that is, an estimator ψn of ψ0 such that

ψn − ψ0 = 1
n ∑

i = 1

n
D1

Ψ P0 Oi + oP0
n−1/2 .

For example, the one-step Newton-Raphson bias correction procedure [see, e.g., Pfanzagl, 

1982] or targeted minimum loss-based estimation [see, e.g., van der Laan and Rose, 2011] 

can be used for this purpose. If the above representation holds and the variance of D1
Ψ(P0)(O)

is positive, then n(ψn − ψ0) N (0, σ0
2), where the symbol  denotes convergence in 

distribution and we write σ0
2 ≜ P0 [D1

Ψ(P0)2]. If σ0 is strictly positive and can be consistently 

estimated, Wald-type confidence intervals for ψ0 with appropriate asymptotic coverage can 

be constructed.

Luedtke et al. Page 7

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The situation is more challenging if σ0 = 0. In this case, n(ψn − ψ0) 0 in probability and 

typical Wald-type confidence intervals will not be appropriate. Because D1
Ψ(P0)(O) has mean 

zero under P0, this happens if and only if D1
Ψ(P0) ≡ 0. The following lemma provides 

necessary and sufficient conditions under which σ0 = 0.

COROLLARY 1 (FIRST-ORDER DEGENERACY UNDER ℋ0). If R, S ∈ 𝒮, it will be the case that σ0 = 0 if 

and only if either (i) ℋ0 holds, or (ii) R0(O) and S0(O) are degenerate, i.e. almost surely 

constant but not necessarily equal, with D0
R ≡ D0

S.

The above results rely in part on knowledge of D0
R and D0

S. It is useful to note that, in some 

situations, the computation of DP
T(o) for a given T ∈ 𝒮 and P ∈ ℳ can be streamlined. This 

is the case, for example, if P ↦ TP is invariant to fluctuations of the marginal distribution of 

XT, as it seems (S3) may suggest. Consider obtaining iid samples of increasing size from the 

conditional distribution of O given XT = xT under P, so that all individuals have observed XT 

= xT. Consider the fluctuation submodel dPt(o xT) ≜ [1 + th(o)]dP(o xT) for the conditional 

distribution, where h is uniformly bounded and ∫ h(o)dP(o|xT) = 0. Suppose that (i) P ↦ 
TP(xT) is differentiable at t = 0 with respect to the above submodel and (ii) this derivative 

satisfies the inner product representation

d
dt TPt

xT

t = 0
= ∫ DP

T o xT h o dP o xT

for some uniformly bounded function o DP
T(o xT) with ∫ DP

T(o xT)dP(o xT) = 0. If the 

above holds for all xT, we may take DP
T(o) = DP

T(o xT) for all o with XT(o) = xT. If DP
T is 

uniformly bounded in P, (S3) then holds.

In summary, the above discussion suggests that, if T is invariant to fluctuations of the 

marginal distribution of XT, (S3) can be expected to hold if there exists a regular, 

asymptotically linear estimator of each TP(xT) under iid sampling from the conditional 

distribution of O given XT = xT implied by P.

REMARK 2. If T is invariant to fluctuations of the marginal distribution of XT, one can also 
expect (S3) to hold if P ↦ ∫ TP(XT(o))dP(o) is pathwise differentiable with canonical 
gradient uniformly bounded in P and o in the model in which the marginal distribution of X 

is known. The canonical gradient in this model is equal to DP
T. □

2.3. Second-order differentiability and asymptotic representation

As indicated above, if σ0 = 0, the behavior of Ψ around P0 cannot be adequately 

characterized by a first-order analysis. For this reason, we must investigate whether Ψ is 
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second-order differentiable. As we discuss below, under ℋ0, Ψ is indeed second-order 

pathwise differentiable at P0 and admits a useful second-order asymptotic representation.

THEOREM 2 (SECOND-ORDER PATHWISE DIFFERENTIABILITY UNDER ℋ0). If R, S ∈ 𝒮 and ℋ0 holds, 

the parameter Ψ : ℳ ℝ is second-order pathwise differentiable at P0 with second-order 

canonical gradient D2
Ψ(P0) ≜ 2 Γ0.

It is easy to confirm that Γ0, and thus D2
Ψ, is one-degenerate under ℋ0 in the sense that ∫ 

Γ0(o,o2)dP0(o2) = ∫ Γ0(o1, o)dP0(o1) = 0 for all o. This is shown as follows. For any 

T , U ∈ 𝒮, the law of total expectation conditional on XU and fact that 

∫ D0
U(o)dP0(o xU) = 0 yields that

∫ Γ0
TU o, o2 dP0 o2 = ∫ 1 − 2 T0 o − U0 o2 D0

T o e
− T0 o − U0 o2

2
dP0 o2 ,

where we have written Γ0
TU to denote ΓP0

TU. Since ∫ f(R0(o))dP0(o) = ∫ f(S0(o))dP0(o) for 

each measurable function f when S0(O) =d T0(O), this then implies that 

∫ Γ0
RS (o, o2)dP0(o2) = ∫ Γ0

RR (o, o2)dP(o2) and 

∫ Γ0
SR (o, o2)dP0(o2) = ∫ Γ0

SS (o, o2)dP0(o2) under ℋ0. Hence, it follows that ∫ Γ0(o, 

o2)dP0(o2) = 0 under ℋ0 for any o.

If second-order pathwise differentiability held in a sufficiently uniform sense over ℳ, we 

would expect

RemP
Ψ ≜ Ψ P − Ψ P0 − P − P0 D1

Ψ P + 1
2 P − P0

2D2
Ψ P (3)

to be a third-order remainder term. However, second-order pathwise differentiability has 

only been established under the null, and in fact, it appears that Ψ may not generally be 

second-order pathwise differentiable under the alternative. As such, D2
Ψ may not even be 

defined under the alternative. In writing (3), we either naively set D2
Ψ(P) ≜ 2 ΓP, which is not 

appropriately centered to be a candidate second-order gradient, or instead take D2
Ψ to be the 

centered extension

o1, o2 2 ΓP o1, o2 − ∫ ΓP o1, o dP o − ∫ ΓP o, o2 dP o + P2 ΓP .

Both of these choices yield the same expression above because the product measure (P − 

P0)2 is self-centering. The need for an extension renders it a priori unclear whether as P 
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tends to P0 the behavior of RemP
Ψ is similar to what is expected under more global second-

order pathwise differentiability. Using the fact that Ψ(P) = P2ΓP, we can simplify the 

expression in (3) to

RemP
Ψ = P0

2 ΓP − ψ0 . (4)

As we discuss below, this remainder term can be bounded in a useful manner, which allows 

us to determine that it is indeed third-order.

For all T ∈ 𝒮, P ∈ ℳ and o ∈ 𝒪, we define

RemP
T o ≜ TP o − T0 o + ∫ DP

T o1 dP o1 xT − dP0 o1 xT

as the remainder from the linearization of T based on the conditional gradient DP
T. Typically, 

RemP
T(o) is a second-order term. Further consideration of this term in the context of our 

motivating examples is described in Section 5. Furthermore, we define

LP
RS o ≜ max RemP

R o , RemP
S o

MP
RS o ≜ max RP o − R0 o , SP o − S0 o .

For any given function f : 𝒪 ℝ, we denote by f p, P0
≜ ∫ f (o) p dP0(o)

1/ p
 the Lp(P0)-

norm and use the symbol ≲ to denote ‘less than or equal to up to a positive multiplicative 

constant’. The following theorem provides an upper bound for the remainder term of 

interest.

THEOREM 3 (UPPER BOUNDS ON REMAINDER TERM). For each P ∈ ℳ, the remainder term, admits 
the following upper bounds:

Under ℋ0: RemP
Ψ ≲ K0P ≜ LP

RS
2, P0

MP
RS

2, P0
+ LP

RS
1, P0

2 + MP
RS

4, P0

4

Under ℋ1: RemP
Ψ ≲ K1P ≜ LP

RS
1, P0

MP
RS

2, P0

2 .

To develop a test procedure, we will require an estimator of P0, which will play the role of P 
in the above expressions. It is helpful to think of parametric model theory when interpreting 

the above result, with the understanding that certain smoothing methods, such as higher-

order kernel smoothing, can achieve near-parametric rates in certain settings. In a parametric 

model where P0 is estimated with Pn (e.g., a maximum likelihood estimator), we could often 

expect ∥ L
Pn

RS ∥p, P0
 and ∥ M

Pn

RS ∥p, P0
 to be OP0

n−1  and OP0
n−1/2 , respectively, for p ≥ 1. 
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Thus, the above theorem suggests that the approximation error may be OP0
(n−3/2) in a 

parametric model under ℋ0. In some examples, it is reasonable to expect that L
Pn

RS ≡ 0 for a 

large class of distributions P. In such cases, the upper bound on Rem
Pn

Ψ  simplifies to 

∥ M
Pn

RS ∥4, P0
4  under ℋ0, which under a parametric model is often OP0

(n−2).

To make these results more concrete, we consider the special case where RP, SP, DP
R, and DP

S

are smooth mappings of regression functions under P conditional on the d−dimensional 

covariate W (e.g., as in Example 3 – see Section 5). Suppose that all of these regression 

functions under P0 are at least ℓ−times differentiable. In this case, rates of convergence for 

the remainder terms are well understood for kernel smoothers using kernels of sufficiently 

high order. In particular, each regression function converges at rate n
− ℓ

2ℓ + d  in L2(P0). 

Under ℋ0, one could rely on ∥ M
Pn

RS ∥2, P0
 being oP0

(n−1/3) and ∥ L
Pn

RS ∥2, P0
 being oP0

(n−2/3). 

If L
Pn

RS is second-order, this would generally require ℓ > d, which is more stringent than the 

usual ℓ > d/2 requirement for standard first-order estimators. If, on the other hand, L
Pn

RS ≡ 0, 

then we require that ∥ M
Pn

RS ∥4, P0
4  is oP0

(n−1) under ℋ0, which corresponds to requiring ℓ 

slightly greater than d/2.

3. Proposed test: formulation and inference under the null

3.1. Formulation of test

We begin by constructing an estimator of ψ0 from which a test can then be devised. Using 

the fact that Ψ(P) = P2ΓP, as implied by (4), we note that if Γ0 were known, the U-statistic 

𝕌n Γ0 would be a natural estimator of ψ0, where 𝕌n denotes the empirical measure that 

places equal probability mass on each of the n(n − 1) points (Oi, Oj) with i ≠ j. In practice, 

Γ0 is unknown and must be estimated. This leads to the estimator ψn ≜ 𝕌n Γn, where we 

write Γn ≜ Γ
Pn

 for some estimator Pn of P0 based on the available data. Since a large value 

of ψn is inconsistent with ℋ0, we will reject ℋ0 if and only if ψn > cn for some 

appropriately chosen cutoff cn.

In the nonparametric model considered, it may be necessary, or at the very least desirable, to 

utilize a data-adaptive estimator Pn of P0 when constructing Γn. Studying the large-sample 

properties of ψn may then seem particularly daunting since at first glance we may be led to 

believe that the behavior of ψn – ψ0 is dominated by P0
2 ( Γn − Γ0 ). However, this is not the 

case. As we will see, under some conditions, ψn – ψ0 will approximately behave like 

(𝕌n − P0
2) Γ0. Thus, there will be no contribution of Pn to the asymptotic behavior of ψn – 
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ψ0. Though this result may seem counterintuitive, it arises because Ψ(P) can be expressed as 

P2ΓP with ΓP a second-order gradient (or rather an extension thereof) up to a proportionality 

constant. More concretely, this surprising finding is a direct consequence of (4).

As further support that ψn is a natural test statistic, even when a data-adaptive estimator Pn

of P0 has been used, we note that ψn could also have been derived using a second-order one-

step Newton-Raphson construction, as described in Robins et al. [2008]. The latter is given 

by

ψn, NR ≜ Ψ Pn + PnD1
Ψ Pn + 1

2𝕌nD2
Ψ Pn ,

where we use the centered extension of D2
Ψ as discussed in Section 2.3. Here and throughout, 

Pn denotes the empirical distribution. It is straightforward to verify that indeed ψn = ψn,NR.

3.2. Inference under the null

3.2.1. Asymptotic behavior—For each P ∈ ℳ, we let ΓP be the P0−centered 

modification of ΓP given by

ΓP o1, o2 ≜ ΓP o1, o2 − ∫ ΓP o1, o dP0 o − ∫ ΓP o, o2 dP0 o + P0
2 ΓP

and denote ΓP0
 by Γ0. While Γ0 = Γ0 under ℋ0, this is not true more generally. Below, we 

use Remn
Ψ and Γn to respectively denote RemP

Ψ and ΓP evaluated at P = Pn. Straightforward 

algebraic manipulations allows us to write

ψn − ψ0 = 𝕌n Γn − ψ0 = 𝕌n Γn − P0
2 Γn + P0

2 Γn − ψ0

= 𝕌n − P0
2 Γn + Remn

Ψ

= 𝕌n Γ0 + 2 Pn − P0 P0 Γn + 𝕌n Γn − Γ0 + Remn
Ψ .

(5)

Our objective is to show that n (ψn – ψ0) behaves like n𝕌n Γ0 as n gets large under ℋ0. In 

view of (5), this will be true, for example, under conditions ensuring that

C1) n(Pn − P0)P0 Γn = oP0
(1) (empirical process and consistency conditions);

C2) n𝕌n Γn − Γ0 = oP0
(1) (U−process and consistency conditions);

C3) nRemn
Ψ = oP0

(1) (consistency and rate conditions).

We have already argued that C3) is reasonable in many examples of interest, including those 

presented in this paper. Nolan and Pollard [1987, 1988] developed a formal theory that 

controls terms of the type appearing in C2). In Supplementary Appendix B.1 we restate 
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specific results from these authors which are useful to study C2). Finally, the following 

lemma gives sufficient conditions under which C1) holds. We first set 

K1n ≜ ∥ L
Pn

RS ∥1, P0
+ ∥ M

Pn

RS ∥2, P0
2 .

LEMMA 1 (SUFFICIENT CONDITIONS FOR C1)). Suppose that o1 ↦ ∫ Γn(o1, o)dP0(o)/K1n, defined 
to be zero if K1n = 0, belongs to a P0−Donsker class [van der Vaart and Wellner, 1996] with 
probability tending to 1. Then, under ℋ0,

Pn − P0 P0 Γn = OP0

K1n
n

and thus C1) holds whenever K1n = oP0
(n−1/2).

The following theorem describes the asymptotic distribution of nψn under the null 

hypothesis whenever conditions C1), C2) and C3) are satisfied.

THEOREM 4 (ASYMPTOTIC DISTRIBUTION UNDER ℋ0). Suppose that C1), C2) and C3) hold. Then, 

under ℋ0,

nψn = n𝕌n Γ0 + oP0
1 ∑

k = 1

∞
λk Zk

2 − 1 ,

where λk k = 1
∞  are the eigenvalues of the integral operator h(o) ↦ ∫ Γ0 (o1, o)h(o1)dP0(o1) 

repeated according to their multiplicity, and Zk k = 1
∞  is a sequence of independent standard 

normal random variables. Furthermore, all of these eigenvalues are nonnegative under ℋ0.

We note that by employing a sample splitting procedure – namely, estimating Γ0 on one 

portion of the sample and constructing the U−statistic based on the remainder of the sample 

– it is possible to eliminate the U−process conditions required for C2). In such a case, 

satisfaction of C2) only requires convergence of Γn to Γ0 with respect to the L2(P0
2)-norm. 

This sample splitting procedure would also allow one to avoid the empirical process 

conditions in C1): in particular, o ↦ P0Γn(o, ·) would need to converge to zero, but no 

further requirements would then be needed on Γn for C1) to be satisfied. We also note that 

the L2(P0) consistency of o ↦ P0Γn(o, ·) and the L2(P0
2) consistency of Γn are implied by the 

L2(P0
2) consistency of Γn for Γ0, and so when sample splitting is used one could replace C1) 

and C2) by this single consistency condition.

We note also that, if sample splitting is not used, then one could replace C1) and C2) by this 

single consistency condition and the added assumption that Γn belongs to a class with a 

finite uniform entropy integral. See Supplementary Appendix B.2 for a proof that this 

suffices to imply the needed empirical process conditions for C1). It is also straightforward 
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to show that controlling the entropy of the class to which Γn may belong also controls the 

entropy of the class to which the linear transformation Γn of Γn may belong.

REMARK 3. In Example 4, sample splitting may prove particularly important when the 

estimator of EP0
(Y W = w) is chosen as the minimizer of an empirical risk since in finite 

samples the bias induced by using the same residuals y − E
Pn

(Y W = w) as those in the 

definition of D
Pn

R (o) may be significant. Thus, without some form of sample splitting, the 

finite sample performance of ψn may be poor even under the conditions stated in 
Supplementary Appendix B.1. □

3.2.2. Estimation of the test cutoff—As indicated above, our test consists of rejecting 

ℋ0 if and only if ψn is larger than some cutoff cn. We wish to select cn to yield a non-

conservative test at level α ∈ (0,1). In view of Theorem 4, denoting by q1−α the 1 – α 
quantile of the described limit distribution, the cutoff cn should be chosen to be q1−α/n. We 

thus reject ℋ0 if and only if nψn > q1−α. As described in the following corollary, q1−α 

admits a very simple form when SP ≡ 0 for all P.

COROLLARY 2 (ASYMPTOTIC DISTRIBUTION UNDER ℋ0, S DEGENERATE). Suppose that C1), C2) and 

C3) hold, that SP ≡ 0 for all P ∈ ℳ, and that σR
2 ≜ VarP0

[D0
R(O) ] > 0. Then, under ℋ0,

nψn

2σR
2 Z2 − 1,

where Z is a standard normal random variable. It follows then that q1 − α = 2σR
2 (z1 − α/2

2 − 1), 

where z1−α/2 is the (1 − α/2) quantile of the standard normal distribution.

The above corollary gives an expression for q1−α that can easily be consistently estimated 

from the data. In particular, one can use q1 − α ≜ 2(z1 − α/2
2 − 1)PnDR(Pn)2 as an estimator of 

q1−α, whose consistency can be established under a Glivenko-Cantelli and consistency 

condition on the estimator of D0
R. However, in general, such a simple expression will not 

exist. Gretton et al. [2009] proposed estimating the eigenvalues νk of the centered Gram 

matrix and then computing λk ≜ νk /n. In our context, the eigenvalues νk are those of the n × 

n matrix G ≜ Gi j 1 ≤ i, j ≤ n
 with entries defined as

Gi j ≜ Γn Oi, O j − 1
n ∑

k = 1

n
Γn Ok, O j − 1

n ∑
ℓ = 1

n
Γn Oi, Oℓ + 1

n2 ∑
k = 1

n
∑

ℓ = 1

n
Γn Ok, Oℓ . (6)
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Given these n eigenvalue estimates λ1, …, λn, one could then simulate from 

∑k = 1
n λk(Zk

2 − 1) to approximate ∑k = 1
∞ λk(Zk

2 − 1). While this seems to be a plausible 

approach, a formal study establishing regularity conditions under which this procedure is 

valid is beyond the scope of this paper. We note that it also does not fall within the scope of 

results in Gretton et al. [2009] since their kernel does not depend on estimated nuisance 

parameters. We refer the reader to Franz [2006] for possible sufficient conditions under 

which this approach may be valid. Though we do not have formal regularity conditions 

under which this procedure is guaranteed to maintain the type I error level, our simulation 

results do seem to suggest appropriate control in practice (Section 6).

In practice, it suffices to give a data-dependent asymptotic upper bound on q1−α. We will 

refer to q1 − α
ub , which depends on Pn, as an asymptotic upper bound of q1−α if

limsup
n ∞

P0
n nψn > q1 − α

ub ≤ 1 − α . (7)

If q1−α is consistently estimated, one possible choice of q1 − α
ub  is this estimate of q1−α – the 

inequality above would also become an equality provided the conclusion of Theorem 4 

holds. It is easy to derive a data-dependent upper bound with this property using 

Chebyshev’s inequality. To do so, we first note that

VarP0
∑

k = 1

∞
λk Zk

2 − 1 = ∑
k = 1

∞
λk
2VarP0

Zk
2 = 2 ∑

k = 1

∞
λk
2 = 2P0

2 Γ0
2 ,

where we have interchanged the variance operation and the limit using the L2 martingale 

convergence theorem and the last equality holds because λk, k = 1, 2,…, are the eigenvalues 

of the Hilbert-Schmidt integral operator with kernel Γ0. Under mild regularity conditions, 

P0
2 Γ0

2 can be consistently estimated using 𝕌n Γn
2. Provided P0

2 Γ0
2 > 0, we find that

2𝕌n Γn
2 −1/2nψn 2P0

2 Γ0
2 −1/2 ∑

k = 1

∞
λk Zk

2 − 1 , (8)

where the limit variate has mean zero and unit variance. The following theorem gives a valid 

choice of q1 − α
ub .

THEOREM 5. Fix α ∈ (0, 1) and suppose that C1), C2) and C3) hold. Then, under ℋ0 and 

provided 𝕌n Γn
2 P0

2 Γ0
2 > 0 in probability, q1 − α

ub ≜ (2[1 − α]𝕌n Γn
2 /α)1/2 ≥ q1 − α is a 

valid upper bound in the sense of (7).
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The proof of the result follows immediately by noting that P(X > t) ≤ (1 + t2)−1 for any 

random variable X with mean zero and unit variance in view of the one-sided Chebyshev’s 

inequality. For α = 0.05, the above demonstrates that a conservative cutoff is 

6.2 ⋅ (𝕌n Γn
2 )1/2

. This theorem illustrates concretely that we can obtain a consistent test that 

controls type I error. In practice, we recommend either using the result of Corollary 2 

whenever possible or estimating the eigenvalues of the matrix in (6).

We note that the condition σR
2 > 0 holds in many but not all examples of interest. 

Fortunately, the plausibility of this assumption can be evaluated analytically. In Section 5, 

we show that this condition does not hold in Example 5 and provide a way forward despite 

this.

4. Asymptotic behavior under the alternative

4.1. Consistency under a fixed alternative

We present two analyses of the asymptotic behavior of our test under a fixed alternative. The 

first relies on Pn providing a good estimate of P0. Under this condition, we give an 

interpretable limit distribution that provides insight into the behavior of our estimator under 

the alternative. As we show, surprisingly, Pn need not be close to P0 to obtain an 

asymptotically consistent test, even if the resulting estimate of ψ0 is nowhere near the truth. 

In the second analysis, we give more general conditions under which our test will be 

consistent if ℋ1 holds.

4.1.1. Nuisance functions have been estimated well—As we now establish, our 

test has power against all alternatives P0 except for the fringe cases discussed in Corollary 1 

with Γ0 one-degenerate. We first note that

ψn − ψ0 = 𝕌n Γn − ψ0 = 2 Pn − P0 P0 Γn + 𝕌n Γn + RemP
Ψ .

When scaled by n, the leading term on the right-hand side follows a mean zero normal 

distribution under regularity conditions. The second summand is typically OP0
(n−1) under 

certain conditions, for example, on the entropy of the class of plausible realizations of the 

random function (o1, o2) ↦ Γn(o1, o2) [Nolan and Pollard, 1987, 1988]. In view of the 

second statement in Theorem 3, the third summand is a second-order term that will often be 

negligible, even after scaling by n. As such, under certain regularity conditions, the leading 

term in the representation above determines the asymptotic behavior of ψn, as described in 

the following theorem.

THEOREM 6 (ASYMPTOTIC DISTRIBUTION UNDER ℋ1). Suppose that K1n = oP0
(n−1/2), that 

𝕌n Γn = oP0
(n−1/2), and furthermore, that o ↦ ∫ Γn(o1, o)dP0(o) belongs to a fixed 
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P0−Donsker class with probability tending to 1 while ∥ P0 ( Γn − Γ0 ) ∥2, P0
= oP0

(1). If ℋ1

holds, we have that n(ψn − ψ0) N (0, τ2), where τ2 ≜ 4VarP0 ∫ Γ0 (O, o)dP0(o) .

In view of the results of Section 2, τ2 coincides with σ0
2, the efficiency bound for regular, 

asymptotically linear estimators in a nonparametric model. Hence, ψn is an asymptotically 

efficient estimator of ψ0 under ℋ1. Sufficient conditions for ∫ Γn(o1, o)dP0(o) to belong to a 

fixed P0−Donsker class with probability approaching one are given in Supplementary 

Appendix B.2.

The following corollary is trivial in light of Theorem 6. It establishes that the test 

nψn > q1 − α
ub  is consistent against (essentially) all alternatives provided the needed 

components of the likelihood are estimated sufficiently well.

COROLLARY 3 (CONSISTENCY UNDER A FIXED ALTERNATIVE). Suppose the conditions of Theorem 6. 

Furthermore, suppose that τ2 > 0 and q1 − α
ub = oP0

(n). Then, under ℋ1, the test nψn > q1 − α
ub

is consistent in the sense that

lim
n ∞

P0
n nψn > q1 − α

ub = 1.

The requirement that q1 − α
ub = oP0

(n) is very mild given that q1−α will be finite whenever 

R, S ∈ 𝒮. As such, we would not expect q1 − α
ub  to get arbitrarily large as sample size grows, 

at least beyond the extent allowed by our corollary. This suggests that most non-trivial upper 

bounds satisfying (7) will yield a consistent test.

4.1.2. Nuisance functions have not been estimated well—We now consider the 

case where the nuisance functions are not estimated well, in the sense that the consistency 

conditions of Theorem 6 do not hold. In particular, we argue that failure of these conditions 

does not necessarily undermine the consistency of our test. Let q1 − α
ub  be the estimated cutoff 

for our test, and suppose that q1 − α
ub = oP0

(n). Suppose also that P0
2 Γn is asymptotically 

bounded away from zero in the sense that, for some δ > 0, P0
n P0

2 Γn > δ  tends to one. This 

condition is reasonable given that P0
2 Γ0 > 0 if ℋ1 holds and Pn is nevertheless a (possibly 

inconsistent) estimator of P0. Assuming that (𝕌n − P0
2) Γn = OP0

(n−1/2), which is true under 

entropy conditions on Γn [Nolan and Pollard, 1987, 1988], we have that

P0
n nψn > q1 − α

ub = P0
n n[𝕌n − P0

2] Γn >
q1 − α

ub

n
− nP0

2 Γn 1.
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We have accounted for the random n−1/2q1 − α
ub  term as in the proof of Corollary 3. Of 

course, this result is less satisfying than Theorem 6, which provides a concrete limit 

distribution.

4.2. Consistency under a local alternative

We consider local alternatives of the form

dQn(o) = 1 + n−1/2hn(o) dP0(o),

where hn → h in Γ0
2 (P0) for some non-degenerate h and P0 satisfies the null hypothesis ℋ0. 

Suppose that the conditions of Theorem 4 hold. By Theorem 2.1 of Gregory [1977], we have 

that

n𝕌n Γ0
Qn ∑

k = 1

∞
λk (Zk + f k, h )2 − 1 ,

where 𝕌n is the U−statistic empirical measure from a sample of size n drawn from Qn, 〈·, ·〉 

is the inner product in L2(P0), Zk and λk are as in Theorem 4, and fk is a normalized 

eigenfunction corresponding to eigenvalue λk described in Theorem 4. By the contiguity of 

Qn, the conditions of Theorem 4 yield that the result above also holds with 𝕌n Γ0 replaced by 

𝕌n Γn, our estimator applied to a sample of size n drawn from Qn.

If each λk is non-negative, the limiting distribution under Qn stochastically dominates the 

asymptotic distribution under P0, and furthermore, if 〈fk, h〉 ≠ 0 for some k with λk > 0, this 

dominance is strict. It is straightforward to show that, under the conditions of Theorem 4, the 

above holds if and only if liminfn n Ψ (Qn) > 0, that is, if the sequence of alternatives is not 

too hard. Suppose that q1 − α, is a consistent estimate of q1−α. By Le Cam’s third lemma, 

q1 − α, is consistent for q1−α even when the estimator is computed on samples of size n 

drawn from Qn rather than P0. This proves the following theorem.

THEOREM 7 (CONSISTENCY UNDER A LOCAL ALTERNATIVE). Suppose that the conditions of Theorem 
4 hold. Then, under ℋ0 and provided lim liminfn ∞ n Ψ (Qn) > 0, the proposed test is 

locally consistent in the sense that limn ∞Qn (nψn > q1 − α) > α, where q1 − α is a 

consistent estimator of q1−a.

5. Illustrations

We now return to Examples 2, 3, 4, and 5. We do not return to Example 1 because it has 

already been well-studied, e.g. the fixed sample size variant was studied in detail in Gretton 

et al. [2006]. We first show that Examples 2, 3 and 4 satisfy the regularity conditions 

described in Section 2. Specifically, we show that all involved parameters R and S belong to 

𝒮 under reasonable conditions. Furthermore, we determine explicit remainder terms for the 
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asymptotic representation used in each example and describe conditions under which these 

remainder terms are negligible. For any T ∈ 𝒮, we will use the shorthand notation 

Ṫ t (x
T) ≜ d

dt TPt
(xT)

t = t
 for t  in a neighborhood of zero.

Example 2 (Continued).

The parameter S with SP ≡ 0 belongs to 𝒮 trivially, with DP
S ≡ 0. Condition (S1) holds with 

xR(o) = w. Condition (S2) holds using that Rt(w) equals

∑
a = 0

1
( − 1)a + 1∫ y

1 + th1(w, a, y) + t2h2(w, a, y)
1 + tEP0

[h1(w, A, Y)] + t2EP0
[h2(w, A, Y)]

dP0(y a, w) . (9)

Since we must only consider h1 and h2 uniformly bounded, for t sufficiently small, we see 

that Rt(w) is twice continuously differentiable with uniformly bounded derivatives. 

Condition (S3) is satisfied by

DP
R(o) ≜ 2a − 1

P (A = a W = w){y − EP [Y A = a, W = w]}

and DP
S ≡ 0. If mina P (A = a | W) is bounded away from zero with probability 1 uniformly 

in P, it follows that (P, o) DP
R(o) is uniformly bounded.

Clearly, we have that RemP
S ≡ 0. We can also verify that RemP

R(o) equals

∑
a = 0

1
( − 1)aEP0

1 −
P0 (A = a W)
P (A = a W) × [EP (Y A, W) − EP0

(Y A, W)] A = a, W = w .

The above remainder is double robust in the sense that it is zero if either the treatment 

mechanism (i.e., the probability of A given W) or the outcome regression (i.e., the expected 

value of Y given A and W) is correctly specified under P. In a randomized trial where the 

treatment mechanism is known and specified correctly in P, we have that RemP
R ≡ 0 and thus 

LP
RS ≡ 0. More generally, an upper bound for RemP

R can be found using the Cauchy-Schwarz 

inequality to relate the rate of ∥ RemP
R ∥2, P0

 to the product of the L2(P0)-norm for the 

difference between each of the treatment mechanism and the outcome regression under P 
and P0.

Example 3 (Continued).

For (S1) we take xR = xS = w. Condition (S2) can be verified using an expression similar to 

that in (9). Condition (S3) is satisfied by
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DP
R(o) ≜ a

P (A = a W = w) [y − EP (Y A = a, W = w)]

DP
S (o) ≜ 1 − a

P (A = a W = w) [y − EP (Y A = a, W = w)] .

If mina P (A = a | W) is bounded away from zero with probability 1 uniformly in P, both 

(P, o) DP
R(o) and (P, o) DP

S(o) are uniformly bounded.

Similarly to Example 2, we have that RemP
R(o) is equal to

EP0
1 −

P0 (A = 1 W)
P (A = 1 W) [EP (Y A, W) − EP0

(Y A, W)] A = 1, W = w .

The remainder RemP
S(o) is equal to the above display but with A = 1 replaced by A = 0. The 

discussion about the double robust remainder term from Example 2 applies to these 

remainders as well.

Example 4 (Continued).

The parameter S is the same as in Example 2. The parameter R satisfies (S1) with xR(o) = w 
and (S2) by an identity analogous to that used in Example 2. Condition (S3) is satisfied by 

DP
R(o) ≜ y − EP (Y W = w). By the bounds on Y, (P, o) DP

R(o) is uniformly bounded. 

Here, the remainder terms are both exactly zero: RemP
R ≡ RemP

S ≡ 0. Thus, we have that 

LP
RS ≡ 0 in this example.

The requirement that VarP0
D0

R(O) > 0 in Corollary 2, and more generally that there exist a 

nonzero eigenvalue λj for the limit distribution in Theorem 4 to be nondegenerate, may at 

times present an obstacle to our goal of obtaining asymptotic control of the type I error. This 

is the case for Example 5, which we now discuss further. Nevertheless, we show that with a 

little finesse the type I error can still be controlled at the desired level for the given test. In 

fact, the test we discuss has type I error converging to zero, suggesting it may be noticeably 

conservative in small to moderate samples.

Example 5 (Continued).

In this example, one can take xR = w and xS = w(−k). Furthermore, it is easy to show that

DP
R(o) = Y − EP [Y W = w]

DP
S (o) = Y − EP [Y W( − k) = w( − k)] .
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The first-order approximations for R and S are exact in this example as the remainder terms 

RemP
R and RemP

S  are both zero. However, we note that if EP (Y | W) = EP (Y | W (−k)) almost 

surely, it follows that DP
R ≡ DP

S . This implies that Γ0 ≡ 0 almost surely under ℋ0. As such, 

under the conditions of Theorem 4, all of the eigenvalues in the limit distribution of nψn in 

Theorem 4 are zero and nψn → 0 in probability. We are then no longer able to control the 

type I error at level α, rendering our proposed test invalid.

Nevertheless, there is a simple albeit unconventional way to repair this example. Let A be a 

Bernoulli random variable, independent of all other variables, with fixed probability of 

success p ∈ (0,1). Replace SP with o ↦ EP (Y | A = 1, W(−k) = w(−k)) from Example 3, 

yielding then

DP
S (o) = a

p [y − EP (Y A, W( − k) = w( − k))] .

It then follows that D0
R ≡ D0

S and in particular Γ0 is no longer constant. In this case, the limit 

distribution given in Theorem 4 is non-degenerate. Consistent estimation of q1−α thus yields 

a test that asymptotically controls type I error. Given that the proposed estimator ψn 

converges to zero faster than n−1, the probability of rejecting the null approaches zero as 

sample size grows. In principle, we could have chosen any positive cutoff given that nψn → 
0 in probability, but choosing a more principled cutoff seems judicious.

Because p is known, the remainder term RemP
S  is equal to zero. Furthermore, in view of the 

independence between A and all other variables, one can estimate EP0
(Y A = 0, W( − k)) by 

regressing Y on W(−k) using all of the data without including the covariate A.

In future work, it may also be worth checking to see if the parameter is third-order 

differentiable under the null, and if so whether or not this allows us to construct an α−level 

test without resorting to an artificial source of randomness.

6. Simulation studies

In simulation studies, we have explored the performance of our proposed test in the context 

of Examples 2, 3 and 4, and have also compared our method to the approach of Racine et al. 

[2006] for which software is readily available – see, e.g., the R package np [Hayfield and 

Racine, 2008]. We evaluate the performance of computing the eigenvalues of the Gram 

matrix defined in (6) for Example 3 in two different scenarios. We report the results of our 

simulation studies in this section.

In all simulation settings, we consider an adaptive bandwidth selection procedure that is a 

variant of the median heuristic that has been employed in the classical MMD setting where P 
↦ RP and P ↦ SP do not depend on P [Gretton et al., 2012a]. In that case, the median 

heuristic selects the bandwidth to be equal to the median of the 2n × 2n Euclidean distance 

matrix of {R(Oi) : i = 1, …, n} ⋃ {S(Oi) : i = 1, …, n}, where the subscript of R and S on a 
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distribution P has been omitted to emphasize the lack of this dependence in the classical 

MMD setting. In our case, we choose the bandwidth to be equal to the median of the 

Euclidean distance matrix between scalar or vector-valued observations (see Concluding 

Remark b in Section 7 for the extension to vector-valued unknown functions) in

{R
Pn

(Oi) + D
Pn

R (Oi) : i = 1, …, n} ∪ {S
Pn

(Oi) + D
Pn

S (Oi) : i = 1, …, n} .

This extension is natural in that R
Pn

+ D
Pn

R  and S
Pn

+ D
Pn

S  are reminiscent of one-step 

estimators [Pfanzagl, 1982] of the unknown R0 and S0, which should help this procedure 

account for the uncertainty in R
Pn

 and S
Pn

. Except where specified, every MMD result 

presented in this section uses thins mediann heuristic to select the bandwidth. We also 

compare this procedure to a fixed choice of bandwidth in two of our settings.

6.1. Simulation scenario 1

We use an observed data structure (W, A, Y), where W ≜ (W1, W2, …, W5) is drawn from a 

standard 5-dimensional normal distribution, A is drawn according to a Bernoulli(0.5) 

distribution, and Y = μ(A, W) + 5ξ(A, W), where the different forms of the conditional 

mean function μ(a, w) are given in Table 1, and ξ(a, w) is a random variate following a Beta 

distribution with shape parameters α = 3expit(aw2) and β= 2expit[(1 − a)w1] shifted to have 

mean zero, where expit(x) = 1/(1 + exp(−x)).

We performed tests of the null in which μ(1, W) is equal to μ(0, W) almost surely and in 

distribution, as presented in Examples 2 and 3, respectively. Our estimate Pn of P0 was 

constructed using the knowledge that P0 (A = 1 | W) = 1/2, as would be available, for 

example, in the context of a randomized trial. The conditional mean function μ(a, w) was 

estimated using the ensemble learning algorithm Super Learner [van der Laan et al., 2007], 

as implemented in the SuperLearner package [Polley and van der Laan, 2013]. This 

algorithm was implemented using 10-fold cross-validation to determine the best convex 

combination of regression function candidates minimizing mean-squared error using a 

candidate library consisting of SL.rpart, SL.glm.interaction, SL.glm, SL.earth, and SL.nnet. 

We used the results of Corollary 2 to evaluate significance for Example 2, and the eigenvalue 

approach presented in Section 3.2.2 to evaluate significance for Example 3, where we used 

all of the positive eigenvalues for n = 125 and the largest 200 positive eigenvalues for n > 

125 using the rARPACK package [Qiu et al., 2014].

To evaluate the performance of the adaptive bandwidth selection procedure in the context of 

a test of the equality in distribution of two unknown functions applied to w, namely μ(1, ·) 

and μ(0, ·), we also ran our procedure at fixed bandwidths with values 2k, k = −2, 1, 0, 1, 2. 

In the context of a test of the almost sure equality of μ(1,W) and μ(0, W), we compare our 

adaptive bandwidth selection procedure to fixing the bandwidth at one. The performance of 

the adaptive bandwidth selection procedure is evaluated in more detail for a null hypothesis 

of the almost sure equality of two unknown functions in our third simulation setting.
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We ran 1,000 Monte Carlo simulations with samples of size 125, 250, 500, 1000, and 2000, 

except for the np package, which we only ran for 500 Monte Carlo simulations. For 

Example 2 we compared our approach with that of Racine et al. [2006] using the npsigtest 

function from the np package. This requires first selecting a bandwidth, which we did using 

the npregbw function, specifying that we wanted a local linear estimator and the bandwidth 

to be selected using the cv.aic method [Hayfield and Racine, 2008].

Figure 1 displays the empirical null rejection probability of our test of equality in 

distribution of μ(1, W) and μ(0, W) for simulation scenarios 1a, 1b and 1c. In particular, we 

observe that our method is able to properly control type I error for Simulation 1a when 

testing the hypothesis that μ(1, W) is equal in distribution to μ(0, W). Type I error is also 

properly controlled in Simulation 1b, though the control of the fixed bandwidth procedures 

appears to be conservative at the larger sample sizes. We also note that the adaptive 

bandwidth yielded similar performance to the best considered fixed bandwidth of 1. Our 

selection procedure generally picked values with an average of around 1.5 – at large sample 

sizes, there was little variability around this average bandwidth, while at smaller sample 

sizes the selected bandwidths generally fell between 1.25 and 1.75. The adaptive procedure 

always controlled type I error at or near the nominal level and had power increasing with 

sample size and comparable to that of a fixed bandwidth of 1. Choosing the largest fixed 

bandwidth, namely 4, yielded no power at the alternative in Simulation 1c. Choosing the 

smallest fixed bandwidth, namely 1/4, yielded inflated type I error levels at one of the null 

distributions, namely Simulation 1b.

Figure 2 displays the empirical coverage of our approach as well as that resulting from use 

of the np package. At smaller sample sizes, our method does not appear to control type I 

error near the nominal level. This is likely because we use an asymptotic result to compute 

the cutoff, even when the sample size is small. Nevertheless, as sample size grows, the type I 

error of our test approaches the nominal level. We note that choosing the fixed unit 

bandwidth outperforms the median heuristic bandwidth selection procedure in this setting, 

especially in terms of power Simulation 1b. We note that in Racine et al. [2006], unlike in 

our proposal, the bootstrap was used to evaluate the significance of the proposed test. It will 

be interesting to see if applying a bootstrap procedure at smaller sample sizes improves our 

small-sample results. At larger sample sizes, it appears that the method of Racine et al. 

outperforms our approach in terms of power in simulation scenarios 1b and 1c. At smaller 

sample sizes (125, 250, 500), our method achieves higher power than that of Racine et al., 

but at the expense of double the type I error of that of Racine et al.: therefore, it appears that 

the method of Racine et al. outperforms our approach in Simulations 1a, 1b, and 1c when 

testing the null hypothesis that μ(1, W) – μ(0, W) is almost surely equal to zero. 

Nonetheless, we note that the generality of our approach allows us to apply our test in more 

settings than a test using the method of Racine et al.. For example, we are not aware of any 

other test devised to test the equality in distribution of μ(1, W) and μ(0, W) (Figure 1).

6.2. Simulation scenario 2: comparison with Racine et al. [2006]

We reproduced a simulation study from Section 4.1 of Racine et al. [2006] at sample size n 

= 100. In particular, we let Y = 1 + βA(1 + W2
2) + W1 + W2 + ϵ, where A, W1, and W2 are 
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drawn independently from Bernoulli(0.5), Bernoulli(0.5), and N(0,1) distributions, 

respectively. The error term ϵ is unobserved and drawn from a N(0,1) distribution 

independently of all observed variables. The parameter β was varied over values −0.5, −0.4,

…, 0.4, 0.5 to achieve a range of distributions. The goal is to test whether E0 (Y | A, W) = E0 

(Y | W) almost surely, or equivalently, that μ(1, W) – μ(0, W) = 0 almost surely.

Due to computational constraints, we only ran the ‘Bootstrap I test’ to evaluate significance 

of the method of Racine et al. [2006]. As the authors report, this method is anticonservative 

relative to their ‘Bootstrap II test’ and indeed achieves lower power (but proper type I error 

control) in their simulations.

Except for two minor modifications, our implementation of the method in Example 2 is 

similar to that as for Simulation 1. For a fair comparison with Racine et al. [2006], in this 

simulation study, we estimated P0 (A = 1 | W) rather than treating it as known. We did this 

using the same Super Learner library and the ‘family=binomial’ setting to account for the 

fact that A is binary. We also scaled the function μ(1, w) – μ(0, w) by a factor of 5 to ensure 

most of the probability mass of R0 falls between −1 and 1 (around 99% when β = 0). We 

note that even with scaling the variable Y is not bounded as our regularity conditions 

require. Nonetheless, an evaluation of our method under violations of our assumptions can 

itself be informative.

Figure 3 displays the empirical null rejection probability of our test as well as that of Racine 

et al. [2006]. In this setup, used by the authors themselves to showcase their test procedure, 

our method performs comparably to their proposal, with slightly lower type I error (closer to 

nominal) and slightly lower power.

6.3. Simulation scenario 3: higher dimensions

We also explored the performance of our method as extended to tackle higher-dimensional 

hypotheses, as discussed in Section 7. To do this, we used the same distribution as for 

Simulation 1 but with Y now a 20-dimensional random variable. Our objective here was to 

test μ(1,W) – μ (0, W) is equal to (0,0, …, 0) in probability, where 

μ(a, w) ≜ (μ1(a, w), μ2(a, w), …, μ20(a, w)) with μ j(a, w) ≜ E0 (Y j A = a, W = w). Conditional 

on A and W, the coordinates of Y are independent. We varied the number of coordinates that 

represent signal and noise. For signal coordinate j, given A and W, 20Yj was drawn from the 

same conditional distribution as Y give A and W in Simulation 1c. For noise coordinate j, 
given A and W, 20Yj was drawn from the same conditional distribution as Y given A and W 
in Simulation 1a.

Relative to Simulation 1, we have scaled each coordinate of the outcome to be one twentieth 

the size of the outcome in Simulation 1. Apart from the adaptive bandwidth selection 

procedure discussed at the beginning of this section, we considered defining the MMD with 

a Gaussian kernel with bandwidths of 1/4, 1/2, 1, and 2. Alternatively, this could be viewed 

as considering bandwidths 5, 10, 20, and 40 if the outcome had not been scaled by 1/20.

We ran the same Super Learner to estimate μ(1,w) as in Simulation 1, and we again treated 

the probability of treatment given covariates as known. We evaluated significance by 
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estimating all of the positive eigenvalues of the centered Gram matrix for n = 125 and the 

largest 200 positive eigenvalues of the centered Gram matrix for n > 125.

In Figure 4, the empirical null rejection probability is displayed for our proposed MMD 

method. We did not include the results for sample size 125 in the figure because type I error 

control was too poor. For example, for zero signal coordinates, the probability of rejection 

was 0.24 for bandwidth 1 and 0.33 for bandwidth 1/2. The adaptive bandwidth method 

performs comparably to the procedure that a priori fixes the bandwidth at 1/2. This 

observation is consistent with the fact that, across all signal levels and sample sizes, the 

selected bandwidth was closely concentrated about 1/2 for all Monte Carlo repetitions: the 

minimal selected bandwidth was 0.49 and the maximal selected bandwidth was 0.59. 

Among the considered fixed bandwidths, 1/2 or 1/4 seem to be the best at the largest sample 

sizes (1000, 2000), with the tradeoff between the two being that a bandwidth of 1/4 

increases power (substantially for a signal of 5) at the cost of inflating type I error. At 

smaller sample sizes, the bandwidth of 1/4 yields unacceptably inflated type I error (0.4 at n 
= 250 and 0.15 at n = 500). Our adaptive bandwidth procedure appears to control type I error 

well at moderate to large sample sizes (i.e., n ≥ 500). This simulation shows that, overall, our 

method indeed has increasing power as sample size grows or as the number of coordinates j 
for which μj(1, W) – μj(0, W) not equal to zero in probability increases. The only sample 

size and signal number at which our adaptive bandwidth procedure appears to be 

outperformed by a fixed bandwidth is at 2000: a fixed bandwidth of 1/4 attains nominal 

coverage at this sample size but dramatically outperforms the adaptive bandwidth when the 

signal is 5. This discrepancy disappears when the signal is 10.

7. Concluding remarks

We have presented a novel approach to test whether two unknown functions are equal in 

distribution. Our proposal explicitly allows, and indeed encourages, the use of flexible, data-

adaptive techniques for estimating these unknown functions as an intermediate step. Our 

approach is centered upon the notion of maximum mean discrepancy, as introduced in 

Gretton et al. [2006], since the MMD provides an elegant means of contrasting the 

distributions of these two unknown quantities. In their original paper, these authors showed 

that the MMD, which in their context tests whether two probability distributions are equal 

using n random draws from each distribution, can be estimated using a U− or V−statistic. 

Under the null hypothesis, this U- or V−statistic is degenerate and converges to the true 

parameter value quickly. Under the alternative, it converges at the standard n−1/2 rate. 

Because this parameter is a mean over a product distribution from which the data were 

observed, it is not surprising that a U− or V−statistic yields a good estimate of the MMD. 

What is surprising is that we were able to construct an estimator with these same rates even 

when the null hypothesis involves unknown functions that can only be estimated at slower 

rates. To accomplish this, we used recent developments from the higher-order pathwise 

differentiability literature. Our simulation studies indicate that our asymptotic results are 

meaningful in finite samples, and that in specific examples for which other methods exist, 

our methods generally perform at least as well as these established, tailor-made methods. Of 

course, the great appeal of our proposal is that it applies to a much wider class of problems.

Luedtke et al. Page 25

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In our simulation study, we adapted the median heuristic for selecting the Gaussian kernel 

bandwidth to our setting in which R0 and S0 are unknown. In some settings, this bandwidth 

selection procedure performed well in our simulation compared to specifying a fixed 

bandwidth in our simulation, though we did note settings where the adaptive procedure 

underperformed relative to using a fixed bandwidth. An advantage of this adaptive 

bandwidth selection procedure compared to selecting a fixed bandwidth (e.g., the unit 

bandwidth) is that it yields a procedure that is invariant to a rescaling of the unknown 

functions R0 and S0. For the classical MMD setting in which R0 and S0 are known functions, 

Gretton et al. [2012b] showed that other bandwidth selection procedures can outperform the 

median heuristic. One such procedure involves selecting the bandwidth to maximize an 

estimate of the power of the test of the null hypothesis of equality in distribution of R0(O) 

and S0 (O), subject to a constraint on the estimated type I error. Extending these procedures 

to our setting where R0 and S0 are unknown is an important area for future research.

We conclude with several possible extensions of our method that may increase further its 

applicability and appeal.

(a) Although this condition is satisfied in all but one of our examples, requiring R 
and S to be in 𝒮 can be somewhat restrictive. Nevertheless, it appears that this 

condition may be weakened by instead requiring membership to 𝒮*, the class of 

all parameters T for which there exist some M < ∞ and elements T1, T2, …, TM 

in 𝒮 such that T = ∑m = 1
M Tm. While the results in our paper can be established 

in a similar manner for functions in this generalized class, the expressions for 

the involved gradients are quite a bit more complicated. Specifically, we find 

that, for T , U ∈ 𝒮* with T = ∑m = 1
M Tm and U = ∑𝓁 = 1

L U𝓁, the quantity 

ΓP
TU (o1, o2) equals

e
−[TP(o1) − UP(o2)]2

+ ∑
ℓ = 1

L
EP 2 [TP(o1) − UP(O)]e

−[TP(o1) − UP(O)]2
XUℓ

= x2
Uℓ

DP
Uℓ

(o2) − ∑
m = 1

M
EP 2 [TP(O) − UP(o2)]e

−[TP(O) − UP(o2)]2
XTm

= x1
Tm

DP
Tm

(o1) −

∑
ℓ = 1

L
∑

m = 1

M
E

P2 4 [TP(O1) − UP(O2)]2 − 2 e
−[TP(O1) − UP(O2)]2

X1
Tℓ

= x1
Tℓ

, X2
Um

= x2
Um

DP
Tℓ

(o1)DP
Um

(o2) .

In particular, we note the need for conditional expectations with respect to XRm

and XSm
 in the definition of Γ, which could render the implementation of our 

method more difficult. While we believe this extension is promising, its 

practicality remains to be investigated.
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(b) While our paper focuses on univariate hypotheses, our results can be generalized 

to higher dimensions. Suppose that P ↦ RP and P ↦ SP are ℝd-valued 

functions on 𝒪. The class 𝒮d of allowed such parameters can be defined 

similarly as 𝒮, with all original conditions applying componentwise. The MMD 

for the vector-valued parameters R and S using the Gaussian kernel is given by 

Ψd (P) ≜ Φd
RR (P) − 2 Φd

RS (P) + Φd
SS (P), where for any T , U ∈ 𝒮d we set

Φd
TU (P) ≜ ∫ ∫ e

− TP(o1) − UP(o2) 2
dP(o1)dP(o2) .

It is not difficult to show then that, for any T , U ∈ 𝒮d(P0), Γd, P
TU (o1, o2) is given 

by

2 [TP(o1) − UP(o2)]′ [DP
U(o2) − DP

T(o1) ] + 1 − 2DP
T(o1)′ 2 [TP(o1) − UP(o2)] [TP(o1) − UP

(o2)]′ − Id DP
U(o2) × e

− TP(o1) − UP(o2) 2
,

where Id denotes the d−dimensional identity matrix and A′ denotes the 

transpose of a given vector A. Using these objects, the method and results 

presented in this paper can be replicated in higher dimensions rather easily.

(c) Our results can be used to develop confidence sets for infinite dimensional 

parameters by test inversion. Consider a parameter T satisfying our conditions. 

Then one can test if R0 ≜ T0 − f  is equal in distribution to zero for any fixed 

function f that does not rely on P. Under the conditions given in this paper, a 1 – 

α confidence set for T0 is given by all functions f for which we do not reject ℋ0
at level α. The blip function from Example 2 is a particularly interesting 

example, since a confidence set for this parameter can be mapped into a 

confidence set for the sign of the blip function, i.e. the optimal individualized 

treatment strategy [Robins, 2004]. We would hope that the omnibus nature of the 

test implies that the confidence set does not contain functions f that are “far 

away” from T0, contrary to a test which has no power against certain 

alternatives. Formalization of this claim is an area of future research.

(d) To improve upon our proposal for nonparametrically testing variable importance 

via the conditional mean function, as discussed in Section 5, it may be fruitful to 

consider the related Hilbert Schmidt independence criterion [Gretton et al., 

2005]. Higher-order pathwise differentiability may prove useful to estimate and 

infer about this discrepancy measure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Empirical probability of rejecting the null when testing the null hypothesis that μ(1, W) is 

equal in distribution to μ(0, W) (Example 3) in Simulation 1. Table 1 indicates that the null 

is true in Simulations 1a and 1b, and the alternative is true in Simulation 1c.
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Fig. 2. 
Empirical probability of rejecting the null when testing the null hypothesis that μ(1, W) – 

μ(0, W) is almost surely equal to zero (Example 2) in Simulation 1. Table 1 indicates that the 

null is true in Simulation 1a, and the alternative is true in Simulations 1b and 1c.
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Fig. 3. 
Empirical probability of rejecting the null when testing the null hypothesis that μ(1, W) – 

μ(0, W) is almost surely equal to zero in Simulation 2.
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Fig. 4. 
Probability of rejecting the null when testing the null hypothesis that μ(1, W) – μ(0, W) is 

almost surely equal to zero in Simulation 3.
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Table 1.

Conditional mean function in each of three simulation settings within simulation scenario 1. Here, 

m(a, w) ≜ 0.2(w1
2 + w2 − 2w3w4), and the third and fourth columns indicate, respectively, whether μ(1, W) and 

μ(0, W) are equal in distribution or almost surely.

μ(a, w) =d =a . s .

Simulation 1a m(a, w) × ×

Simulation 1b m(a, w) + 0.4[aw3 + (1 − a)w4] ×

Simulation 1c m(a, w) + 0.8aw3
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