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Abstract

Accurate segmentation of the brain surface in post-surgical CT images is critical for image-guided 

neurosurgical procedures in epilepsy patients. Following surgical implantation of intra-cranial 

electrodes, surgeons require accurate registration of the post-implantation CT images to pre-

implantation functional and structural MR imaging to guide surgical resection of epileptic tissue. 

One way to perform the registration is via surface matching. The key challenge in this setup is the 

CT segmentation, where extraction of the cortical surface is difficult due to missing parts of the 

skull and artifacts introduced from the electrodes. In this paper, we present a dictionary learning-

based method to segment the brain surface in post-surgical CT images of epilepsy patients 

following surgical implantation of electrodes. We propose learning a model of locally-oriented 

appearance that captures both the normal tissue and the artifacts found along this brain surface 

boundary. Utilizing a database of clinical epilepsy imaging data to train and test our approach, we 

demonstrate that our method using locally-oriented image appearance both more accurately 

extracts the brain surface and better localizes electrodes on the post-operative brain surface 

compared to standard, non-oriented appearance modeling. Additionally, we compare our method 

to a standard atlas-based segmentation approach and to a U-Net-based deep convolutional neural 

network segmentation method.
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I. INTRODUCTION

SEGMENTATION of clinical images is a challenging medical image analysis task. This task 

is particularly difficult for patients who have undergone surgical procedures, where images 

are often of imperfect quality, subject to artifacts, and can be missing normal anatomical 

features. Such challenges arise in image-guided planning of neurosurgical procedures in 

epilepsy patients. Epilepsy is a neurological disorder in which seizures temporarily disrupt 

brain function. Surgical resection of ictal tissue, e.g. tissue involved in the generation of the 

seizures, can be an effective method to reduce or eliminate seizures for certain patients who 

do not respond favorably to medication [1]. In one method, and the current “gold-standard” 

to localize ictal tissue in different regions of the brain suspected to be causing the seizures, 

clinicians monitor brain activity through a diagnostic procedure that includes a craniotomy 

and surgical implantation of both intracranial electrodes on the brain surface and depth 

electrodes within the brain [2]. However, before performing a resection, surgeons must 

localize the electrode locations corresponding to functionally eloquent brain tissue, e.g. 

motor, sensory, and language regions, which may be identified by pre-operative imaging 

such as anatomical magnetic resonance (MR) imaging (MRI) and functional imaging 

modalities such as functional MRI (fMRI), PET, and SPECT [3], [4]. Accurate registration 

of this pre-operative multi-modal imaging to the electrode locations is, therefore, critical for 

surgical planning.

A variety of methods to localize the implanted electrodes within the pre-implantation 

imaging data have been proposed. Intra-operative digital photography may be used to 

identify the implanted surface electrodes, which may then be manually localized with 

respect to the pre-op MRI brain surface [5], [6]. Alternatively, the electrodes can easily be 

identified in a post-implantation computed tomography (CT) image. Surface electrodes 

identified in the post-op CT can then be projected to the nearest point on the pre-op MRI 

brain surface after rigid registration [7]. However, this localization strategy neither accounts 

for non-rigid tissue deformations nor does it allow for localization of sub-dural electrodes. 

These sub-dural electrode displacements can be estimated, for example, using a kernel-based 

averaging of the surface electrode displacements [8]. In some cases, but not everywhere, 

post-op MRI is available. Here, intensity-based registration methods may be used to register 

the post-op CT with the post-op MRI. Rigid registration between the two post-op modalities 

[9] suffices, in this case, because negligible levels of non-rigid deformation occur between 

the two image acquisitions. Nevertheless, surgeons ultimately want to integrate the electrode 

information into the surgical plan, which requires visualizing the electrodes within the pre-

implantation imaging space.

Therefore, the current best method to co-register the implanted electrodes and the pre-

implantation imaging involves two registration steps. First, the post-op CT is rigidly 

registered to the post-op MRI, and, second, to compensate for the non-rigid post-surgical 

deformations, the post-op MRI is non-rigidly registered to the pre-op MRI image. Even 

though the post-op MRI contains multiple imaging artifacts as a result of the implanted 

electrodes and image quality is relatively poor compared to the pre-op MRI, accurate non-

rigid registration of the pre-op and post-op MRIs is still possible. The soft tissue contrast 

properties of MRI provides detailed anatomical structures that are critical for accurate image 
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registration. Once these two registration steps are complete, the electrodes may then be 

transformed to the pre-implantation imaging space to facilitate co-visualization and 

localization of the electrodes with respect to this multi-modal data. Unfortunately, the post-

implantation MRI acquisitions present a number of challenges: (i) it is inconvenient for the 

patient, who has implanted electrode wiring protruding from their skull, (ii) a potential 

source of infection for the patient as they are transported to and from the scanner, (iii) an 

additional expense, and (iv) may not be available at all institutions. In previous work, we 

presented a method to directly register the post-op CT to the pre-op MRI using a non-rigid 

statistical deformation model to constrain the intensity-based registration [10]. However, 

intensity-based non-rigid registration methods are ill-suited to register the pre-op MRI and 

post-op CT due to (i) poor soft tissue contrast in the CT imaging presenting minimal 

anatomical structures within the brain, (ii) a lack of anatomical correspondences, such as 

removal of the skull during surgery, between the two acquisitions, (iii) the presence of 

imaging artifacts and intensity inhomogeneities caused by implanted electrodes, and (iv) 

non-rigid brain surface deformations that can oftentimes be larger than 1 cm [11].

Surface-based registration methods offer an alternative to intensity-based methods for co-

registering the post-implantation CT and the pre-implantation MRI. Numerous surface-

based, non-rigid registration methods exist [12], [13], [14]. In this work, the key challenge is 

not the surface matching and registration itself, but rather the extraction of the cortical 

surface from the images. Well-tested methods exist to extract the brain surface from pre-op 

MRIs [15]. Segmenting the brain surface from post-op CT images, on the other hand, is 

challenging due to (i) large portions of the skull being removed for the craniotomy, (ii) 
imaging artifacts caused by the implanted electrodes, (iii) the most likely non-Gaussian, 

appearance of the brain surface, and (iv) the variability in the location of the craniotomy 

across patients, which can confound global models of appearance [16].

In this work, we present a segmentation method using locally-oriented image patches to 

segment the cortical brain surface in post-op CT imaging. This manuscript significantly 

expands upon our previous conference publication [17]. As previously shown, a standard 

surface-based registration method between two reliable sets of surfaces provides a superior 

registration compared to intensity registration [17]. We therefore focus this work solely on 

the segmentation aspect of the project. In this paper, we include rigorous validation 

experiments and provide extensive experiments to justify method parameter choices, as well 

as compare our approach to both standard atlas-based segmentation and to a U-Net-based 

deep convolutional neural network segmentation of the same data. In Sec. II, we detail our 

methods for locally-oriented image patch appearance learning and segmentation (Fig. 1). As 

an alternative to using image intensity information to determine the local orientation of 

image patches [18], we instead use the local geometry of our estimated surface segmentation 

to orient the patches. From these patches, we learn a sparse representation of the brain 

cortical surface appearance using a dictionary-learning framework to model textural 

appearance both inside and outside the surface bound-aries [19]. In contrast to the work of 

Huang et al. [19], which uses image patches canonically aligned with the image axes, our 

approach uses locally-oriented image patches along the evolving segmentation surface. By 

orienting the image patches with respect to local surface geometry, this oriented appearance 

model is invariant to rotational changes in the surface. Furthermore, rather than creating 
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unique intra-subject appearance models for each subject, our approach builds an inter-

subject appearance dictionary using a population of clinical training data. In Sec. III, we 

present experimental results demonstrating accurate segmentation of the cortical surface 

from post-implantation CT images and additionally compare our results to standard atlas-

based segmentation. Finally, Sec. IV concludes with a discussion of our results and presents 

future research directions.

II. METHODS

To train our model of brain surface appearance in post-surgical CT images, we make use of a 

database of N neurosurgical epilepsy patients. This database contains the set of images 

ℐ = {IMR, i
1 , IMR, i

2 , ICT, i
2 ∣ i = 1, …, N}, where Im, i

t  denotes pre-op images acquired at time t = 

1 and post-op images acquired at time t = 2 using imaging modality m ∈ {MR, CT} for 

patient i. For each patient, we perform the following preprocessing steps as currently done in 

practice. (i) We create brain surfaces Si
1 and Si

2 from the pre-op and post-op MR images, 

respectively, by extracting isosurfaces of the brain masks generated by the Brain Extraction 

Tool (BET) [15]. A trained expert manually refines the segmented brain masks, if necessary. 

(ii) Next, we rigidly register ICT, i
2  to IMR, i

2  using the normalized mutual information (NMI) 

similarity metric [20] to estimate the transformation TCT→MR,i. Sec. II-A begins by 

introducing locally-oriented image patches, which we use to train a model of cortical surface 

appearance in Sec. II-B. We then use this model to perform segmentation of the cortical 

surface in post-op CT images in Sec II-C. We note that the post-op MRI IMR, i
2  and its 

surface Si
2 are used only in the training phase and not in the testing phase. Fig. 1 illustrates 

and summarizes our training and segmentation framework.

A. Locally-Oriented Image Patches

For a 3D image I : ΩI ⊂ ℝ3 ℝ mapping points from the spatial domain ΩI to image 

intensity values, we define an orientable local image patch Φ centered about u ∈ ΩI as a set 

of intensity values:

Φ(I, u) = {I(u + Rt) ∣ ∀t ∈ Θ}, (1)

where, R ∈ ℝ3 × 3 is a rotation matrix defining orthonormal basis vectors and Φ is the set of 

d image intensity values sampled at patch template points Θ = {ti ∣ ti ∈ ℝ3, i = 1, …, d}. 

Typically in image processing applications, image patches are statically aligned with the 

image axes such that R uses the identity matrix as the canonical basis, i.e. R = I, while Φ 
consists of a grid of isotropically spaced sample points centered about the patch origin. As 

an example, a 5 × 5 × 5 isotropic image patch Φ centered at image location u would be 

specified by a set of d =125 sampling point locations Θ that define grid point locations 

relative to the patch origin u. We refer to this patch format as standard image patches.
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In this work, we use data-driven oriented image patches, where the orientation of the patch 

R is determined by local surface geometry. For each point on the surface of interest u ∈ S, 

the local, outward-facing surface normal n ∈ ℝ3 and the directions of principal curvature 

k1, k2 ∈ ℝ3 [21] define an orthonormal basis R = [n∣k1 ∣k2] that orients the patch Φ(u) in (1) 

to the local geometry by rotating the Θ sampling point locations. To illustrate the effect of 

local surface geometry orientation on image patches, Fig. 2 compares image patches using 

either standard or oriented sampling at corresponding points along a surface u ∈ S. 

Orienting image patches in this way allows for texture appearance along the surface to be 

invariant to changes both in location along the surface S and to rotations of the underlying 

image data.

B. Training the Cortical Surface Appearance Model

In order to learn a model of brain boundary appearance in the post-op CT image, we must 

provide a ground-truth segmentation of the cortical surface in this image. Here, we make use 

of the post-op MRI brain segmentations Si
2 (created using BET [15] with manual refinement 

be a trained technologist) available at our institution to identify the brain cortical surface in 

the CT. For each subject i, we map the segmented post-op MRI brain surface to the post-op 

CT image space using the rigid transformation TCT→MR,i such that Si
2′ = TCT MR, i

−1 ∘ Si
2, 

where ○ is the transformation operator. To model the image appearance both inside and 

outside the brain surface, we create two sparse representation models (dictionaries) Din and 

Dout, respectively [19]. We train these models by extracting two sets of overlapping local 

image patches from each subject’s post-op CT images:

𝒫in = ⋃
i = 1

N
Φ(ICT, i

2 , u − αn) ∣ ∀u ∈ Si
2′ ,

𝒫out = ⋃
i = 1

N
Φ(ICT, i

2 , u + αn) ∣ ∀u ∈ Si
2′ ,

where Pc denotes the sets for appearance classes c = {in, out} either inside or outside the 

surface boundary for all N subjects, and n is the outward facing local surface normal at u. 
Both to expand the area defined as being either outside or inside the cortical boundary and to 

account for possible errors in the surface segmentation, we extract patches from a narrow 

band region 0 < α ≤ 3.0mm around the surfaces Si
2′. Using all N subjects in the training set, 

these two dictionaries capture the varieties of textural appearance found within the narrow 

band regions near the brain surface boundary across the training population. As in Sec. II-A, 

we orient the image patches according to the local surface geometry at u.

For each image patch in 𝒫c, we transform the patch data into an appearance vector pc ∈ ℝd

by concatenating the patch intensity values, where d is the sample dimensionality 

determined by the chosen patch sampling template Θ in Sec. II-A. We normalize the pc 

appearance vectors by subtracting the mean class intensity value (over all patches in the 

class) and then scaling to have unit length. Then, we model the distribution of pc’s from all 
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N training images using an overcomplete dictionary Dc ∈ ℝd × n such that pc ≈ Dcγ [22], 

where n is the number of dictionary atoms and γ is the sparse dictionary weighting 

coefficients. Fig. 3 shows two example dictionaries learned using either standard or oriented 

patches.

Given a novel, normalized appearance vector sample p, we use the learned dictionaries Dc to 

reconstruct this sample by solving the sparse coding problem:

min
γ

‖p − Dcγ‖2
2 s.t. ‖γ‖0 ≤ Γ0,

where Γ0 ∈ ℕ is a target sparsity constraint. We solve this problem using an orthogonal 

matching pursuit (OMP) algorithm[23]. Next, we define the residual error

Rc(p) = ‖p − Dcγ‖2 (2)

for both the inside and the outside region classes. Here, the residual values Rc(p) are 

bounded 0 ≤ Rc(p) ≤ 1 because the appearance vectors are normalized to have unit length. In 

this case, values of Rc(p) = 0 correspond to perfect appearance sample reconstruction, which 

indicates strong membership to class c, and residual values of Rc(p) = 1 indicate that p could 

not be reconstructed well by Dc, which indicates poor membership to class c. Intuitively, if 

an image patch sample is from inside the cortical surface boundary then Rin(p) < Rout(p). 

Our approach to appearance modeling differs from that presented by Huang et al. [19] in that 

we perform appearance modeling individually for each level k = 1, …, K in a multi-

resolution Gaussian image pyramid, which means that we train K dictionary pairs {Din
k , Dout

k }

instead of concatenating appearances from multiple scales into a single multi-scale 

appearance vector.

C. Post-Implantation CT Brain Surface Segmentation

To segment a post-implantation CT not included in the training set ICT
2 ∉ ℐ, we first register 

a template brain to this image to provide an initial brain surface segmentation estimate S init
(Sec. II-C1) and then use our locally-oriented brain appearance model to accurately segment 

the brain surface S  (Sec. II-C2). Post-op MR imaging is not used in the segmentation phase.

1) Initial CT Surface Estimate: Rather than relying on the pre-op MRI brain mask 

segmentation, which may contain segmentation errors, as the initial post-op CT 

segmentation estimate, we instead make use of the MNI Colin 27 average brain volume [24] 

brain mask SMNI as a template, which has been manually segmented. To estimate the initial 

brain surface S init using the MNI template, we perform the following steps: (i) register the 

MNI brain surface SMNI to the pre-op MR brain segmentation SMR
1  using standard affine 

RPM surface registration [25], which gives the transformation TMNI→MR; (ii) register the 

Onofrey et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pre-op MRI IMR
1  to ICT

2  using standard intensity-based rigid registration by maximizing the 

normalized mutual information [20], which gives the transformation TMR→CT; and (iii) 

transform the segmented MNI brain mask to post-op CT imaging space ICT
2 , i.e. 

S init = TMR CT ∘ TMNI MR ∘ SMNI. We use this surface as the initial estimate for our post-op 

CT cortical surface segmentation method detailed below.

2) Brain Surface Segmentation: For all points on the segmentation surface u ∈ S , we 

extract the locally-oriented image patch Φ(u), transform this patch into an appearance vector 

p ∈ ℝd (normalized), compute appearance model residuals from (2), and then compute the 

difference between these values as

D(p) = Rout(p) − Rin(p) .

If u lies within the true boundary of the cortical surface in the CT image then, intuitively, 

D(p) > 0. On the other hand, if u is outside the true boundary then D(p) < 0. Thus, the 

cortical surface boundary is located at the point u where D(p) = 0, i.e. the point belongs 

equally to the inside and outside classes. To find the cortical surface in ICT
2 , we minimize the 

following objective function

S = min
S

∫S
‖D‖2

2dS .

We solve this optimization problem by iteratively updating the surface in a greedy manner, 

where at each iteration t, we update the surface points

ut + 1 = ut + σD(pt)nt + rt, ∀ut ∈ St,

where nt is the local surface normal at ut, σ ∈ ℝ > 0 is a scale term determined by the image 

resolution, and rt is a regularization update vector that maintains surface smoothness with 

respect to the local surface curvature as done by BET [15]. The algorithm converges as the 

updated surface estimate approaches the true boundary of the cortical surface and ∥σD(pt)nt∥ 
tends to zero. From (2), −1 ≤ D(p) ≤ 1, which means that updates in the direction of the 

surface normal nt are bounded to have maximum magnitude σ. In our multiresolution 

Gaussian image pyramid representation of ICT
2 , we update the segmentation surface estimate 

by starting at the lowest level of resolution and proceeding for a fixed number of iterations 

before switching to the next higher resolution level. This way, the algorithm first updates the 

surface with large changes to the surface at low resolutions and then successively refines the 

results at high levels of resolution until convergence.
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III. RESULTS

From a clinical database of epilepsy patients who had electrodes surgically implanted at Yale 

New Haven Hospital, we selected 18 patients with pre-op and post-op T1-weighted MR 

images, and post-op CT images to validate our segmentation approach. The set of images 

had heterogeneous voxel spacings (isotropic spacings in the axial plane) and dimensions. 

The pre-op MRIs had voxel spacing in the range 0.49-1.00 × 0.49-1.00 × 1.00-1.50 mm with 

dimensions 256-512 × 256-512 × 96-192 voxels, post-op MRIs had voxel spacing in the 

range 0.94-1.06 × 0.94-1.06 × 1.00-1.50 mm with dimensions 192-256 × 192-256 × 96-192 

voxels, and post-op CT had voxel spacing in the range 0.39-0.70 × 0.39-0.70 × 1.25-2.00 

mm with dimensions 512 × 512× 119-173 voxels. Ten patients had lateral craniotomies on 

the right side of the skull and the remaining eight had left-side craniotomies. On average, 

each patient had a total of 197 electrodes implanted (both sub-dural and intra-cranial), and 

each had an 80 × 80 mm grid of electrodes (8 × 8 electrodes) at the craniotomy location. All 

images and electrode data were fully anonymized.

Following the clinical routine practiced at our institution, a trained technician used BET [15] 

to segment both the pre-op and the post-op MRIs, and, if necessary, manually corrected the 

brain masks using a painting tool. All images were resampled to have 1mm3 isotropic 

resolution, and all images had different volume dimensions. All surfaces S used in this work 

were parameterized as triangulated meshes. The 18 post-op brain surfaces Si
2 used for 

training in Sec. II-B had 2685±188 vertices (Mean±SD) and the template MNI brain surface 

used as the initial segmentation estimate S  in Sec. II-C had 2354 vertexes. We performed 

leave-one-out cross-validation, where we trained dictionaries using N =17 subjects and then 

tested our segmentation method on the left-out subject. We utilized a MATLAB 

implementation of K-SVD [23] to learn the appearance dictionaries, and implemented our 

segmentation method in C++ as part of BioImage Suite [26]. All CPU computations were 

run on a 4 GHz Intel Core i7 iMac with 16 GB of RAM.

First, Sec. III-A details our methods for evaluating the performance of CT segmentation. We 

then compare segmentation performance using locally-oriented patches to standard patches 

in Sec. III-B, and test the algorithms sensitivity to the initial surface alignment in Sec. III-C. 

Additionally, we study the effects of patch size and shape in Sec. III-D and Sec. III-E, 

respectively. We also compare our segmentation method to a standard, atlas-based 

segmentation method in Sec. III-F as well as to a U-Net-based deep neural network 

segmentation method in Sec III-G.

A. Evaluation Methods

To quantitatively assess cortical surface segmentation performance, we used the rigidly 

registered post-op MRI surface S2′ as a gold-standard to evaluate surface segmentation 

estimates S  For two surfaces A and B, we measure segmentation accuracy using the 

following metrics: (i) Dice overlap
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DICE(A, B) =
2V A ∩ VB
V A + VB

,

where VS is the volume enclosed by surface S; (ii) Hausdorff Distance

HD(A, B) = max max
a ∈ A

d(a, B), max
b ∈ B

d(b, A) ;

(iii) Modified Hausdorff Distance (MHD), which uses the 95th percentile of d(a, B) instead 

of using the maximum value as in HD and is less sensitive to outliers; and (iv) Mean 

Absolute Distance

MAD(A, B) = 1
2

1
NA

∑
a ∈ A

d(a, B) + 1
NB

∑
b ∈ B

d(b, A) ,

where d(a, B) = minb∈B ∥b – a∥2. In addition to these metrics, we specifically quantify 

segmentation errors at a subset of surface electrode locations. Here, we use only intracranial 

cortical electrodes, extracting the largest 8×8 electrode grids (64 total electrodes per patient) 

from each patient’s set of electrodes, and omit the depth electrodes because their location is 

far from the cortical boundary. These grids are of particular interest as they lie on the brain 

surface closest to the craniotomy location where the largest amount of brain deformation is 

expected to occur [27]. Given identified electrode locations xe ∈ E ⊂ ΩI for each subject, we 

define the Mean Electrode to Surface Distance (MESD)

MESD(E, S) = 1
NE

∑
xe ∈ E

d(xe, S)

to be a measure of the distribution of electrode distances from the given surface estimate S
Intra-cranial cortical electrodes are expected to lie on the surface of the brain, and the MESD 

metric quantifies how close the electrodes are to the surface S  Electrode localization is 

accurate and trivial, thus high MESD values indicate poor segmentation estimates rather 

than electrode localization errors. Poor segmentation results would result in electrodes that 

appear to be floating above the surface or sunk within, with high MESD values indicating 

that the distribution of electrodes is far from the estimated surface.

B. Oriented Patches

For each test image ICT
2  in our leave-one-out study, we tested how our proposed cortical 

boundary learning (Sec. II-B) and segmentation (Sec. II-C) performed using oriented local 

image patches (Sec. II-A) and compared our segmentation results to those found using 

standard, non-orientated local image patches, e.g. R = I in (1) We adopted a multi-resolution 

Gaussian image pyramid with K = 3 levels for each segmentation. We set the image patches 

Φ(u) to be a 5 × 5 × 5 isotropic grid by creating a point sampling template Θ centered 
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around each surface vertex u ∈ S. Appearance samples vectors p, therefore, had total 

dimensionality d = 125. For each resolution level k, we adjusted Θ’s sample point spacing to 

make image patches at higher scales effectively have larger physical size, e.g. Θ had spacing 

1, 2, 4mm for k = 1, 2, 3, respectively. For each level k, we extracted patch samples from a 

narrow band region at every surface vertex point in the N training CT images to train the 

inside and outside dictionaries in Sec. II-B. This sampling technique resulted in patch 

samples totaling three times the number of training surface vertexes for each class. To 

segment ICT
2 , we fixed the number of surface update iterations to t = 150 for each resolution 

level k (Sec. II-C). The choice of t = 150 was based on empirical observations of the 

segmentations where the average absolute surface displacement between successive 

iterations converged after a little more than 100 iterations on average in our experiments. We 

evaluated segmentation performance using different dictionary parameters by creating 

dictionaries of sizes n = {256, 512, 1024} and using sparsity constraints Γ0 = {2, 4, 8} for a 

total of 9 parameter permutations.

For each test, we computed the surface evaluation measures between the segmentation 

surface estimate S  and the reference surface S2′ and report segmentation results for the 

following methods: (i) segmentation as the initial, affine registered MNI template surface, 

i.e. no segmentation updates; (ii) segmentation using standard image patch orientation; and 

(iii) segmentation using locally-oriented image patches. We summarize the distribution of 

these results over all dictionary parameters in Fig. 4 (we omit HD results as they were 

similar to MHD). To assess significance, we performed a two-sided Wilcoxon signed rank 

test, where we concatenated the results across all dictionary size and sparsity constraint 

parameters into a single sample and then performed paired significance testing. 

Segmentation using locally-oriented patches significantly reduced MHD, MAD, and MESD 

compared to segmentation using standard patches, and significantly improved Dice overlap 

(p ≤ 10−23). Overall, results using locally-oriented image patches were relatively stable 

across different dictionary parameter choices. Using a dictionary of size n = 256 and sparsity 

Γ0 = 4 offered good performance across evaluation metrics. Segmentation results using 

standard patches, on the other hand, improved as both dictionary size and sparsity increased. 

In many cases though, using standard patch orientation resulted in segmentation results that 

were worse than the initial surface estimate (found by affinely registering the MNI template 

to the test subject). As confirmed by the MESD values, Fig. 5 illustrates an example subject, 

that our method more accurately identifies the surface on which the electrodes lie by 

comparing these three surface estimates with respect to the implanted electrodes identified in 

the CT images. Fig. 6 illustrates results from four subjects using both the standard and the 

locally-oriented patch segmentation approaches. Qualitatively, the use of oriented image 

patches appeared to segment the cortical surface more accurately than when using standard, 

non-oriented patches. The standard patch method had particular trouble segmenting the 

cortical surface in regions where the skull was removed, often leaking outside the brain 

volume at the site of the craniotomy.

The running time for the segmentation using oriented patches is higher than when using 

standard patches due to computing the principal curvatures at each step. For example, using 

5 × 5 × 5 patches with dictionary size n = 256 and sparsity Γ0 = 4 results in running times 
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(Mean±SD) of 83.6 ± 1.9 seconds and 56.6 ± 0.7 seconds for segmentation using oriented 

patches and standard patches, respectively. Our segmentation method also includes 19.7 

± 2.5 seconds for the registrations used to estimate the initial surface (Sec. II-C1), which 

results in total computational time of 103.3 ± 2.7 seconds for the entire segmentation 

pipeline using oriented patches.

C. Sensitivity to Initial Alignment

We tested the sensitivity of the segmentation algorithm to errors in the initial surface 

alignment S init (Sec. II-C1). To simulate initial misalignments, we translated the surface S init
along the x-axis in ±5 mm increments with a maximum translation of ±20 mm. Using these 

translated initial surfaces, we then ran our oriented segmentation algorithm with a dictionary 

size n = 256 and sparsity constraint Γ0 = 4. Fig. 7 plots the results for our evaluation metrics. 

In terms of overall accuracy, quantified by the Dice, MHD, and MAD metrics, the 

segmentation algorithm is relatively robust within ±10 mm. Segmentation results at the area 

of the craniotomy surface electrodes, measured by our MESD metric, indicate that the 

median MESD values are also robust within ±10 mm; however, we observe increasing 

variability of MESD values as measured by larger interquartile range values as initial surface 

misalignment distance increases.

D. Patch Size

We investigated the effect of patch size on the algorithm’s segmentation performance. For 

these experiments we fixed the dictionary size n = 256 and sparsity Γ0 = 4. We compared 

segmentation performance using oriented patches with isotropic grids of size 3 × 3 × 3, 5 × 5 

× 5 (the results from Sec. III-B), and 7 × 7 × 7, which had appearance dimensionality of d = 

27, 125, 343, respectively. Table I shows the patch size segmentation experiment results. 

Using a two-sided Wilcoxon signed rank test to assess segmentation significance (p ≥ 0.05), 

we found no significant differences (see Supplemental Fig. S1 for tables of p-values 

available in the supplementary files/multimedia tab) between the different patch sizes with 

the exception of MESD values for isotropic grids of size 5 and 7.

E. Patch Shape

We also tested the shape of the patch with respect to the algorithm’s segmentation 

performance. Similar to the patch size tests, we set the dictionary size to n = 256 and 

sparsity to Γ0 = 4. Rather than using standard, cube-shaped patches, we experimented with a 

spherical patch that was sampled along an isotropic, rectilinear grid. We tested using patches 

with maximum size 5 × 5 × 5, 7 × 7 × 7, and 9 × 9 × 9, where only points within the central 

sphere were used to create the patch sampling template. These spherical patches had 

appearance dimensionality d = 33, 123, 257, respectively. Table I shows the patch shape 

segmentation experiment results. Using a two-sided Wilcoxon signed rank test to assess 

segmentation significance (p ≤ 0.05), we found no significant differences (see Supplemental 

Fig. S1 for tables of p-values available in the supplementary files/multimedia tab) between 

the different spherical patch sizes with the exception of MHD values for patches of size 5 

and 9 and MESD values using patch size of 9.
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To assess significance between the cube and spherical patches, we performed another two-

sided Wilcoxon signed rank test (p ≤ 0.05), where we concatenated both the cube and the 

spherical patch results across all sizes into two samples and then performed paired 

significance testing. Here, paired significance testing is appropriate because the spherical 

patch dimensionality of the paired samples roughly corresponds to the dimensionality of the 

cube patches. There were no significant differences between cube and spherical patch shapes 

in terms of Dice, HD, MHD, and MAD. In terms of MESD, our algorithm using spherical 

patches performed significantly better than cube-shaped patches (p = 0.002).

F. Atlas-based Segmentation

We compared our segmentation approach to standard multiatlas-based segmentation [28]. 

Atlas-based registration consisted of the following steps: (i) we non-rigidly registered each 

post-op CT image ICT, i
2  in the training set to the test image ICT

2  with intensity-based 

registration using an FFD transformation model [29] with 15mm isotropic B-spline control 

point spacing and maximizing their NMI; (ii) using these transformations, we transformed 

the post-op CT brain surface masks Si
2′ (computed in Sec. II-B) to the test image; and (iii) to 

segment the brain in ICT
2  image space, we performed a majority vote classification of voxels 

being inside the transformed brain surface masks. While atlas-based segmentation 

performed comparably to our dictionary-based segmentation approach in terms of HD, 

MHD, MAD, and Dice, the method performed particularly poorly in the location of the 

craniotomy where the electrode grids were placed, which resulted in MESD values 

significantly higher than all other results (Table II and Supplemental Fig. S2 shows 

significance testing results available in the supplementary files/multimedia tab).

Since we performed atlas-based segmenation in each test subject’s image space, the 15mm 

FFDs had variable grid sizes, with mean grid size 19 × 19 × 12 across all test subjects. These 

grids parameterized FFD transformations with (Mean±SD) 13, 708 ± 3674 degrees of 

freedom in three dimensions. All registrations utilized the C++ implementation of FFD 

registration included as part of the BioImage Suite software package [26], and the 

registration process required (Mean±SD) 108.2 ± 33.2 seconds using the same computer 

workstation as our dictionary learning method. For our leave-one-out testing, atlas-based 

registration for each subject required a total of 17 non-linear registrations, which on average 

resulted in total processing time of approximately 30 minutes per test subject.

G. Deep Learning Segmentation

Additionally, we compared segmentation results to a deep learning-based approach. Deep 

convolutional neural networks (CNNs), especially fully-convolutional networks (FCN) [30] 

can segment whole image patches at a time. The U-Net [31], one particular FCN 

architecture, and its 3D derivatives [32], have become particularly popular in medical image 

analysis. Here, we utilize the U-Net architecture to perform patch-based, or semantic, 

segmentation. We train our segmentation model with respect to a common reference space in 

order to take advantage of the brain’s geometry providing contextual clues to the 

segmentation algorithm. Here, we rigidly register all images ICT,i in the training set to the 

MNI Colin 27 brain reference space. For registration, we maximize the NMI similarity 
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metric between the two images and reslice the masks using this transformation estimate. As 

a result, all image pairs (ICT,i, MCT,i) are resampled to have 1 mm3 isotropic resolution and 

dimensions 181 × 217 × 181. We use a patch-based training and segmentation approach, 

where we set the patch size to 64 × 64 × 64 voxels. Due to GPU memory limitations, our 

network implementation uses 3 max-pooling operation layers (compared to four for standard 

U-Net) for a total of 18 convolutional layers. To train the networks, we used mini-batches of 

size 4 (due to memory requirements on our GPU) that consisted of randomly extracted 

overlapping patches from the images, which we augmented by randomly flipping patches 

left and right. We used a fixed learning rate of 0.0001 and evaluated stopping based on 

convergence of both the training data and testing data segmentation results.

We performed a 6-fold cross validation study (N = 15 subjects used for training in each 

fold). Using each fold’s trained CNN to segment a novel test image ICT not included in the 

training set, we first rigidly register this image to the MNI Colin template space using NMI, 

and we denote this transformation TMNI. Segmentation is performed by uniformly sampling 

the test CT image with overlapping patches at a stride length equal to half the patch 

dimensions. Once all patches have been segmented by the deep network, we perform a 

weighted combination of the segmented patches results, where the voxels are weighted 

according to their distance from the patch center. The resulting segmentation volumes are 

then thresholded at 0.5 and we remove any extraneous segmentation regions that are smaller 

than 1 million voxels in volume using a cluster thresholding algorithm. We then apply a 

median filter of size 3 to these results to smooth the segmentation. Finally, the post-

processed segmentation result is resliced back to the original post-op CT image space using 

the inverse transformation TMNI
−1  with nearest neighbor interpolation. We implemented the U-

Net models in Python using TensorFlow and trained all models on an NVIDIA GTX 1080 Ti 

GPU with 11 GB RAM. Prediction times for this network were (Mean±SD) 19.4 ± 0.2 

seconds. However, this method required spatial normalization to the MNI brain using image 

registration, which added 3.2 ± 0.3 seconds to the computation time. This resulted in total 

segmentation times of 22.6 ± 0.3 seconds for the entire deep learning pipeline.

We report segmentation results in Table II. Using a two-sided Wilcoxon signed rank test to 

assess significant differences (p ≤ 0.05) between this deep learning approach and our 

oriented patch dictionary-learning method (using 5×5×5 cube patches and dictionary size n 
= 256 with sparsity constraint Γ0 = 4), we found no significant difference in segmentation 

performance across all but the MAD metrics (see Supplemental Fig. S2 for tables of p-

values available in the supplementary files/multimedia tab). Our deep CNN did perform 

significantly better than the atlas-based segmentation method in terms of Dice, MAD, and 

MESD. The post-processing steps were necessary because 5 of 18 (28%) cases had 

segmentation artifacts at the exterior skull boundary or at locations outside the head (Fig. 8). 

The pre-processed segmentation results had Dice values (Mean±SD) 93.96 ± 2.95, which 

were significantly different than the post-processed segmentation Dice results 95.00 ± 1.18 

(p < 0.05).
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IV. DISCUSSION AND CONCLUSION

The segmentation method proposed in this paper can be used to solve an actual clinical 

problem using imperfect clinical data. Our method using locally-oriented image appearance 

models accurately extracts the brain surface from post-electrode implantation CT images 

containing many artifacts, distortions, and missing anatomical features. In creating a 

dictionary-based model of the brain boundary’s appearance that uses image patches oriented 

according to the local surface geometry, we realize an appearance model that is invariant to 

changes in image orientation. This contrasts with standard appearance models that utilize 

image patches statically aligned with the image axes. The resulting oriented appearance 

model, when combined with our proposed surface estimation method, significantly improves 

segmentation performance over standard image patch-based models that do not take local 

surface geometry into account (Sec. III-B).

For our application to post-implant CT registration, our experiments indicate that the choices 

of dictionary size n and sparsity constraint Γ0 have limited effect on the segmentation results 

when using oriented patches. Our choice of a small dictionary size n = 256 and low sparsity 

constraint Γ0 has practical benefits in terms of reduced computational performance 

compared to using larger dictionaries or higher sparsity without sacrificing segmentation 

accuracy. Segmentation performance using standard patches, on the other hand, improves as 

both the dictionary size and sparsity increases, which also increases computational time. 

This result is intuitive because dictionaries of increasing size and sparsity should be able to 

better reconstruct anatomical appearances from a wider variety of anatomical orientations. It 

is also important to point out that the standard patch segmentation technique resulted in 

segmentations that were worse than the initial segmentation estimate over all metrics, which 

may indicate that the appearance models learned by the dictionaries were highly sensitive to 

the orientation of the training data and do not generalize well to novel images with arbitrary 

orientations. Our comparison deep learning segmentation method (Sec. III-G) faces a similar 

criticism in that segmentation results are not invariant to arbitrary anatomical orientations. In 

this case, the DCNN required that all images be aligned to a common reference space with a 

rigid registration step prior to both training and segmentation.

By creating local orientation axes for each image patch, the image appearance model is 

invariant to anatomical orientation. This invariance leads to appearance modeling that 

generalizes across the population. Furthermore, this invariance to orientation eliminates the 

need for registration of the training data to a common reference space. The local patch-based 

nature of the appearance model also provides invariance to the location of features along the 

surface, which contrasts with appearance models that use the whole image or entire 

anatomy. The atlas-based segmentation method failed to accurately segment the cortical 

surface at the location of the craniotomy because the location of this surgical site is specific 

to each patient and we do not have enough training data to cover all possible locations. 

Similar to our approach and in contrast with the atlas-based method, the deep learning 

algorithm used local anatomical information to better segment the brain at the craniotomy 

site, in this case accurate segmentation was made possible by the convolutional 

implementation, patch-based training methodology, and use of right-left flips to augment the 

size of the training data.

Onofrey et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A major drawback of deep learning is that it requires a large amount of training data for 

results to generalize well. While we did not find significant differences between our 

approach and the DCNN in terms of segmentation performance at the craniotomy (as 

measured by MESD), there was a trend to slightly worse and more variable results using the 

DCNN most likely due to the network over-training to the spatial relationship of implanted 

electrodes. Furthermore, post-processing (cluster thresholding and median filtering) was 

necessary and played a large role in resolving segmentation errors caused by imaging 

artifacts due to the presence of electrodes and wiring around the skull. Our modeling 

approach has further advantages over DCNN-based methods: (i) our use of locally-oriented 

patches is also invariant to rotations of the data as evidenced by not having the requirement 

to spatially normalize each subject to a template space, which contrasts with the CNN that is 

invariant to translations but not rotations; (ii) the learned model parameters are easily 

interpretable, i.e. the dictionary atoms display the learned appearance features, which 

contrasts with the difficulty in interpreting the learned features in the CNN’s hidden layers; 

(iii) our approach evolves the segmentation surface according to local image appearance 

patches that are intrinsically tied to the whole brain shape surface during segmentation, 

whereas the DCNN, even though it builds a hierarchical representation of anatomical 

features, uses convolution kernels that ultimately operate locally and also the final 

segmentation applies relatively locally [33]. This results in the DCNN incorrectly 

segmenting areas outside the skull (Fig. 8) most likely because they are symmetrically 

similar to regions inside the skull boundary on the opposite side of the head and thus appear 

locally similar in appearance to the classifier; and (iv) our model is of much lower 

dimensionality, e.g. a dictionary with n = 256 atoms and 53 image patches at 3 scales 

requires a total of 96,000 parameters whereas our tested U-Net DCNN had over 22 million 

parameters. While our DCNN experiments were not exhaustive, we used a highly popular 

network architecture (U-Net) used by the medical imaging community. Overall, in medical 

imaging datasets that have low sample sizes such as ours, non-deep learning methods like 

dictionary learning may still have a useful role to play, especially in applications such as 

surgery that require a high level of trust in the algorithmic results.

Our sensitivity experiments (Sec. III-C) demonstrate that our approach is robust to errors 

within ±10 mm in the initial segmentation surface estimate (Sec. II-C1). These results can be 

explained by our choice of α in Sec. II-B and our chosen patch size (5 × 5 × 5). The purpose 

of the α parameter is twofold. First, it allows for possible errors in the ground-truth surface 

segmentations (Fig. 6) that were used for training the appearance models. Second, along 

with the patch size, it defines the capture range for the algorithm’s surface evolution, i.e. 

how far off the initial segmentation can be and the surface still converges to the true surface 

boundary. We chose the maximum value of α = 3 mm to roughly correspond to the MAD 

values of the initial surface alignment (Table II) at the final image resolution level (1mm3 

voxel spacing). Larger α values might lead to a lack of specificity in the definition of the 

surface band region. On the other hand, larger α values may extend the capture range, i.e. 

how far off the initial segmentation can be and the result still converges to the true surface 

boundary. At the lowest image resolution level k = 3, where voxel spacing is 4mm3, the 5 × 

5 × 5 patch size at 4 mm spacing between sampling points extends 8 mm in each direction 
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from the patch center that when added to α provides a capture range of 11 mm. These results 

explain why our algorithm was robust to initial surface misalignments within ±10 mm.

Our experiments with patch size and shape showed that larger patches do not necessarily 

offer better segmentation performance. While larger patches allow for greater spatial context 

to be represented, increasing patch size (either as a cube or as a sphere) increases appearance 

vector dimensionality, which may have the adverse effect of making discrimination between 

classes more challenging (in the L2 sense). For roughly that same dimensionality d, the 

sphere allows for a larger patch field of view than the cube, while discounting information 

furthest from the patch center, e.g. compare a 7 × 7 × 7 sphere (d = 123) to a 5 × 5 × 5 cube 

(d = 125). Other than at the site of the craniotomy (as measured by MESD), spherical 

patches do not appear to perform significantly better than cube patches when comparing 

patch shapes of roughly the same dimensionality.

We also note our choice to use the MNI Colin 27 brain [24] mask surface as the initial 

surface for the segmentation. While this choice necessitates registering a single subject 

template brain to the post-op CT image as a starting point for the segmentation, we found 

that low-dimensional affine registration using the NMI similarity metric is stable for multi-

modal inter-subject MRI-CT alignment. We make this choice because the pre-op MRI 

segmentation is unreliable using methods such as BET [15] due to the missing skull 

anatomy and the artifacts present in imaging due to the implanted electrodes, and rather than 

having a noisy surface estimate, we prefer to start with a trusted brain shape. Even though 

post-op MRI brain segmentation may be manually refined by a trained technician (as done 

for our training data in Sec. II-B), our use of the MNI brain eliminates the need for the post-

op MRI imaging for our segmentation. For our algorithm, post-op MRI imaging is only 

necessary for creating our training data.

One of the limitations of our method is that we rely on K-SVD for dictionary learning and 

orthogonal matching pursuit (OMP) to approximately solve the sparse reconstruction 

problem. Numerous methods for sparse representation and dictionary learning have been 

proposed [34], and alternative methods to OMP for solving non-convex optimization 

problems exist [35], [36]. However, full recovery of the appearance signal may not be 

necessary for this problem. These methods might also impose an unwarranted computational 

burden. Our results indicate that K-SVD and OMP perform well in this segmentation task.

In the future, the accurate post-op CT brain segmentations provided by our method can be 

used to non-rigidly register pre-op MR and post-op CT imaging in epilepsy patients. In our 

previous paper [17], we demonstrated that having an accurate CT brain surface segmentation 

could be used to directly register these images forgoing the use of the currently acquired 

post-op MRI. Given a segmentation of the pre-op MR and post-op CT brain surfaces, a 

variety of registration methods could be applied to align the data: (i) point-based surface 

registration [12], [14] and as we previously showed [17]; (ii) distance map registration; or 

(iii) a combination of surface points and intensity-based registration [13]. Additionally, any 

of these registration methods could incorporate a biomechanical model [37], [38] to 

constrain the registration transformation. Our method could also be combined with statistical 

models of brain shape [39] and brain deformation [10] to better constrain the surface 

Onofrey et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimation process. While our segmentation method does not incorporate any prior 

information regarding the shape of the brain surface other than the initial surface 

segmentation, using locally-oriented appearance implicitly encodes the brain geometry at a 

local level. In this case, our model learned contextual information about the patch 

appearance based on local brain geometry. The locally-oriented patch segmentation 

approach presented in this paper could be applied to other anatomical structures of interest 

whose appearance has a highly non-Gaussian distribution, for example images with post-

surgical appearance changes caused by scar tissue or implants. Furthermore, as structural 

boundaries often change orientation while keeping the same intensity pattern, the proposed 

rotationally-invariant technique is more broadly applicable beyond the current application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
In order to segment the cortical brain surface in post-surgical CT images in epilepsy 

patients, we learn a model of the brain surface’s appearance. Instead of using image patches 

oriented along the image axes, we use the local surface geometry of the segmentation 

surface to orient the appearance patches. From a training set of post-op CT images with 

ground-truth brain segmentation surfaces (from registered post-op MRI), our approach 

learns two dictionary-based models of image appearance, one inside the brain surface and 

one outside. These learned models are then used to accurately segment the cortical surface in 

test post-op CT images. The resulting post-op CT segmentation can then be registered to a 

pre-op MRI segmentation surface using surface-based registration methods in order to 

localize and visualize post-implantation electrodes with multi-modal pre-implantation 

imaging to guide surgical procedures.
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Fig. 2. 
Examples of local surface geometry oriented axes and their resulting locally-oriented image 

patches. We compare the oriented patches to their corresponding canonical image patches 

oriented along the image axes. The segmentation surface S and the local surface geometry 

define a local orthonormal basis for the oriented image patch specified by the normal 

direction n and directions of principal curvature k1, k2. For illustration purposes, we show a 

large patch size of 33 × 33 × 33 and display the central slice.
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Fig. 3. 
Example dictionary atoms learned using either standard or locally-oriented image patches. 

For illustration purposes here, we display the central slice through 33 × 33 × 33 atoms for 

dictionaries using n = 100 atoms with a sparsity constraint Γ0 = 4.
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Fig. 4. 
The distribution of segmentation evaluation quality measures for leave-one-out experimental 

results comparing cortical surface segmentation using our dictionary-based segmentation 

method with locally-oriented image patches and segmentation using standard images 

patches, as well as the initial surface estimate. Results are shown for learned dictionary 

appearance models using 5 × 5 × 5 patches with different numbers of atoms and sparsity 

constraints, with values expressed as Mean±SD.
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Fig. 5. 
Visualizing the segmented cortical brain surface estimate with respect to implanted 

electrodes. For the initial segmentation that uses affine registration (left), the surface 

electrodes appear embedded within the brain. Segmentation using standard patch orientation 

(middle) only partially corrects the surface whereas segmentation using locally-oriented 

patches (right) accurately segments the cortical surface, and the electrodes appear to be 

correctly localized on the brain surface.
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Fig. 6. 
Cortical surface segmentation results using (i) locally-oriented image patches aligned to the 

surface’s local geometry (orange contour), (ii) the standard, local image patches aligned 

with the image axes (blue contour), and (iii) the ground-truth segmentations (yellow 

contour). Axial slices are shown for each subject progressing from the bottom of the head 

(left) up to the top (right). Blue arrows highlight areas where our approach using oriented 

patches better identified the cortical surface compared to standard patch alignment, which 

are particularly pronounced in areas around the location of the craniotomy. Yellow arrows 

highlight areas where our approach appears to more correctly segment that brain surface 

compared to the ground-truth. All results shown were computed using 5 × 5 × 5 patches and 

dictionary size n = 256 with sparsity constraint Γ0 = 4.
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Fig. 7. 
The sensitivity of our model to synthetic errors in the initial surface alignment as evaluated 

by the Dice overlap, MHD, MAD, and MESD metrics. Each plot shows the median value as 

a blue line with both the middle 50% (interquartile range between the 25th and 75th 

percentiles) as a dark blue shaded region and the middle 90% (between the 5th and 95th 

percentiles) as a light blue shaded region. All results used 5 × 5 × 5 patches and dictionary 

size n = 256 with sparsity constraint Γ0 = 4.
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Fig. 8. 
Example cortical surface segmentation results using a deep convolutional neural network 

(DCNN) where predictions were poor. Segmentation contours show (i) the initial DCNN 

segmentation (blue contour), (ii) the segmentation result after post-processing (orange 

contour), and (iii) the ground-truth segmentation (yellow contour). Axial slices are shown 

for each subject progressing from the bottom of the head (left) up to the top (right). Arrows 

highlight areas where the DCNN produced incorrect segmentation results.
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