Skip to main content
. Author manuscript; available in PMC: 2020 Feb 1.
Published in final edited form as: IEEE Trans Med Imaging. 2018 Aug 30;38(2):596–607. doi: 10.1109/TMI.2018.2868045

TABLE II.

Segmentation evaluation quality measures comparing our dictionary-based approach to cortical surface segmentation to the initial surface estimate, atlas-based segmentation and a deep convolutional neural network (CNN). Results using our method used 5 × 5 × 5 patches and dictionary size n = 256 with sparsity constraint Γ0 = 4. Values are expressed as Mean±SD. Please refer to Supplemental Fig. S2 for statistical significance testing p-values available in the supplementary files/multimedia tab.

Method Patch Limits Dice (%) HD (mm) MHD (mm) MAD (mm) MESD (mm)
Initial Estimate Image Size 93.47 ± 1.86 14.38 ± 3.97 8.09 ± 2.50 3.76 ± 0.68 1.66 ± 0.84
Atlas-based Image Size 94.21 ± 1.77 13.18 ± 4.38 6.81 ± 2.46 3.20 ± 0.70 2.51 ± 1.06
Deep CNN 64 × 64 × 64 95.00 ± 1.18 14.59 ± 4.76 7.00 ± 2.71 2.94 ± 0.44 1.11 ± 0.61
Oriented Dictionary 5 × 5 × 5 94.87 ± 1.05 13.62 ± 4.41 6.75 ± 2.39 3.23 ± 0.43 0.87 ± 0.24