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Abstract

Physical exercise and chronic social stress are both known to impact general health and 

hypothalamic-pituitary-adrenal (HPA) axis function, albeit typically in opposing directions. 

Therefore, the question we investigated in this study was how these two factors – physical exercise 

and chronic social isolation – would interact when presented simultaneously in a female rodent 

model. Adult female prairie voles were separated into four experimental groups: 1) isolated 

without wheel access, 2) isolated with wheel access, 3) paired without wheel access, and 4) paired 

with wheel access. Plasma, hair, and adrenal glands were sampled to investigate changes in stress 

physiology. Our results indicate that, when isolated, wheel access had a mitigating effect on HPA 

activity. However, in paired animals, wheel access had the opposite effect, as both adrenal mass 

and increase in hair corticosterone concentrations were greater in paired animals with wheel 

access. Strong correlations were detected between change in hair corticosterone and adrenal mass, 

while no correlations were found between plasma corticosterone and either of the other markers. 

These results imply that the HPA axis is highly sensitive to both the social environment and the 

physical demands placed on the individual, and that when investigating the effects of chronic 

isolation, both hair corticosterone and adrenal mass may be more reliable markers than a single 

plasma corticosterone sample.
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1.0 INTRODUCTION

Long-term physical activity boosts metabolism, increases muscle mass, decreases body fat, 

and improves cardiovascular fitness. Not only does exercise promote physical fitness (Bullo 

et al., 2015; Deuster and Silverman, 2013; Hills et al., 2015), it has also been shown to 

improve psychological health (Barbour et al., 2007; Carek et al., 2011; McMahon et al., 

2017). Depressive symptoms seem to be particularly responsive to exercise, compared to 

other psychological disorders (Kenkel and Carter, 2016; Lawlor and Hopker, 2001; Rebar et 

al., 2015; Wegner et al., 2014). The socioenvironmental component of depression has made 

alleviating depressive symptoms difficult with pharmacotherapy alone (Netz, 2017; 

Rosenquist et al., 2011; Slavich and Irwin, 2014). Alternative therapeutic strategies 

incorporate moderate exercise into patient treatment and often result in similar measures of 

improvement in alleviating depressive symptoms to those observed following 

pharmacotherapy (Blumenthal et al., 2007; Brenes et al., 2007; Carneiro et al., 2015; 

Cooney et al., 2013; Danielsson et al., 2013; Ernst et al., 2006; Hoffman et al., 2011; Kvam 

et al., 2016). Further, in pharmacotherapy treatment-resistant patients, exercise is a proven 

strategy for reducing depressive symptoms (Mota-Pereira et al., 2011).

Exercise has been shown to improve several behavioral and cognitive functions, as well as 

central nervous system processes involved in stress reactivity (Chu et al., 2015; Erickson et 

al., 2011; Nishijima et al., 2013). For example, lifetime stress level appears to negatively 

influence the hippocampus, but exercise moderates this effect (Head et al., 2012). These 

seemingly opposing effects of chronic stress and exercise on psychological health might be 

predicted to have opposing effects on the hypothalamic-pituitary-adrenal (HPA) axis, the 

neuroendocrine regulatory system that responds to both energetic demands and perception of 

stressors. However, both chronic exercise (Gerber et al., 2013; Hill et al., 2008; Skoluda et 

al., 2012; Tremblay et al., 2004) and chronic stress (Allen et al., 2014; Dickerson and 

Kemeny, 2004; Ulrich-Lai and Herman, 2009) are associated with activation of the HPA axis 

in humans. This “exercise-glucocorticoid paradox” has been discussed in detail (Chen et al., 

2017), with possible explanations. One explanation is that while exercise increases 

glucocorticoid release acutely, it also facilitates recovery following a stressor. This is 

illustrated in rats that either engaged in voluntary wheel running prior to 30-min. restraint 

stress or not. Those that exercised prior to restraint displayed an earlier peak and earlier 

recovery of plasma glucocorticoids following restraint stress as compared to controls (Hare 

et al., 2014). Further, quantification of overall glucocorticoid release was lower in exercised 

rats, a result of a shortened, and perhaps better regulated, HPA response (Chen et al., 2016).

Stress and exercise also influence paraventricular nucleus (PVN) functions. The PVN 

integrates information from multiple cortical and limbic structures in the context of stress, 

ultimately resulting in the release of glucocorticoids (i.e., cortisol, corticosterone) from the 

adrenal cortex (Herman et al., 2016). While this is an adaptive response to acute stressors, 

prolonged exposure to stress can result in dysregulation of the HPA axis (e.g., elevation of 

resting cortisol levels), which may have damaging effects centrally and peripherally. 

Therefore, exercise may have positive effects on HPA functions to promote more adaptive 

responses to stress (Hare et al., 2014).
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Specific effects of exercise on HPA axis functions are not well elucidated, particularly with 

respect to exercise potentially mitigating HPA axis effects of psychosocial stressors. One 

study found that acute treadmill running at a high speed increased cFos expression in 

corticotropin releasing hormone (CRH) neurons in the PVN in rats (Otsuka et al., 2016). 

However, no difference was found in oxytocin- and vasopressin-immunoreactive cells in the 

PVN between sedentary and physically active prairie voles (Kenkel and Carter, 2016). 

Furthermore, the mechanism underlying the stress-buffering effects of exercise within the 

PVN remain unclear. On one hand, 6 weeks of wheel running buffered against 

adrenocortical responses and PVN reactivity to white noise in rats (Campeau et al., 2010), 

whereas 4 weeks of voluntary exercise buffered against corticosterone response but not PVN 

reactivity to a forced swim stressor in prairie voles (Watanasriyakul et al., 2018). This 

complication may be due to the fact that the PVN both initiates HPA stress responses and 

also integrates autonomic signals triggered by exercise (Evanson and Herman, 2015; 

Michelini and Stern, 2009).

Exercise has been shown to buffer against some psychological stressors and relieve 

depressive symptoms (Heaney et al., 2014; Zschucke et al., 2015), providing further 

evidence that it may have benefits at the level of the HPA axis. For example, an 8-week 

exercise program significantly improved depressive scores and reduced urinary cortisol 

levels in depressed female adolescents compared to patients who did not participate in the 

exercise program (Nabkasorn et al., 2005). Depression also is associated with loneliness and 

social isolation, and many socially isolated individuals live a sedentary lifestyle (Zhai et al., 

2015), suggesting a strong association between social isolation and a lack of physical 

activity. One study found a negative correlation between loneliness and exercise frequency 

in college students (Page and Hammermeister, 1995). In addition to the psychological 

impact of social isolation, lonely individuals may also experience damaging physiological 

changes such as high blood pressure, elevated plasma cortisol, and weakened immune 

functions (Cacioppo et al., 2003; Choukèr et al., 2002; Cruces et al., 2014; Doane and 

Adam, 2010). In prairie voles, 4 weeks of voluntary exercise protected against behavioral 

and endocrine consequences of social isolation. Specifically, physically active animals 

displayed significantly less depressive- and anxious-like behaviors compared to animals that 

remained sedentary (Grippo et al., 2014).

The current study was designed to further characterize the protective effects of exercise 

against potentially damaging chronic isolation using the prairie vole model. In this case, the 

chronic stress came in the form of social isolation, given previous evidence demonstrating 

the value of the prairie vole model for investigating physiological consequences of social 

experiences (Grippo, 2011; Sun et al., 2014; Young et al., 2011). The prairie vole model is 

particularly appropriate for investigating the effects of chronic social stress because this 

species typically engages in monogamous socioemotional bonds similar to those seen in 

humans. Because of these unique behavioral characteristics, the prairie vole provides a 

useful model for studying behavioral and physiological aspects of social partnerships and 

social stressors as they relate to stress-related disorders (Ahern et al., 2011; Carter, 1998; 

McNeal et al., 2014). When monogamous pairs or family members are separated, negative 

effects on behavior, physiology, and the brain are observed (Lieberwirth et al., 2012; 

McNeal et al., 2014). Specifically, separating two bonded, opposite-sex prairie voles, or two 
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sibling prairie voles increases depression- and anxiety-relevant behaviors (McNeal et al., 

2014; Grippo et al., 2007). Further, these animals exhibit increased corticosterone and 

adrenocorticotropic hormone (ACTH) following acute stress when compared to paired 

animals (McNeal et al., 2014). In addition, the presence of an opposite-sex partner buffers 

against the negative consequences of chronic mild stress (McNeal et al., 2017). Together, 

these findings support the utility of this species as a model for the behavioral and 

physiological consequences of social stress in humans.

In the present study, stress effects were measured by quantifying corticosterone 

concentrations in both hair and plasma samples, and protective effects of exercise were 

measured by comparing corticosterone concentrations across experimental groups that either 

had or did not have access to an exercise wheel. Generally, we predicted that isolation would 

be associated with several markers of increased HPA activity, and that exercise would 

mitigate that increase. Based on previous work in rodents (Ferland and Schrader, 2011), 

including prairie voles (Bosch et al., 2009; McNeal et al., 2014; Pournajafi-Nazarloo et al., 

2011), we predicted that animals experiencing social isolation would exhibit elevated 

corticosterone concentrations in plasma samples. Based on negative effects of social 

instability in female mice (Jarcho et al., 2016), we also predicted that social isolation would 

be associated with increases in hair corticosterone concentrations. We further predicted that 

effects of isolation would be blunted or eliminated in animals that had access to an exercise 

wheel (Starzec et al., 1983; Watanasriyakul et al., 2018). Lastly, we predicted that certain 

physiological measures would be systematically correlated to one another. For example, 

increases in both hair corticosterone and adrenal weight are indicators of long-term HPA 

axis hyperactivity (Brain and Nowell, 1971; Weiss et al., 2004), and were expected to be 

affected in a similar pattern in this study.

2.0 METHODS

2.1 Animals

Sixty-two adult female prairie voles, descendants of a wild stock caught near Champaign, 

Illinois, were used as experimental subjects in this protocol (each first housed with an 

unstudied female sibling; n = 62 siblings). Females were chosen for the current investigation 

for several reasons. Previous work with females of this model species has demonstrated 

behavioral and physiological consequences of depression, anxiety, and increased stress 

following chronic social isolation (Grippo et al., 2007; Grippo et al., 2008). Further, in 

humans, loneliness (i.e., the perception of being alone) is reported more frequently by 

women than men (Prince et al., 1997), and that loneliness is a significant predictor of 

depression (Cacioppo et al., 2006; Prince et al., 1997). Finally, females are an understudied 

population (both in human and animal studies; Beery and Zucker, 2011; Klein et al., 2015; 

Prendergast et al., 2014).

Experimental animals had a mean (± standard error of the mean; SEM) age of 111± 3.4 

days, and a body weight of 33.82 ± 0.55 grams. All animals were maintained on a 14/10 h 

light/dark cycle (lights on at 0630h), with a mean ± SEM ambient temperature of 25 ± 2°C 

and relative humidity of 40 ± 5%. Animals were allowed food (Purina rabbit chow) and 

water ad libitum. Offspring were removed from breeding pairs at 21 days of age and housed 
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in same-sex sibling pairs until the commencement of the experimental procedures. For all 

procedures described here, only one animal from each sibling pair was studied for 

physiological responses to social isolation and/or exercise (the other animal in the cage was 

defined as the “unstudied” sibling). All procedures were conducted according to the 

National Institutes of Health’s Guide for the Care and Use of Laboratory Animals and 

approved by the Northern Illinois University Institutional Animal Care and Use Committees.

2.2 Study outline

All experimental subjects received an ear punch (in both ears) to for identification purposes, 

to denote that this was the animal in the cage that would be studied for physiological 

responses to social isolation and/or exercise (the unstudied sibling of each animal was not 

marked). Six weeks prior to any experimental manipulation, experimental animals were 

shaved in order to ensure that hair samples collected later reflected only the time period 

relevant to the study. During the initial six weeks (baseline period), all experimental animals 

remained housed with their unstudied siblings. At the end of the baseline period, 

experimental animals were again shaved and hair samples were collected. Experimental 

animals were then randomly assigned to one of the following experimental groups for five 

weeks: 1) remained paired with the respective unstudied sibling, with access to an exercise 

wheel (n=16), 2) remained paired with the respective unstudied sibling, without a wheel 

(n=15), 3) isolated from the unstudied sibling, with access to a wheel (n=16), and 4) isolated 

from the unstudied sibling, without a wheel (n=15) (stressor period). These conditions 

resulted in all groups receiving a change in environmental conditions (either social isolation, 

addition of a running wheel, or both), with the exception of the paired/no wheel group, 

which represented the continuous, basal control condition. Experimental animals in the 

isolated groups were housed individually, without olfactory, auditory, or visual cues from the 

previous sibling. Previous work with this species has demonstrated that this duration of 

isolation is sufficient to induce behavioral and physiological consequences (Grippo et al., 

2007; Grippo et al., 2008; McNeal et al., 2014; Peuler et al., 2012), and that access to 

exercise can mitigate these effects (Watanasriyakul et al., 2018). At the end of the five-week 

stressor period, a second hair sample was collected from each experimental animal, plasma 

samples were collected, and adrenal and body weights were recorded.

2.3 Experimental conditions

Experimental conditions in which an exercise wheel was made available included 

continuous access to a running wheel (4.5 in diameter; Super Pet Mouse Silent Spinner Mini 

Exercise Wheel, Model #100079369, Elk Grove Village, IL) for the five-week stressor 

period, to allow for voluntary physical activity. Only one wheel was available, regardless of 

whether there was a single isolated or two paired animals in the cage. Daily distance traveled 

and daily maximum speed were monitored via an odometer adapted for use with the running 

wheel (Bell F12 Cyclocomputer, Model # 7001115, Van Nuys, CA). Sedentary paired and 

isolated animals were housed in a standard cage without a running wheel for the five-week 

period.
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2.4 Hair collection and analysis

To ensure that hair corticosterone samples represented HPA activity during the study, all 

experimental subjects (but not their unstudied siblings) were shaved at the start of the 

baseline period, during the light period (between 10am and 12pm). This hair was not 

collected or analyzed for corticosterone. All subjects remained in standard housing for 6 

weeks (with the unstudied sibling in the same cage), at which point another fur sample 

(baseline) was collected during the light period (between 10am and 12pm) and stored for 

corticosterone assay. Fur samples were collected by shaving 4cm x 4cm section of fur on the 

subjects’ dorsal rear surfaces. The razor (Andis Pivot Pro PMT-1, Model 23475; Andis Co., 

Sturtevant, WI) was cleaned with 100% ethanol (and allowed to completely dry) before and 

after hair sample collection from each subject. Samples were then placed via forceps (also 

cleaned with 100% ethanol) into an Eppendorf tube. Fur samples were stored at −80° C until 

assayed for corticosterone. Immediately following baseline hair sample collection, 

experimental subjects were moved to the assigned experimental housing condition 

(described above). At the end of the 5-week manipulation period a final hair sample (post-

stress) was collected during the light period (between 10am and 12pm).

Hair samples were prepared following a modified previously published protocol (Davenport 

et al., 2006; Jarcho et al., 2016). Briefly, weighed samples were washed with isopropanol to 

remove debris. Samples were then chopped into fine pieces with a razor blade to facilitate 

steroid extraction (Yu et al., 2015). Steroids were then extracted from the hair by incubating 

the samples in methanol for 48 hours. Finally, the steroid-containing methanol solution was 

purified by passing the solution through Supelco-select HLB SPE tubes (Sigma-Aldrich). 

Purified extracts were reconstituted with assay buffer (Arbor Assays, Ann Arbor, MI). 

Reconstituted samples were assayed in duplicate for corticosterone via commercially 

available enzyme immunoassay kits (Arbor Assays, Ann Arbor, MI). The detectable range 

of corticosterone for these kits was 78.125–10,000 pg/ml, and the intra-assay and inter-assay 

coefficients of variance were 6.36 and 7.75, respectively. Corticosterone concentrations as 

detected by enzyme immunoassay were then matched with the original weight of the hair 

collected in order to account for minor variations in hair quantity collected. Corticosterone 

concentrations are, therefore, expressed in pg/mg of hair.

2.5 Blood collection and analysis

All experimental subjects were anesthetized with a mixture of ketamine (67 mg/kg, sc; NLS 

Animal Health, Owings Mills, MD) and xylazine (13.33 mg/kg, sc; NLS Animal Health), 

during the light period (between 10am and 12pm). Blood was sampled within two minutes 

of the anesthetic injection, from the periorbital sinus via a heparanized capillary tube, and 

was collected during a period not exceeding 1.5 minutes. The blood was placed immediately 

on ice, and then centrifuged at 4°C at 3500 rpm for 15min to obtain plasma. Plasma aliquots 

were stored at −80°C until assayed for circulating corticosterone. Plasma concentrations of 

corticosterone were measured using a commercial enzyme-linked immunosorbent assay kit, 

according to the kit instructions (Enzo Life Sciences, ADI-900–097, Farmingdale, NY). 

Plasma was diluted in assay buffer as necessary (1:500) to yield results reliably within the 

linear portion of the standard curve. The minimum detection limit of this kit is 0.027 ng/ml. 

Inter- and intra-assay coefficients of variation are <5% (according to both manufacturer 
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specifications and confirmed by multiple in-house assays). Cross-reactivity with other 

steroids or peptides is <1.7%.

2.6 Adrenal gland collection and analysis

Immediately after the collection of blood, each animal was euthanized under anesthesia. 

Adrenal glands were immediately dissected and weighed. Adrenal weight is expressed both 

as an absolute measure (g) and as a relative weight to animal body mass.

2.7 Statistical analyses

Data are presented as means ± SEM for all analyses and figures. A value of p < 0.05 was 

considered to be statistically significant. When comparing groups within a given data set 

(e.g., paired v. isolated on hair corticosterone) the data were analyzed with single-factor or 

two-factor independent-groups analyses of variance (ANOVA) to compare group (i.e., paired 

or isolated) and manipulation (i.e., wheel or no wheel) effects, followed by a priori Student’s 

t tests with Bonferroni correction for multiple comparisons. In order to assess synchronicity 

across physiological responses to chronic social isolation (e.g., association between hair and 

plasma corticosterone), we calculated Pearson product moment correlations across all 

biomarkers (i.e., both measures of adrenal weight, plasma corticosterone, and hair 

corticosterone), and Bonferroni correction was used for multiple comparisons (n=4), 

resulting in an alpha level of 0.0125 (i.e., 0.05/4).

3.0 RESULTS

3.1 Body weight

Body weight did not differ between experimental groups at either the start or end of the 

study (Table 1). A two-factor ANOVA yielded no significant main effect of wheel or pairing 

on body weight at either the start (wheel: F1, 58=0.13, p=0.72; pairing: F1, 58=0.90, p=0.35) 

or end (wheel: F1, 58=0.11, p=0.74; pairing: F1, 58=0.63, p=0.43) of the study. Nor was there 

a significant wheel by pairing interaction at either the start (F1, 58=0.56, p=0.46) or the end 

(F1, 58=0.52, p=0.47) of the study. No follow-up tests were conducted.

3.2 Physical activity

Animals with access to running wheels (both paired and isolated) ran a mean (±SEM) 

distance of 3.22 ± 0.39 km/day with a mean (±SEM) maximum speed of 1.65 ± 0.27 km/hr. 

No difference was detected between paired and isolated groups in the daily distance traveled 

(paired mean ± SEM: 2.67 ± 0.60 km/day isolated mean ± SEM: 3.77 ± 0.47 km/day; t30 = 

1.45, p = 0.16; Table 1), but paired animals reached a faster maximum speed (paired mean ± 

SEM: 2.23 ± 0.49 km/hr; isolated mean ± SEM: 1.07 ± 0.14 km/hr; t30 = 2.29, p = 0.03).

3.3 Hair corticosterone

Hair samples were collected at the beginning (baseline) and end (post-stressor) of the study 

to quantify corticosterone as a global measure of HPA axis activity (Table 2). Two-factor 

ANOVA was conducted to assess hair corticosterone at baseline, and found that neither 

wheel availability, nor housing status predicted corticosterone concentrations (wheel: F1, 58 
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= 2.76, p = 0.10; pairing: F1, 58 = 0.04, p = 0.84). However, the interaction between these 

factors was significant (F1, 58 = 18.04, p < 0.01), and post-hoc t tests revealed that within 

isolated animals, those with later access to a wheel had higher corticosterone concentrations 

at baseline (t31 = 4.05, p < 0.01). The same analyses were used to assess hair corticosterone 

at the end of the study, and found that neither wheel availability, nor pairing status, nor the 

interaction term predicted corticosterone concentration (wheel: F1, 58 = 0.47, p = 0.50; 

pairing: F1, 58 = 0.02, p = 0.88; interaction: F1, 58 = 0.03, p = 0.86).

To evaluate the effect of the manipulation, difference scores in hair corticosterone were 

calculated by subtracting baseline from post-stress, and these scores were analyzed with 

two-factor ANOVA. Neither main effect predicted corticosterone concentration (wheel: 

F1, 58 = 0.06, p = 0.81; pairing: F1, 58 = 0.03, p = 0.86), but the interaction between these 

factors significantly predicted hair corticosterone concentration (F1, 58 = 4.52, p = 0.04; Fig. 

1). Post-hoc t tests comparing means across either pairing status or wheel availability did not 

detect significant differences (all ps > 0.10).

3.4 Plasma corticosterone

Plasma samples were collected at the end of the study and corticosterone concentrations 

were analyzed with two-factor ANOVA. Analyses revealed that both main effects predicted 

plasma corticosterone (wheel: F1, 58 = 4.56, p = 0.04; pairing: F1, 58 = 7.22, p < 0.01; Fig. 2), 

but the interaction term did not (F1, 58 = 3.44, p = 0.07). Post-hoc t tests revealed isolated 

animals without wheel access had significantly higher plasma corticosterone than any other 

experimental group (isolated v. isolated with wheel: t29 = 2.68, p = 0.01; isolated v. pooled 

paired: t44 = 3.91, p < 0.01), and that no differences existed among the other three groups 

(all ps > 0.5).

3.5 Adrenal weight

Adrenal glands were collected and weighed at the end of the study. Two-factor ANOVA was 

used to evaluate both absolute adrenal weight and adrenal:body weight ratio. For absolute 

adrenal weight, there was a significant interaction (F1, 55 = 4.25, p = 0.04; Fig. 3a), but 

neither main effect predicted adrenal weight (wheel: F1, 55 = 0.59, p = 0.48; pairing: F1, 55 = 

0.14, p = 0.71). For adrenal:body weight ratio, a similar pattern was observed, with a 

significant interaction (F1, 56 = 4.89, p = 0.03; Fig. 3b), and no significant main effects 

(wheel: F1, 56 = 1.78, p = 0.19; pairing: F1, 56 = 0.06, p = 0.81). For both measures, no post-

hoc t tests between experimental groups revealed significant differences (all ps > 0.05).

3.6 Correlations between physiological measures

Pearson product moment correlation analyses were conducted to evaluate associations across 

physiological measures. Associations were found between the change in hair corticosterone 

and both adrenal measures (absolute adrenal weight: r59 = 0.43, p = 0.001; adrenal:body 

weight ratio: r59 = 0.42, p = 0.001; Fig. 4). Plasma corticosterone was not associated with 

either measure of adrenal mass (both ps > 0.15).

Associations were further investigated by evaluating the above correlations within 

experimental groups. In paired animals with wheel access, significant associations were 
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detected between both measures of adrenal mass and hair corticosterone (absolute adrenal 

weight: r16 = 0.65, p = 0.007; adrenal:body weight ratio: r16 = 0.70, p = 0.003). No 

relationship was found between either adrenal measure and plasma corticosterone (both ps > 

0.3) for paired animals with wheel access. When assessing within all other experimental 

groups, no significant associations were found between either measure of adrenal mass and 

either measure of corticosterone (all ps > 0.06).

4.0 DISCUSSION

Using the socially monogamous prairie vole model, this study investigated the interaction 

between two factors known to affect HPA axis activity: chronic social isolation and exercise. 

Our general prediction was that isolated animals would exhibit physiological markers of 

being chronically stressed, given the disruption of an established social bond, and that access 

to an exercise wheel would mitigate those physiological markers. Specifically, we predicted 

elevated corticosterone concentrations in both hair and plasma and increased adrenal weight 

in isolated animals; and among isolated animals, those with access to an exercise wheel 

would show lower hair and plasma corticosterone and lower adrenal weight, with these 

responses being comparable to paired animals.

Social isolation is known to activate the HPA axis [reviewed in (Cacioppo et al., 2015; Sandi 

and Haller, 2015)] and result in elevated glucocorticoid concentrations (Hawkley et al., 

2012). This response tends to be particularly pronounced among species that typically 

engage in robust social bonds (Hawkley et al., 2012) and in female individuals as compared 

to males (Dadomo et al., 2018; Haller et al., 1999; Herzog et al., 2009; Iñiguez et al., 2018). 

Exercise is also known to activate the HPA axis and increase circulating glucocorticoid 

levels (Gerber et al., 2013; Hill et al., 2008; Skoluda et al., 2012; Tremblay et al., 2004). 

However, under conditions of chronic stress, exercise mitigates glucocorticoid levels and 

reduces depression- and anxiety-like behaviors (Campeau et al., 2010; Grippo et al., 2014; 

Sasse et al., 2008; Watanasriyakul et al., 2018). Parts of the current study align well with 

these previously observed patterns. First, we observed elevated plasma corticosterone in 

animals that were isolated and without access to an exercise wheel, as compared to either 

animals who were paired or those who had access to a wheel, or both. Further, among 

isolated animals, we observed elevated hair corticosterone concentrations and elevated 

adrenal size in animals without wheel access. However, our results do not align with the 

previous patterns entirely. For example, although plasma corticosterone levels were lower in 

paired animals (versus isolated animals), both hair corticosterone concentration and adrenal 

size were higher in paired animals with wheel access (versus paired sedentary animals). This 

pattern suggests that stressors might not affect long-term HPA activity in an additive way, 

but rather, that HPA activity is quite sensitive to specific social and environmental stimuli. 

That is, exercise might be effective at mitigating some negative HPA consequences 

associated with social isolation, but likely does not simply down-regulate all HPA axis 

responses.

We observed differing patterns between our various measures of physiological responses to 

stress as a function of social housing and access to a running wheel. Namely, increased 

concentrations of plasma corticosterone were observed only in animals that were isolated 
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without access to an exercise wheel. For hair corticosterone and adrenal size the pattern was 

different, with isolated animals expressing indicators of chronic stress (i.e., elevated hair 

corticosterone and increased adrenal size) when wheel access was denied, whereas paired 

animals expressed those same indicators when they had wheel access. These differences 

across physiological measures are likely due to differences in what exactly is being 

measured. That is, plasma corticosterone is a point measure, and is useful for quantifying 

corticosterone at the exact time that the blood is collected. It is an indicator of HPA activity 

at the time of sampling. Hair corticosterone and adrenal size are indicators of more long 

term HPA activity. In the case of hair corticosterone, the concentration reflects the amount of 

hormone deposited along the hair shaft for the entire period that the hair has been growing 

(i.e., 5 or 6 weeks, in this study), and adrenal size, presumably, also reflects HPA activity 

during the entire period that a stressor is present. Previous work in rats has demonstrated the 

utility of quantifying plasma corticosterone for assessing stress over short time periods (e.g., 

minutes to hours; Stalder and Kirschbaum, 2012), while acknowledging the sensitivity of 

this measure to various environmental factors (e.g., time of day, time since exercise, time 

since ingestion of food, etc.; D’Agostino et al., 1982; Girard and Garland, 2002; Heiderstadt 

et al., 2000; Starzec et al., 1983; Stupnicki and Obminski, 1992). Measuring corticosterone 

in hair provides a noninvasive method for assessing HPA activity over a longer period of 

time, and has been shown to effectively detect exposure to chronic stressors (Heiderstadt et 

al., 2000; Meyer and Novak, 2012; Russell et al., 2012; Scorrano et al., 2015). Our data 

indicate that hair corticosterone reflected the expected pattern in isolated animals (i.e., 

elevated when wheel access was denied), but not in paired animals. Interestingly, a similar 

pattern was observed in adrenal size, another physiological indicator of chronic stress 

(Gamallo et al., 1986). Unfortunately, the pattern observed in hair corticosterone is limited 

by the fact that our experimental groups differed at baseline. Prior to manipulation, hair 

corticosterone was lower in animals that were randomly assigned to the isolation without 

wheel access experimental group. Additionally, animals that would be isolated with wheel 

access had higher hair corticosterone concentrations than animals that would remain paired 

with wheel access. Although change scores were evaluated in an attempt to statistically 

account for baseline differences, these pre-existing differences may limit the interpretation 

of hair corticosterone data.

Additional evidence supporting hair corticosterone and adrenal mass as indicators of long-

term HPA axis activity is the highly correlated nature of these measures, both when adrenal 

size was expressed in absolute mass or when expressed as a percent of body mass. 

Importantly, these associations were strongest when animals experienced environments (i.e., 

either social or environmental) typically thought of as beneficial to health. Specifically, 

when animals were with their sibling and had access to the exercise wheel, the correlations 

between change in hair corticosterone and adrenal mass were strong. When animals were 

either isolated or without wheel access, the correlations were weak. These findings support a 

hypothesis that under favorable conditions, the HPA axis is well regulated and physiological 

sequelae are in line with one another. However, under chronically stressful conditions, the 

HPA axis may become dysregulated, and the consequences on various organs and tissues 

may differ. Neither hair corticosterone nor adrenal mass were associated with plasma 

corticosterone. These patterns indicate that hair corticosterone and adrenal mass, but 
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possibly not plasma corticosterone, are closely related, and that both hair corticosterone and 

adrenal mass are reliable measures of chronic social isolation. Plasma corticosterone, on the 

other hand, while highly effective for detecting acute physiological responses to stress, may 

be less reliable for detecting accumulated changes associated with chronic stressors, unless 

multiple samples are collected (Meyer and Novak, 2012). Although we attempted to 

minimize the influence of short-term influences on plasma corticosterone levels in the 

current design, it is possible that environmental confounds unsystematically influenced these 

levels. Further detailed investigations directly comparing repeated measures of hair 

corticosterone, adrenal function, and plasma corticosterone will provide additional insight 

into these relationships.

An alternative explanation for the differential pattern of hair corticosterone and adrenal mass 

in the present study is that increased glucocorticoid production in paired animals with wheel 

access was a result of increased energy expenditure. That is, elevated corticosterone 

concentrations in the hair may have represented increased metabolic demands, and not 

increased stress. Indeed, previous work in rats and mice has demonstrated a strong 

association between exercise and plasma corticosterone (Coleman et al., 1998; Girard and 

Garland, 2002; Sipp et al., 1993), a pattern that is also well documented in humans (Tharp, 

1975). It may be the case that exercise only has a mitigating effect on HPA activity when 

individuals are already experiencing some form of psychological stress. In the current study, 

among paired animals we observed a greater increase in hair corticosterone within animals 

with wheel access. Further, the only experimental group that did not display a significant 

increase in hair corticosterone was isolated animals with wheel access. To further support 

this hypothesis, data from exercise studies in rats housed under different social conditions 

suggest that the effects of exercise are independent from those of social housing, and that 

voluntary exercise indeed has stress-buffering effects (Greenwood and Fleshner, 2011).

One additional explanation for increased hair corticosterone and adrenal mass in paired 

animals with wheel access is competition over wheel access. That is, the exercise wheel may 

be thought of as a limited resource that the subject animal competed over with their sibling. 

Indeed, only one wheel was placed in each cage, whether the cage had one (isolated) or two 

(paired) animals. It is also notable the mean distance traveled in the paired group was similar 

to that of the isolated group, despite the fact that paired animals shared a wheel with a 

sibling in the same cage. A reasonable prediction might be that the paired group should have 

traveled approximately twice the distance than that of the isolated group, similar to what is 

observed in single- vs. pair-housed rats (Greenwood and Fleshner, 2011). Therefore, among 

paired animals, the limited availability of an exercise wheel might have represented a 

stressor (Liesenjohann et al., 2013). On the other hand, for isolated animals that did not have 

a sibling to compete with, the exercise wheel would not represent a stressor. On the contrary, 

among these isolated animals, the opportunity to exercise might be a coping mechanism to 

mitigate the stress of being isolated (Campeau et al., 2010; Greenwood and Fleshner, 2011; 

McNeal et al., 2017; Sasse et al., 2008; Watanasriyakul et al., 2018).

Taken together, the results from the present study indicate that isolation is a potent 

psychosocial stressor in the monogamous prairie vole, activating the HPA axis. Further, 

these results indicate that exercise mitigates the physiological reactivity to social isolation. 
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These results have important implications for treatment strategies for patients suffering from 

depressive symptoms or other consequences of social stress, especially those patients whose 

symptoms are not entirely mitigated through pharmacological means. This study provides a 

foundation for additional investigation of the benefits of exercise and other environmental 

factors in mediating behavioral and neurobiological consequences of social stressors. Lastly, 

the differing physiological patterns from this study support the use of hair corticosterone and 

adrenal size as indicators of long-term HPA hyperactivity.
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Figure 1. 
Change in hair corticosterone concentrations (post-manipulation – baseline) as a function of 

social isolation and wheel access. Social isolation and wheel access interact such that among 

isolated animals wheel access results in a mitigated increase in hair corticosterone, whereas 

among paired animals the opposite pattern was observed. * indicates ANOVA interaction p < 

0.05.
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Figure 2. 
Plasma corticosterone concentrations as a function of social isolation and wheel access. 

Elevated plasma corticosterone was observed only in animals that experienced social 

isolation and did not have access to an exercise wheel. * indicates condition (wheel access or 

sedentary) p < 0.05; † indicates group (paired or isolated) p < 0.01.

Jarcho et al. Page 20

Stress. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jarcho et al. Page 21

Stress. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Adrenal gland mass as a function of social isolation and wheel access. Absolute adrenal 

mass (a) and adrenal mass relative to body mass (b) are predicted by the interaction between 

social isolation and wheel access. In both adrenal measures, among isolated animals, wheel 

access is associated with lower adrenal mass than no wheel access. However, among paired 

animals the opposite pattern is observed. * indicates ANOVA interaction p < 0.05.
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Figure 4. 
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Association between change in hair corticosterone and adrenal mass. Absolute adrenal mass 

(a) and adrenal mass relative to body mass (b) are positively associated with change in hair 

corticosterone from baseline to post-manipulation.
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Table 1.

Animal weights and physical activity characteristics (mean ± SEM).

Group Body mass (g) Running (km)

Start End Change Distance
(km/day)

Max speed
(km/hr)

Isolated 33.9±1.3 36.5±1.6 2.6±0.9 — —

Isolated, wheel 32.7±1.1 35.1±1.6 2.4±0.8 2.7±0.6 1.07±0.1

Paired 34.1±1.1 36.6±1.1 2.5±1.1 — —

Paired, wheel 34.6±1.3 37.1±1.1 2.6±0.7 3.8±0.5 2.2±0.5
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Table 2.

Hair corticosterone concentrations at baseline and post-stressor (mean ± SEM).

Group Corticosterone (pg/mg hair)

Baseline Post-stressor Change
a

p
b

Isolated 14.7±1.2 30.4±5.2 16.5±5.3 0.008

Isolated, wheel 30.5±3.5 36.1±5.5 5.9±4.2 0.182

Paired 23.8±3.0 30.2±4.6 7.5±3.5 0.049

Paired, wheel 19.4±2.4 35.7±5.7 16.5±5.3 0.006

a.
Change calculated as average of difference scores (i.e., post-stressor — baseline) for all individuals in an experimental group.

b.
p value corresponds to t test comparison of baseline and post-stressor within an experimental group.
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