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Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the healthy and diseased brain. As a result, there
is a large body of evidence that associates BDNF with neuronal maintenance, neuronal survival, plasticity, and neurotransmitter
regulation. Patients with psychiatric and neurodegenerative disorders often have reduced BDNF concentrations in their blood and
brain. A current hypothesis suggests that these abnormal BDNF levels might be due to the chronic inflammatory state of the brain in
certain disorders, as neuroinflammation is known to affect several BDNF-related signaling pathways. Activation of glia cells can
induce an increase in the levels of pro- and antiinflammatory cytokines and reactive oxygen species, which can lead to the modulation
of neuronal function and neurotoxicity observed in several brain pathologies. Understanding how neuroinflammation is involved in
disorders of the brain, especially in the disease onset and progression, can be crucial for the development of new strategies of treatment.
Despite the increasing evidence for the involvement of BDNF and neuroinflammation in brain disorders, there is scarce evidence that
addresses the interaction between the neurotrophin and neuroinflammation in psychiatric and neurodegenerative diseases. This review
focuses on the effect of acute and chronic inflammation on BDNF levels in the most common psychiatric and neurodegenerative
disorders and aims to shed some light on the possible biological mechanisms that may influence this effect. In addition, this reviewwill
address the effect of behavior and pharmacological interventions on BDNF levels in these disorders.
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Introduction

Brain disorders are among the major causes of disability and
morbidity worldwide. According to recent projections, the inci-
dence of such diseases will increase in the next decades [1]. The
lack of adequate treatment turns these diseases into a significant
problem worldwide, and the absence of effective treatment can
partly be ascribed to our incomplete knowledge of the etiology of
most brain disorders. Manymental diseases, however, are tightly
associated with environmental stimuli, such as stress [2].
Challenging events can pose a significant burden on individuals,

especially those more sensitive to its effects. Although acute
stress can have benefits (e.g., enhanced attention, memory), it
can also become life threatening when stressful events become
a routine part of the life of individuals. A number of studies have
already shown that stress is associated with metabolic changes,
cardiovascular risk, endocrine abnormalities, mood changes, and
impairment of cognitive functions (i.e., mild cognitive impair-
ment), leading to an increased risk of developing psychiatric and
neurologic disorders [2, 3]. Chronic stress can lead to the activa-
tion of pro-inflammatory microglia, releasing cytokines and pro-
inflammatory substances, and recruitment of peripheral immune
cells to the brain, thus creating the inflammatory environment
that is characteristic for many brain pathologies.

In order to cope with stressful events, brain cells release
several substances that can promote neuronal survival, such as
antiinflammatory cytokines, growth factors and neurotrophic
factors. One of the best-studied neurotrophins is the brain-
derived neurotrophic factor (BDNF). Brain pathologies are
usually associated with a downregulation of BDNF release,
resulting in reduced BDNF levels in the brain and in blood.
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BDNF has been suggested as a candidate biomarker of path-
ological conditions, and therapy efficacy, as most of current
treatments are accompanied by a significant change in blood
BDNF levels. However, there is still a gap in our understand-
ing of the physiological mechanisms that lead to changes in
BDNF levels under pathological conditions.

This review will summarize our current knowledge of
BDNF in the pathophysiology of the most common brain
disorders. Since neuroinflammation has been considered an
important mediator for the onset and progression of many
brain pathologies, this review will also attempt to explore
the interaction between neuroinflammation and BDNF ex-
pression in the brain.

BDNF Expression and Function

BDNF is a member of the neurotrophin family, which also in-
cludes neural growth factor (NGF) and neurotrophins 3 and 4.
The Bdnf gene is comprised of a common 3′-exon that encodes
the pro-BDNF region of the protein, and several species-
dependent 5′-noncoding, promoter-regulated regions, terminat-
ing in a coding 5′-exon that encompasses the gene expression
[4, 5]. Bdnf gene expression is strongly regulated by a wide array
of endogenous and exogenous stimuli (e.g., stress, physical ac-
tivity, brain injury, diet). BDNF is translated as a pro-
neurotrophin (pro-BDNF) that can be cleaved into mature
BDNF in the cytoplasm by endoproteases or in the extracellular
matrix by plasmin or matrix metalloproteinases (MMP). Both
mature BDNF and pro-BDNF can be secreted and bind to the
low affinity p75 neurotrophin receptor (p75NTR), which causes
activation of the apoptosis cascade [6, 7]. On the other hand,
cleaved, mature BDNF binds to its high-affinity receptor tyrosine
kinase B (TrkB), activating several signaling cascades, including
the Ras-mitogen-activated protein kinase (MAPK), the
phosphatidylinositol-3-kinase (PI3K), and the phospholipase
Cγ (PLC-γ) pathway. These signaling cascades induce an in-
crease in Ca2+ intake, phosphorylation of transcription factors,
and de novo expression of the Bdnf gene (Fig. 1) [8]. Although
pro-BDNF can act as a signaling factor for the apoptotic cascade,
it is not yet clear if pro-BDNF is secreted by neurons under
normal conditions as its concentration in presynaptic terminals
is relatively low when compared to mature BDNF. Indeed, in
animal models, the concentration of mature BDNF can be ten
times higher than the concentration of pro-BDNF [9, 10], which
poses a question regarding the efficacy of pro-BDNF as a proper
signaling factor.

BDNF has a wide array of functions within the brain and is
highly abundant in several brain structures. In the brain, BDNF is
involved in plasticity, neuronal survival, formation of new syn-
apses, dendritic branching, and modulation of excitatory and
inhibitory neurotransmitter profiles [11, 12]. BDNF is active at
all stages of development and aging [13]. Knockout mice lacking

BDNF rarely reach adulthood and, when they do, there is a
development of several sensory impairments [14, 15]. BDNF is
also found in peripheral organs, such as the heart, gut, thymus,
and spleen [16, 17]. Around 90% of the BDNF in blood is stored
within platelets [18]. Many brain pathologies cause reduction of
BDNF protein levels both in the brain and serum of patients
[19–22]. Unfortunately, it is still unclear whether BDNF protein
levels measured in serum samples reflect BDNF levels in the
brain, as studies in animal models gave contradictory results so
far [23–25].

BDNF in Neuroinflammation

After inflammatory signaling (e.g., stress, pro-inflammatory
signals), several signaling cascades are changed within the
cell. This signaling generates a sequence of events that may
eventually lead to neuronal malfunction and apoptosis.
Microglia also participate actively in the development of path-
ological neuroinflammatory process by releasing pro-
inflammatory cytokines, which contribute to the neurotoxici-
ty. This cycle is repeated as long as the stressor is present,
which can develop into serious consequences (e.g., cognitive
impairment, behavioral dysfunction, neurological and psychi-
atric disorders). One of the main factors of inflammatory ac-
tivation is the nuclear factor-kappa B (NF-κB), a transcription
factor that induces the expression of several pro- and
antiapoptotic genes, including Bdnf [26]. Interestingly, bind-
ing of BDNF to the TrkB receptor can also induce the expres-
sion of NF-κB, although the pathways for this modulation are
yet unclear (Fig. 2). NF-κB is closely involved in the innate
and adaptive immune response in several psychiatric and neu-
rodegenerative diseases [27]. NF-κB is a regulator of, e.g.,
apoptosis, neuronal survival and proliferation, and migration
and maturation of immune cells [28]. BDNF-induced NF-κB
expression stimulates PLC-γ/PKC signaling through the acti-
vation of the kinases IKKα and IKKβ. These kinases phos-
phorylate the NF-κB inhibitory unit IκBα, resulting in the
binding of ubiquitin and subsequently degradation of IκBα
by proteasomes [29]. IκBα degradation induces the release of
the NF-κB and formation of the p50/p65 dimer, which binds
to the DNA and induces the expression of genes related to
neuronal proliferation, survival, and inflammatory response
[29, 30]. Furthermore, it is known that BDNF can also bind
to the p75NTR. Even though the affinity of BDNF for the
p75NTR receptor is several times lower than for TrkB [31],
a p75NTR-mediated effect on NF-κB expression can be ob-
served. Studies have shown that activation of p75NTR in-
creases apoptotic and inflammatory signaling in neurons and
glial cells by activation of c-Jun N-terminal kinases (JNK) and
NF-κB expression, respectively [32, 33]. However, the effect
the p75NTR has on neurotrophic signaling is still under de-
bate, as there is no clear evidence on how large the role of the
p75NTR is in mediating such processes.
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Thus, the role of BDNF in neuroinflammation is strongly
related to its ability to induce—and being induced by—NF-κB.
However, the exact regulatory mechanisms are not yet clear.

BDNF and Aging

The aging process can lead to the impairment of several brain
functions. Studies have reported a decrease inwhole brain volume

in elderly when compared with young adults, especially in brain
regions related to cognition [34–37]. Upon aging, microglia in-
creasingly adopt a pro-inflammatory state due to a decrease in the
resting signaling by neurons and astrocytes [38, 39]. As a result,
external stimuli (e.g., stress, trauma, infection) can submit the
aged brain more easily into a state of mild chronic neuroinflam-
mation, making the brain more prone to apoptotic signaling [40].
This can lead to volume loss and the associated cognitive impair-
ment [41]. Animal studies in stress models, such as chronic stress,

Fig. 1 BDNF induces survival-related signaling mechanisms: BDNF in-
duces survival-related signaling mechanisms: In physiological condi-
tions, binding of BDNF to TrkB receptor in either paracrine or autocrine
signaling elicits three distinct downstream pathways. BDNF-dependent
phospholipase C-gamma (PLC-γ) can induce short-term signaling by
increasing Ca2+ neuronal response and inhibit inflammatory-dependent
apoptosis cascade (dashed lines) by inhibition of glycogen synthase ki-
nase 3-beta (GSK-3β). Induction of phosphatidylinositol 3-Phosphate
(PI3K) induces transcription of BDNF mRNA by activating mTOR-

dependent translation of BDNF. Additionally, BDNF can modulate gene
regulation by activating NF-κB and CREB transcription factors by induc-
ing Akt and Erk downstream pathways, respectively. Gene modulation
induces neuronal survival, growth, long-term potentiation (LTP), and de
novo expression of BDNF. In addition, BDNF-independent
transactivation of TrkB can also play an important role in the neurotrophic
pathway regulation by factors, such as adenosine, zinc, epidermal growth
factor (EGF), glucocorticoids, and pituitary adenylate-cyclase-activating
polypeptide (PACAP), further enhancing TrkB signaling in the synapse
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maternal separation, and social defeat, have confirmed that stress
is associated with glial activation and that aging decreases cogni-
tive function [42, 43]. The loss of volume is indicative of a reduc-
tion in the global neuronal network, and consequently a dimin-
ished brain plasticity that could support the brain in such events,
thus reducing the cognitive function [44, 45].

It is known that BDNF plays a role in maintaining brain
function by inducing survival signaling and neuroplasticity.
Although the effect ismore visible in younger population, elderly
subjects also benefit from it, especially those cognitively, physi-
cally, and socially active, reducing the risk of age-related comor-
bidities [46]. Studies in animal models report an increase in brain
BDNF levels when aged animals are submitted to protocols such
as long-term environmental enrichment [47–49] or physical

activity [50, 51]. Studies on agedmice demonstrated that animals
heterozygous for BDNF showed decreased fear extinction learn-
ing [52] and conditioned fear learning [53] when compared with
young heterozygousmice, but themechanism responsible for the
behavioral effects is not completely clear yet. Better understand-
ing of the processes that are modulated by BDNF may facilitate
the development of novel therapeutic methods that could help to
prevent or counteract the aging effects on the human brain.

BDNF in Psychiatric Disorders

Whenever the brain is challenged by harmful events, its cop-
ing mechanisms are activated in order to revert the system to

Fig. 2 BDNF response after inflammatory brain pathogenicity. In
chronically stressful situations, such as brain pathologies, there is an
induction of NF-κB-dependent pro-inflammatory activation of microglia
after induction of the pattern recognition receptor (PRR) by the challenge
(e.g., stress or pathology). Pro-inflammatory cytokines, especially IL-1,
can directly bind microglial cells, which result in induction of the expres-
sion and release of several mediators, most of which are neurotoxic,
including reactive oxygen (ROS) and nitrogen species (RNS), pro-
inflammatory cytokines (such as tumor necrosis factor), and chemokines

(such as CC-chemokine ligand 2, CCL2; also known as MCP1).
Additionally, there is a decrease of BDNF signaling in the synaptic cleft,
further reducing BDNF-dependent survival-related signaling (black
dashed lines) and inhibition of apoptotic pathways, such as glycogen
synthase kinase 3-beta (GSK-3: red dashed line). Such factors will lead
to an increase of NF-κB complex binding to genes that express pro-
inflammatory cytokines (e.g., interleukin 1-β, IL-6, IL-8, TNF). The ef-
fect of transactivation factors on the BDNF-independent maintenance of
TrkB is not clear yet
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homeostasis. When these coping mechanisms fail, e.g., due to
excessive damage, enhanced sensitivity, and chronic or recur-
rent exposure to stimuli, a disturbance of normal brain func-
tion may occur that can lead to the onset of neuropsychiatric
disorders (Table 1). Although psychiatric diseases can display
wide spectra of symptoms, common phenomena in these dis-
orders are a disarray of excitatory/inhibitory neurotransmitter
signaling and loss of neuronal function, leading to mood and
behavioral disturbances, and cognitive impairment.

In humans, BDNF is known to be a useful biomarker for
several psychiatric disorders [54]. Most chronic psychiatric
diseases are accompanied by changes in BDNF levels, but it
is still unclear if changes in BDNF levels are the cause or the

result of the disturbances of normal brain function. Therefore,
the effects of BDNF levels have been investigated in animal
models. Heterozygous BDNF mice show increased weight
gain, aggressiveness, anxiety, and contextual memory impair-
ment and therefore have been suggested as an animal model
for mood disorders [55]. These results suggest that BDNF
could be a key player in the development of several symptoms
associated with psychiatric disorders. This hypothesis is sup-
ported by the fact that effective treatment of these symptoms
resulted in normalization of BDNF levels [56]. In this section,
we will further discuss the role of BDNF in the main psychi-
atric disorders: major depressive disorder, bipolar disorder,
and schizophrenia.

Table 1 Effects of BDNF on several neuropsychiatric and neurodegenerative conditions

Condition Peripheral BDNF Brain BDNF References

Major
depressive
disorder
(MDD)

Decreased serum and plasma levels of
BDNF protein; some literature findings
showing no change or increased levels in
MDD patients; euthymic patients have
normalized BDNF levels in serum or
plasma; increased methylation of the
Bdnf gene is associated with a decrease
in mRNA expression; treatment-resistant
patients show lower BDNF levels in se-
rum compared to treatment-responsive
patients

Decreased BDNF and TrkB mRNA
expression in hippocampal slices of
MDD patients; use of antidepressant
medication was associated with
increased Bdnf mRNA expression

Elfving et al. (2012), Karege et al. (2005),
Matrisciano et al. (2009), Pandey et al.
(2008), Thompson Ray et al. (2011),
Hong et al. (2014)

Bipolar
disorder
(BD)

Decreased serum and plasma levels of
BDNF in both manic and depressive
stages of BD; euthymic patients show no
difference from controls

Decreased BDNF mRNA expression in
hippocampus of suicidal BD patients; no
difference in Bdnf expression between
different disease stages (euthymic,
depressive or manic)

Banerjee et al. (2013), Knable et al. (2004),
Monteleone et al. (2008), Sklar et al.
(2002), Ray et al. (2014)

Schizophrenia
(SCZ)

Decreased BDNF protein levels in serum of
SCZ patients; no changes in BDNF
levels after treatment

Decreased expression of Bdnf and Trkb
genes in hippocampus and dorsolateral
prefrontal cortex of SCZ patients;
increased methylation of Bdnf gene in
prefrontal cortex of SCZ patients

Dong et al. (2015), Pillai (2008), Rao et al.
(2015), Reinhart et al. (2015), Rizos et al.
(2008), Weickert et al. (2003), Weickert
et al. (2005), Xiu et al. (2009), Zhang et
al. (2012)

Alzheimer
disease
(AD)

Low serum BDNF levels correlate with
development of dementia—especially
AD; decreased levels of BDNF in serum
of AD patients; BDNF levels are not
related to severity of disease; successful
treatment transiently increases BDNF in
AD

BDNF genotype is related with reduced
Hippocampal activity and cognitive
function in subjects with high levels of
A-β and AD patients; decreased BDNF
mRNA levels in the hippocampus of AD
patients; increase in methylation pattern
of the Bdnf gene in the frontal cortex of
AD patients

Buchman et al. (2016), Honea et al. (2013),
Lee et al. (2005), Lim et al. (2014),
Phillips et al. (1991), Rao et al. (2012),
Weinstein et al. (2014)

Parkinson
disease
(PD)

Serum BDNF levels are directly correlated
with degeneration of striatum in PD; low
serum levels of BDNF is correlated with
decreased cognitive function in early PD
patients; BDNF decrease in serum is
associated with the progression of motor
symptoms

Low BDNF mRNA expression in the
striatum of PD patients; association
between BDNF polymorphism and
disease progression

Cagni et al. (2016), Howells et al. (2000),
Scalzo et al. (2010), Y. Wang et al.
(2016), Ziebell et al. (2012)

Epilepsy BDNF val66met single nucleotide
polymorphism is associated with higher
BDNF protein expression and an
increased risk of developing epilepsy;
increased serum BDNF protein levels
after epileptic seizures are associated
with increased glutamate signaling

Increased mRNA expression of Bdnf exons
in the hippocampus and cortex of
temporal lobe epilepsy patients;
increased BDNF protein expression in
the hippocampus of temporal lobe
epilepsy patients

Brooks-Kayal et al. (2009), Kandratavicius
et al. (2013), Martínez-Levy et al.
(2016), Martínez-Levy et al. (2017), N.
et al. (2016), Warburton et al. (2016)
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Major Depressive Disorder

Major depressive disorder (MDD) is a common psychiatric
disease characterized by abnormal behavior, anhedonia, sleep
and dietary problems, cognitive impairment, and, in more se-
vere cases, suicidal tendencies. Biologically, depression is re-
lated to a decrease of neurotransmitter signaling in the brain,
dysfunction of hypothalamus pituitary adrenal axis (HPA-ax-
is), increase in inflammatory signaling, and reduction in hip-
pocampal volume.

Both MDD patients [57–59] and animal models of depres-
sion [60, 61] show a remarkable reduction in serum BDNF
levels. Karege and colleagues have shown that this decrease is
not related to platelet-associated BDNF release in the blood-
stream [62], suggesting that reduced BDNF levels in the brain
rather than a reduction in the peripheral release of BDNF by
platelets are the cause of altered protein levels in blood. The
magnitude of the decrease in plasma BDNF levels is associ-
ated with disease duration [63], but it is not clear yet whether
the severity of symptoms is related to BDNF levels. BDNF
single nucleotide polymorphism (val66met), however, is as-
sociated with the severity of depression in patients [64].
Successful antidepressant treatment is usually associated with
an increase in BDNF levels in serum and plasma [65, 66],
whereas treatment failure is associated with a lack of response
of plasma BDNF levels. Thus, BDNF seems an important
player in the pathophysiology and might be a biomarker for
monitoring treatment response in depression [65, 67].
Epidemiological studies show that a third of all MDD patients
experience no changes in the symptoms when treated with the
most commonly used antidepressants. Postmortem studies re-
vealed that these treatment-resistant patients have significantly
lower BDNF levels, especially in BDNF-rich brain structures,
such as the hippocampus [68–70]. Treatment with the rapidly
acting antidepressant ketamine was able to increase plasma
BDNF levels to the level of healthy controls [71, 72].
Ketamine is an inhibitor of NMDA receptors, inducing rapid,
glutamate-dependent Ca2+ signaling and activation of cAMP
response element-binding protein (CREB). Clearly, there is a
need to increase our knowledge on the role of BDNF inMDD.

Induction of a pro-inflammatory response by systemic ap-
plication of lipopolysaccharide (LPS) causes depressive-like
symptoms (i.e., sickness behavior) in rodents [73, 74], which
may also affect BDNF levels. Increased pro-inflammatory
signaling leads to a reduction in the mRNA expression of
Bdnf and other neurotrophins in plasticity-related brain struc-
tures, especially cortical regions [75]. The effects of reduced
BDNF expression levels in mice, treated with a systemic LPS
injection, can be counteracted by induction of TrkB-mediated
signaling with the agonist 7,8-dihydroxyflavone, which leads
to a reduction of depressive-like behavior [76]. Gibney and
colleagues have found increased expression of interleukins
IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) and

reduced expression of Bdnf genes in depressive-like rats 6 h
after an inflammatory challenge. In this study, expression of
cytokines returned to baseline levels after 48 h, but Bdnf
mRNA remained low in frontal cortex and hippocampus
[77]. In humans, chronic stress is one of the main precursors
of depressive symptoms [78, 79]. In laboratory stress-condi-
tioning, depressed patients show a higher inflammatory re-
sponse, characterized by increased IL-6 release and NF-κB
DNA binding, than healthy controls [80]. Depressive symp-
toms can also be caused by treatment that stimulate the im-
mune system, such as interferon-α (IFN-α). Patients treated
with IFN-α were shown to have decreased serum BDNF
levels in combination with increased protein levels of the cy-
tokines IL-1 and IL-2 [81, 82]. Interestingly, individuals that
had higher BDNF levels at baseline showed better resilience
to IFN-α-induced MDD.

These preclinical and clinical findings show that long-term
exposure to stress or inflammation leads to a decrease in
BDNF levels, reducing the capacity of the neurons to cope
with further challenges (i.e., neuronal plasticity), and ultimate-
ly leading to a decreased function and neuronal death.
Interestingly, treatment with antidepressants can result in an
antiinflammatory response throughout the brain, mitigating
the inflammatory unbalance to homeostatic levels and normal-
izing BDNF concentrations [83, 84]. However, further re-
search is needed to understand the mechanisms involved in
the regulation of BDNF by neuroinflammation.

Bipolar Disorder

Bipolar disorder (BD) is characterized by fluctuations of
mood throughout lifetime, oscillating between depressive,
euthymic, and manic episodes. BD is associated with cogni-
tive impairment and other comorbidities that affect the quality
of life of the individual [85–87]. BD is characterized by alter-
ations in dopaminergic and glutamatergic neurotransmitter
systems, mitochondrial dysfunction, and increased oxidative
stress, which in turn are related to neuroinflammation, neuro-
toxicity and eventually neuronal death [87]. Two recent meta-
analyses have shown that serum and plasma levels of BDNF
in BD patients during depressive and manic episodes are de-
creased, but no difference in BDNF levels between BD pa-
tients in an euthymic episode and healthy controls was found
[88, 89]. It is known that treatment with mood stabilizers
increases BDNF levels in prefrontal cortex and hippocampus
of animals by inducing promoter IV-driven expression [90,
91]. Also in humans, treatment for the manic or depressive
phases of BD is associated with an increase in serum BDNF
levels [92, 93].

Recent studies have shown an association between in man-
ic and depressive stages of BD and a pro-inflammatory profile
of immune cells [94, 95]. Steiner and colleagues have found
that suicidal mood disorder patients had a significant increase
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of microglial cell density in the dorsolateral prefrontal cortex,
anterior cingulate gyrus, and mediodorsal thalamus compared
to healthy controls and non-suicidal, mood disorder patients
[96]. The presence of immune cells clusters in these brain
regions suggests a strong inflammatory response, which could
trigger the suicidal predisposition of these patients [96].
Although plenty of literature is available on BDNF or neuro-
inflammation in BD, there is a severe lack of studies regarding
the association between both mechanisms on BD. Only two
studies have analyzed both BDNF and cytokine levels in BD
patients, with somewhat different conclusions. Patas and col-
leagues have shown an association between both serum
BDNF and plasma IL-6 levels with a depressive episode as-
sociated with melancholic trait [97], while Wang and col-
leagues have found an association for serum BDNF levels,
but not for IL-1β or IL-6 [98]. Clearly, more studies are need-
ed to elucidate the interaction between neuroinflammation,
BDNF, and disease symptoms in BD.

Interestingly, the most commonly used therapeutic drugs—
lithium and valproate—were able to reverse the inflammatory
state in mood disorders [99–101]. The most common assump-
tion is that lithium and valproate can inhibit glycogen synthase
kinase 3 (GSK-3) and sodium channel function, respectively
[102]. Inhibition of GSK-3 activity by lithium increases cel-
lular levels of BDNF. GSK-3 can inhibit mammalian target-
of-rapamycin (mTOR)—an important modulator of BDNF-
dependent neuronal plasticity and survival—and thus affect
proper BDNF signaling and impair optimal cellular function.
In the manic phase of BD, there is a remarkable increase in
PKC-mediated signaling, which is associated with BDNF-
dependent Ca2+ induction. PKC isozymes are involved in
the pro-inflammatory response mediated by macrophages
[103] and, more recently, microglia [104] through activation
of the NF-κB inflammation pathway. Treatment of BD pa-
tients with lithium or valproate inhibits PKC upregulation,
normalizing its level to that of euthymic subjects, and in-
creases BDNF levels [105]. PKC inhibitor tamoxifen en-
hances the capacity of lithium to reduce symptoms of mania
in BD [105–107]. PKC inhibition probably suppresses the
expression of NF-κB and consequently resolves the NF-κB-
mediated inhibition of Bdnf expression, resulting in an in-
crease in peripheral BDNF levels in BD. However, the mech-
anisms underlying the increase in BDNF levels in response to
treatment should still be further investigated. Yet, current ev-
idence suggest that a decrease in BDNF levels can be consid-
ered as a biomarker for both depressive and manic stages of
BD.

Schizophrenia

Schizophrenia is a disease characterized by disturbances in the
proper perception of a person’s surroundings. Schizophrenia
is associated with a high suicide rate and accounts for a large

number of hospitalizations, causing a significant burden to
healthcare systems worldwide. The symptoms of schizophre-
nia comprise positive (e.g., hallucinations, delusions, con-
fused thoughts, concentration impaired) negative (e.g., de-
pression, anhedonia, self-neglect) and cognitive effects (e.g.,
memory, attention, reason impairments). Schizophrenic pa-
tients exhibit a decreased activation of γ-aminobutyric acid
(GABA) signaling [108], inducing impaired neuronal activa-
tion, especially in dopaminergic neurons [109]. The etiology
of schizophrenia is not fully understood yet and symptoms can
vary between individual patients, making the diagnosis of
schizophrenia challenging.

A recent meta-analysis revealed that serum BDNF levels in
both drug-naïve and medicated schizophrenic patients are re-
duced. Serum BDNF levels in schizophrenic patients decrease
with age but were independent of the dosage of medication
[110]. However, it remains unclear if and how BDNF levels in
the brain are altered in schizophrenic patients. Some studies
report increased BDNF levels in frontal and temporal struc-
tures [111, 112], while others report decreased levels in the
same brain structures [108, 113, 114]. Besides clinical obser-
vations, in vitro studies using the phencyclidine (PCP) psy-
chosis model also give ambiguous results. Adachi and col-
leagues reported that exposure of cortical cultures to the
non-competitive NMDA agonist PCP initially resulted in an
increase in BDNF levels, whereas TrkB, ERK1/2, and Akt
signaling were decreased [115]. In contrast, two other studies
reported decreased BDNFmRNA expression in cortical slices
after exposure to a low dose of PCP [116]. Taken together, in
vitro, in vivo and clinical results seem to indicate that plasma
BDNF levels are decreased in schizophrenic patients, but data
on brain BDNF levels are contradictory.

Schizophrenia is a multifactorial disease, in which both
genetic and environmental factors play a role. It is well
established that physical and mental distresses can trigger psy-
chotic behavior in (genetically) vulnerable patients [117].
These triggers can induce inflammatory changes that are as-
sociated with reduced neurotransmitter signaling, increased
oxidative stress, and reduced synaptic branching [118].
Mondelli and colleagues have shown in leukocytes of first-
episode schizophrenic patients that childhood trauma and the
number recent stressful life events were negatively correlated
with BDNF mRNA levels. BDNF levels were also negatively
correlated with IL-6 expression, suggesting an inflammation
mediated decrease in BDNF expression, or vice versa.
Moreover, BDNF, IL-6, and cortisol levels correlated inverse-
ly with hippocampal volume [119]. A postmortem study dem-
onstrated that schizophrenic patients have an increased in-
flammatory profile in dorsolateral prefrontal cortex. The
group of patients with high levels of neuroinflammation had
lower expression of BDNF [120]. As psychotic episodes are
related with increased neuroinflammation and activated mi-
croglia [120, 121], it can be hypothesized that pro-
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inflammatory cytokines may be modulating BDNF mRNA
expression via interaction of NF-κB or CREB transcription
factors. It is known that schizophrenia patients have upregu-
lated genes for inflammatory cytokines [122, 123], and down-
regu la t ed Bdnf gene t r ansc r ip t i on [124 , 125] .
Neuroinflammation could be the key factor for the decrease
of Bdnf gene expression in schizophrenic patients, as pro-
inflammatory cytokines increase methylation of Bdnf gene,
leading to a decrease of CREB binding to the specific Bdnf
site.

Remarkably, drug treatment that is effective in controlling
disease progression in schizophrenic patients can have diverse
effects on peripheral BDNF protein levels [126–128]. In ad-
dition, some studies suggest that baseline BDNF levels in
schizophrenia patients might reflect the susceptibility towards
available drug therapies [129, 130]. Clearly, the interaction
between neuroinflammation, BDNF levels, and treatment re-
sponse should be better understood, as this could lead to iden-
tification of new targets for improved therapies.

BDNF in Neurodegenerative Disorders

Despite research on neurodegenerative disorders has been in-
creasing exponentially, there are still gaps in our knowledge
on the etiology, onset and progression of most neurodegener-
ative diseases. Treatment is usually restricted to mitigation of
the symptoms, rather than cure or delay of progression.
Diagnosis of neurodegenerative diseases is usually based on
subjective cognitive tests in combination with neuroimaging
[131–133], but the current techniques are not able to success-
fully diagnose these diseases in their earlier stages, when the
pathology is already present but does not cause symptoms yet.
Attempts to discover new biomarkers for the diagnosis of
early stages of the disease are ongoing [134–136]. Possibly,
BDNF could qualify as such a biomarker.

In the following sections, we will discuss the role of BDNF
in neurodegenerative disorders, focusing of Alzheimer’s dis-
ease, Parkinson’s disease, and epilepsy. We will also address
the possible use of BDNF as a biomarker for diagnosis. In
addition, we describe the role of neuroinflammation in the
development of these diseases and explain how BDNF can
help the brain to cope with inflammation.

Alzheimer’s Disease

AD is characterized by a progressive loss of neurons in the
brain, leading to impairment in memory and general cogni-
tion. Hallmarks of AD pathology are deposition of amyloid-β
plaques in the extracellular matrix, formation of tau-
phosphorylated neurofibrillary tangles within the cell and neu-
ritic plaques. Tangles and plaques disrupt the signaling activ-
ity of neurons, eventually leading to neuronal apoptosis. As

the disease progress, the axonal transport is constantly re-
duced, and the general function of neurons is impaired.
These changes decrease BDNF axonal transport, resulting in
reduced availability of BDNF within the synaptic cleft and
consequently diminished signaling through TrkB receptors
[137, 138]. BDNF mRNA and protein levels are also reduced
in cognition-related structures such as hippocampus and fron-
tal cortex, which corroborates BDNF depletion to be involved
in the cognitive deficit leading to AD dementia [139]. BDNF
levels are also reduced in plasma of patients with mild cogni-
tive impairment (MCI) [140] and AD [141]. AD patients with
higher serum concentrations of BDNF showed less cognitive
decline after 1 year; this effect was more pronounced in the
more severe stages of the disease [142, 143]. These studies
suggest that BDNF might be a predictor for the rate of disease
progression in AD.

Neuroinflammation is a key factor in the development and
progression of AD [144, 145]. Amyloid-β deposits induce
pro-inflammatory activation of microglia which might be an
effort of microglia to mitigate the antigen-related damage
[146]. Some studies have reported inflammatory challenges
as an associated risk factor for the development of dementia-
related symptoms, as they show increased pro-inflammatory
cytokines levels [147, 148]. On the other hand, treatment with
antiinflammatory medication tends to mitigate cognitive im-
pairment in animal models of amyloid-β injection [149, 150].
Interestingly, PET imaging studies have shown that subjects
with high amounts of amyloid-β, but no dementia, had de-
creased microglia activation [151–153], indicating a funda-
mental participation of microglia in the development and pro-
gression of AD.

There is no clear evidence on how effective BDNF can be
in controlling neuroinflammation-dependent progression of
the disease. Prakash shows that rats injected with Aβ in the
hippocampus have a remarkable decrease in BDNF and in-
creased TNF-α, IL-6, and caspase-3 protein levels 3 weeks
after intracerebroventricular injection. These changes were as-
sociated with inability lack of memory retention in Morris
Water Maze test [154]. Another study confirmed the increase
in pro-inflammatory cytokines and reduced antiinflammatory
cytokines and BDNF protein levels and gene expression after
Aβ1–42 injection [155]. In humans, two studies have shown an
increase in pro-inflammatory cytokines and a decrease in
BDNF levels in the serum of early- and late-onset AD, al-
though there was no correlation with pro-inflammatory and
neurotrophin results in both studies [141, 156].

It is known, however, that pro-inflammatory cytokines—
especially IL-1β—can cause downregulation of BDNF ex-
pression in cognition-related brain structures, such as the hip-
pocampus [157, 158]. As these cytokines are upregulated in
AD, a decrease of BDNF levels is expected to occur in such
brain structures, leading to a decrease in survival signaling
and, consequently, neuronal death. Moreover, increase in
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hyper-phosphorylated tau impairs anterograde transport of
BDNF to the axon, further decreasing BDNF signaling in
the synaptic cleft. As AD is a disease that inflicts several
different physiological effects in both the internal and external
milieus of the brain, efficient analysis of the role of BDNF in
these processes is challenging and the overall effect of BDNF
on brain function may be variable.

Parkinson’s Disease

PD is characterized by movement impairment (bradykinesia,
tremors, and rigidity), often combined with mild cognitive
symptoms (decreased attention, executive function, memory)
and mood disturbances (apathy, aggressiveness, anhedonia,
depression) [159, 160]. The onset of PD is caused by the
formation of aggregated α-synuclein plaques (i.e., Lewy bod-
ies) in the substantia nigra pars compacta, leading to a pro-
gressive loss of dopaminergic neurons [161]. It is estimated
that clinical symptoms start to appear when more than 50% of
the neurons in the substantia nigra are already lost [162].
Movement symptoms are usually the first signs leading to
the diagnosis of PD. As the disease progresses, more brain
structures become affected by the neuronal loss and non-
motor symptoms become evident [161, 163]. The severity of
symptoms increases as the disease progresses and as a result,
the patient loses gradually independence until patients become
highly dependent on caregiver support in the late stages of the
disease.

PD patients have lower concentrations of BDNF mRNA
and protein in the substantia nigra pars compacta than healthy
controls [164, 165]. Neurons with the lowest BDNF levels
were suggested to be most prone to injury. Porritt and col-
leagues demonstrated that local inhibition of the production
of BDNF with an antisense oligonucleotide leads to a signif-
icant loss of dopaminergic neurons in the substantia nigra pars
compacta of rats, which suggests that BDNF has an important
role in neuronal survival [166]. In contrast to the aforemen-
tioned studies, some reports describe that the BDNF levels in
serum are increased in PD patients, especially in moderate to
severe stages of the disease [167, 168]. This could mean that
the CNS tries to cope with the loss of neurons by increasing
BDNF production, resulting in enhanced serum levels of the
protein. However, there is no direct evidence that supports this
hypothesis.

The onset and progression of PD are also associated with
neuroinflammation. Several studies in animal models of PD
have reported increased microglial activation and pro-
inflammatory cytokines [169, 170]. In humans, PD is associ-
ated with neuroinflammation in both postmortem [171] and in
vivo analysis [172, 173]. Sawada and colleagues have found a
remarkable increase of microglial cells in the hippocampus,
amygdala, and entorhinal cortex of PD patients, which was
associated with a decrease of BDNF mRNA expression and

increased IL-6 in those regions [174]. Nagatsu has shown
increased levels of IL-1β, IL-2, IL-6, and TNF-α in the stria-
tum of PD patients, associated with a decreased BDNF protein
levels in the same structure. Aggregated α-synuclein can in-
duce an acute, local neuroinflammatory process in PD-
associated brain structures, which suppresses BDNF expres-
sion and reduces BDNF protein levels. However, there is no
evidence on how changes in BDNF levels in de brain affect
the progression of PD and further analysis of the interaction
between pro-inflammatory cytokines and BDNF is therefore
necessary.

Epilepsy

Epilepsy patients are affected by seemingly unprovoked sei-
zures but usually also suffer from significant mood and cog-
nitive changes [175]. The symptoms of epilepsy are induced
by a disarray of excitatory neuronal connections, generating
deregulated firing, or lack of inhibition of excitatory neurons.
Although there are several treatment strategies to reduce sei-
zures, 30% of the patients show little to no response to com-
mon antiepileptic drugs.

Seizures have been associated with an increased expression
of several neurotrophic-related genes, including transcription
factors [176], neuropeptides [177], and growth factors [178].
Two recent reports have shown that BDNF gene expression is
increased in the hippocampus and temporal cortex of temporal
lobe epilepsy patients [179, 180]. Seizures also increased hip-
pocampal and cortical BDNF protein levels in animal model
of epilepsy [181–183]. BDNF seems to be involved in
epileptogenesis by regulating several signaling pathways
within excitatory neurons, increasing Ca2+ signaling and glu-
tamate expression [13, 184]. Overexpression of BDNF may
also contribute to the epilepsy-induced cortical network de-
regulation by increasing even further the plasticity and den-
dritic branching signaling and causing an overexcitement state
of glutamatergic neurons, thus reducing seizure threshold
[185]. This creates a positive feedback loop: as upregulated
glutamate neurotransmitter increases BDNF signaling and ex-
pression, it further increases glutamate signaling. Other stud-
ies have shown that transient inhibition of the BDNF receptor
TrkB after seizure induction prevents the development of tem-
poral lobe epilepsy [186, 187]. These findings indicate that
BDNF is intimately related to the pathogenesis of epilepsy,
and new therapeutic methods should take BDNF into consid-
eration. However, it is worth noting that BDNF may also play
a part in protecting neurons against harmful stimuli; therefore,
treatment aiming to reduce BDNF levels as a whole should be
carefully considered.

In epilepsy, chronic seizures lead to excitotoxicity and neu-
ronal apoptosis with associated gliosis [188]. Studies in ani-
mal models have reported that seizures are associated with
increased activation of microglia, especially of the M1
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subtype [189], and an increased release of pro-inflammatory
mediators [190, 191]. Although studies that link BDNF with
neuroinflammation in epilepsy are lacking, a hypothesis for
such a link can be formulated based on existing knowledge. In
healthy conditions, BDNF signaling induces the activation of
transcription factor NF-κB, which in turn induces de novo
expression of the Bdnf gene [26, 192]. It is possible that over-
expression of BDNF leads to an inflammatory response me-
diated by NF-κB, leading to astrocyte activation, increased
production of cytokines and neurotoxic reactive oxygen spe-
cies, and local recruitment of activated microglia [193].
Activated pro-inflammatory microglia are known to elicit ap-
optotic response after chronic stimulation, which causes neu-
rotoxicity and further neuronal death. As BDNF is
overexpressed at the onset of seizures [194], there is also an
increase in BDNF-mediated glutamate signaling, contributing
to the systemic neuronal imbalance. Although there are sever-
al players involved in the development of seizures, BDNF
might be an important factor in modulating the disease.
BDNF inducing, or being induced, by NF-κB also highlights
the importance of neuroinflammation in modulating BDNF-
dependent regulation. However, there is a need for further
researches to better understand the role of BDNF in epilepsy,
especially regarding its role in modulation of inflammatory
processes.

BDNF a Potential Therapy for Brain
Pathologies

BDNF has been regarded as a possible biomarker for moni-
toring the onset, progression, and treatment of brain patholo-
gies. However, recent studies suggest that BDNF may also be
a potential target for new treatment strategies. Some promis-
ing results have been published from studies showing that
therapeutic use of BDNF can, directly or indirectly, modulate
changes within the brain [195]. An important finding is that
peripheral BDNF is able to cross the blood-brain barrier [196],
which is a prerequisite for BDNF-related therapy. However,
the rate at which BDNF is taken up by the brain has not been
quantified yet. Nonetheless, experimental therapy has been
investigated in vivo and in vitro with promising results in
animal models of AD [197], PD [198], and MDD [199] (a
comprehensive review on BDNF drug delivery in brain pa-
thologies and current stage of clinical trial can be found in
[200]). For example, BDNF infusion into the hippocampus
of adult rats was able to increase neurogenesis and regional
neuronal activity [201]. Delivery of the BDNF mimetic 7-8-
dihydroxiflavone is able to revert cognitive deficits in an AD
animal model [202]. Also, gene transfection of BDNF into a
6-hydroxydopamine-induced unilateral lesion in the striatum
was able to revert motor deficits in this animal model of PD
[203].

The current need for improved treatments for brain disor-
ders is pressing, and although large amounts of resources are
spent on new therapies, few have been able to bring the de-
sired results. The initial findings suggest that BDNF may be
more than a biomarker for brain disorders; it may also become
a possible target for the treatment of brain disorders. However,
there is still a need for more information about the pharmaco-
logical features of BDNF-based substances in order to devel-
op new treatments.

BDNF levels are activity-dependent, which means that the
expression of BDNF changes under positive (e.g., physical
activity, cognitive enhancement) and negative (e.g., obesity,
sedentarism) behavioral and environmental stimuli. Several
studies on both humans and animals show that physical activ-
ity, cognitive stimulation, and a balanced diet can stimulate
BDNF expression [204–207]. Physical activity is the best
studied positive factor for stimulation of BDNF expression.
Thus, exercise can act as an inductor of neuronal plasticity,
neurogenesis and neuronal survival [208, 209]. Several stud-
ies in both animals and humans have assessed the effects of
physical activity on BDNF levels in psychiatric [210–213]
and neurodegenerative diseases [214–217]. These studies in-
deed indicated that physical activity augments neuronal pro-
tection in brain disorders by stimulating BDNF expression.
However, there are still some questions regarding the required
time of the physical intervention, the optimal type of exercise
(i.e., strength, endurance, aerobic exercises). Although less
studied, diet can also provoke changes BDNF levels in phys-
iological conditions. BDNF is known to affect the regulation
of feeding and energy metabolism [218–221]. Decreased
levels of BDNF were found in subjects consuming diets with
high sugar and fat [222, 223]. On the other hand, dietary
restriction (i.e., the maintenance of a balanced diet) or addition
of supplementary substances (e.g., omega-3 fatty acids; res-
veratrol) can induce an increase in BDNF levels and reduce
cognitive impairment in animal models [224–226]. It is not
clear yet how large the effect of dietary management on
BDNF protein levels in psychiatric or neurodegenerative dis-
orders, but it is known that BDNF affects—and is affected
by—dietary behavior. More research is needed in order to
better understand the dietary influence on brain disorders.

Lifestyle changes that modulate BDNF levels in the brain
may prove capable to control symptoms and delay progres-
sion in brain pathologies and thus might become cheap and
easily accessible (adjuvant) treatment for these pathologies in
the near future. However, a possible concern about such ther-
apies is the compliance of the patients with the treatment.
Most of behavioral therapies are based on long periods of
treatment with a relatively slow improvement when compared
with medications. This may reduce the motivation of patients
to continue treatment, especially because most psychiatric and
neurodegenerative disorders can be accompanied by mood
symptoms (e.g., anhedonia, hopelessness, aggressiveness).
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Therefore, slow-acting lifestyle therapies could yield better
results if they are combined with fast-acting pharmacological
interventions.

Concluding Remarks

BDNF is involved in several processes that are essential for
the optimal functioning of the brain. Several studies report
altered brain and plasma BDNF levels in patients with various
brain pathologies. However, the pathophysiological mecha-
nisms that underlie these changes are still not fully understood
yet. There is also no conclusive evidence that can discriminate
whether changes in BDNF levels are a causative or the con-
sequence of the disease onset. It is challenging to prove a
causative role of BDNF in psychiatric and neurodegenerative
disorders. Some circumstantial evidence suggest such a caus-
ative role for BDNF. Human populations with a genetic vari-
ant that decreases the BDNF concentration appear to be more
susceptible to psychiatric disorders. However, it should be
noted that BDNF is highly affected by environmental chang-
es, which in turn may affect genetic findings. In animals, in-
jection of BDNF in the hippocampus was shown to cause a
decrease of depressive-like behavior. However, it remains un-
clear how these findings translate to the clinical situation, as
current disease models are not able to properly reproduce
complex human disorders, because they usually only mimic
part of the symptoms (i.e., low predictive validity). Direct
translation of the animal findings to humans would imply an
intervention by intrathecal BDNF injection in the brain or
spinal cord of patients. However, such an intervention would
be highly invasive and the success would depend on the abil-
ity of BDNF to migrate to the target region. Alternatively,
interventions that aim to stimulate the production of BDNF
could be prospectively investigated in patients with low
BDNF levels, either due to a genetic predisposition or envi-
ronmental factors. BDNF levels should be monitored repeti-
tively to determine if changes in BDNF levels precede allevi-
ation of symptoms or vice versa. In a populationwith a genetic
predisposition for low BDNF levels, preventive intervention
with a BDNF stimulating treatment could also be considered,
but this would require a large study population and a long
follow-up time.

Evidence from preclinical studies and clinical trials sug-
gests that treatment strategies aiming to increase brain
BDNF levels could have a beneficial effect on many brain
disorders. In this respect, epilepsy is an exception as it is
associated with increased levels of BDNF. At present, phar-
macological intervention by administration of exogenous
BDNF is still challenging, but lifestyle changes could provoke
the desired effect. Environmental and physiological stimuli,
such as physical activity, social interactions, and sensory and
cognitive stimuli, are powerful modifiers of neurotrophin

levels, including BDNF levels, and have been shown to alle-
viate symptoms of brain pathologies in both humans and an-
imal models. Plasma BDNF can be reliably assayed, and sam-
ples are easily collected and therefore BDNF has been pro-
posed as a potential peripheral biomarker for the assessment
of the status of the brain and the efficacy of treatment.
However, discrepancies between brain and plasma BDNF al-
terations have been observed and need to be further elucidated
before plasma BDNF can qualify as a suitable biomarker.

Neuroinflammation is regulated by factors that are also
involved in modulation of BDNF expression. Both neuroin-
flammation and altered BDNF expression are common phe-
nomena in many brain disorders. Remarkably, there are only
few studies that have investigated the link between BDNF and
neuroinflammation. Better understanding of the interaction
between BDNF and neuroinflammation could open new ways
for therapy management and could facilitate the development
of new therapeutic strategies for brain diseases.
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