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Abstract
The growing interest in brain networks to study the brain’s function in cognition and diseases has produced an increase 
in methods to extract these networks. Typically, each method yields a different network. Therefore, one may ask what the 
resulting networks represent. To address this issue we consider electrocorticography (ECoG) data where we compare three 
methods. We derive networks from on-going ECoG data using two traditional methods: cross-correlation (CC) and Granger 
causality (GC). Next, connectivity is probed actively using single pulse electrical stimulation (SPES). We compare the 
overlap in connectivity between these three methods as well as their ability to reveal well-known anatomical connections in 
the language circuit. We find that strong connections in the CC network form more or less a subset of the SPES network. GC 
and SPES are related more weakly, although GC connections coincide more frequently with SPES connections compared to 
non-existing SPES connections. Connectivity between the two major hubs in the language circuit, Broca’s and Wernicke’s 
area, is only found in SPES networks. Our results are of interest for the use of patient-specific networks obtained from ECoG. 
In epilepsy research, such networks form the basis for methods that predict the effect of epilepsy surgery. For this application 
SPES networks are interesting as they disclose more physiological connections compared to CC and GC networks.

Keywords  Brain networks · Functional connectivity · Single pulse electrical stimulation · Cortico-cortical evoked 
potentials · Electrocorticography

Introduction

Brain networks are increasingly being studied as they may 
aid in understanding the brain’s function in cognition (Mill 
et al. 2017; Park and Friston 2013) and diseases, such as Alz-
heimer’s disease (Tijms et al. 2013), epilepsy (Bartolomei 
et al. 2017; Engel et al. 2013; van Mierlo et al. 2014) and 

schizophrenia (van den Heuvel and Fornito 2014). A recent 
development is to incorporate brain networks in computa-
tional models for epilepsy surgery (Goodfellow et al. 2016; 
Khambhati et al. 2016; Sinha et al. 2017). Networks consist 
of nodes, representing neuronal populations, which are con-
nected via edges. Based on the interpretation of the edges 
networks can be categorized as structural, functional or 
effective (Rubinov and Sporns 2010). The concept of struc-
tural networks is the most intuitive; edges simply describe 
anatomical connections between neuronal populations. The 
presence of such an anatomical connection, however, does 
not indicate how intensively it is used in communication 
between the neuronal populations. Functional and effective 
connectivity methods try to assess this point. In functional 
connectivity edges describe statistical dependencies among 
time series of neuronal activity (Wang et al. 2014), while 
effective connectivity is defined as the influence one neu-
ronal system exerts over another (Friston 2011).

Methods for functional connectivity use simultaneously 
recorded time series which can be acquired via a large vari-
ety of imaging modalities, e.g. electroencephalography 
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(EEG). Connectivity is then calculated from the band-fil-
tered time series or their envelopes (Keller et al. 2013) using 
methods like cross-correlation (CC) (Kramer et al. 2009), 
Granger causality (GC) (Bressler and Seth 2011) and mutual 
information (Pluim et al. 2003). Almost all these methods 
have a mathematical foundation that makes assumptions 
about the processes underlying the observations (Wang et al. 
2014). In practice, most of these assumptions only hold to 
some extent and one may wonder how this influences the 
obtained connectivity

Interventional approaches, in contrast, actively perturb 
activity at some location using electric or magnetic pulses 
in order to observe neural responses at other sites (Keller 
et al. 2014) and hence they infer connectivity in a more 
direct way than non-interventional approaches. Networks 
derived in this way are called evoked effective networks 
(Keller et al. 2014). Pre-surgical evaluation of refractory 
focal epilepsy patients offers a unique setting to apply this 
approach in an invasive setting. In these patients electrocor-
ticography (ECoG), i.e. an invasive form of EEG, may be 
recorded using an electrode grid placed directly on the cor-
tex. Single pulse electrical stimulation (SPES) (Mouthaan 
et al. 2016) applies brief electric pulses to adjacent pairs of 
electrodes of this grid. These pulses have a typical duration 
of 0.1–3 ms and a strength of 2–12 mA (Donos et al. 2016a) 
and evoke responses, called cortico-cortical evoked poten-
tials (CCEP), at the non-stimulated electrodes. Commonly, 
two types of responses are distinguished in SPES literature, 
i.e. early responses (ERs) and delayed responses (DRs) 
(Valentín et al. 2002). ERs occur within 100 ms. It is widely 
thought that they represent direct cortico-cortical propaga-
tion (Lacruz et al. 2007; Matsumoto et al. 2017; Entz et al. 
2014). For completeness, we mention that DRs are typical 
for epileptogenic tissue (Valentín et al. 2002; van’t Klooster 
et al. 2011).

SPES offers a more direct approach to infer networks 
than functional connectivity. Functional connectivity, how-
ever, can be applied to recordings of on-going ECoG activ-
ity as well as to non-invasive imaging methods like scalp 
EEG making it more accessible than SPES. While relations 

between structural and evoked effective networks have been 
studied (Conner et al. 2011; Donos et al. 2016b; Parker et al. 
2018), it is not known what functional networks constructed 
using on-going ECoG have in common with SPES-evoked 
connectivity. Do they find the same connections? Do they 
reveal well-known anatomical connections?

To answer these questions we will construct networks for 
six patients using three different methods. One is the SPES 
network while the other two are CC and GC networks both 
derived from on-going inter-ictal ECoG. We will compare 
the connections between these networks and investigate to 
what extent those networks can unravel connectivity in an 
established functional network, i.e. the language circuit con-
taining Broca’s and Wernicke’s area.

Materials and Methods

Data Selection and Pre‑processing

We use ECoG data, recorded with grid electrodes, of six 
patients with focal epilepsy who underwent long-term ECoG 
monitoring prior to surgery at the University Medical Centre 
Utrecht. Data are retrospectively studied and handled coded 
and anonymously according to the guidelines of the institu-
tional ethical committee. Patient characteristics are provided 
in Table 1. For each patient, SPES has been performed as 
part of clinical routine. ECoG data has been recorded using 
a common reference montage with respect to an extracranial 
reference electrode. We consider two subsets of ECoG data for 
each patient: a segment of on-going inter-ictal data, to calcu-
late functional connectivity, and the segment with SPES data.

The segments of on-going ECoG data have been recorded 
just preceding SPES. In this way we are sure that effects of 
anti-epileptic drugs and situational confounders are simi-
lar for the ongoing ECoG and SPES recordings, while any 
influence of SPES on the connectivity for CC and GC is 
excluded. We note that by imposing this condition it was 
not possible to control the cognitive state of the patient as 
this is a retrospective study. The inter-ictal ECoG segment 

Table 1   Patient characteristics

fii : sample frequency inter-ictal ECoG in Hz, grid configuration: size and location (F: frontal, T: tempo-
ral, C: central, IH: inter-hemispheric) of the implanted electrodes, Nel : number of selected electrodes, BW: 
Broca’s and Wernicke’s area covered by the grid (y: yes, n: no), patient state: state of the patient during 
inter-ictal recording

Pat fii Grid configuration Nel BW Patient state

1 2048 F(2 × 8 ; 4 × 8 ), IH(1 × 8) 56 n Awake, agile
2 512 F(4 × 8 ; 4 × 8) 56 n Awake, quiet
3 2048 F(4 × 8 ), T(4 × 8 ), C(1 × 8 ), IH(1 × 8) 72 y Light sleep
4 512 T(6 × 8 ; 1 × 8 ; 1 × 8 ), F(2 × 8) 58 n Light sleep
5 2048 T(2 × 8 ), C(4 × 8) 45 y Awake
6 512 T(6 × 8 ; 2 × 8 ; 1 × 8 ; 1 × 8 ), F(2 × 8) 89 y Awake, language task
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is sampled at either 512 Hz or 2048 Hz (see Table 1). An 
expert clinical neurophysiologist (FSSL) marked artefacts 
in the raw ECoG recordings, e.g. those arising from the ref-
erence electrode. In the next sections we explain how CC 
and GC networks are obtained from this data. Both methods 
require specific pre-processing steps. For example, for CC 
it is usual to band-filter the data, while for GC this is not 
recommended (Barnett and Seth 2011). Also, it is common 
to apply differencing before calculating GC, while this is 
not the case for CC.

The protocol for SPES has been described in 
(van’t Klooster et al. 2011). Specifically, ten monophasic 
electrical stimuli are applied to pairs of horizontally adjacent 
electrodes. The stimuli have a duration of 1 ms with an inter-
stimulus time of 5 s and an intensity of 8 mA . During SPES 
ECoG data has been registered at a sampling rate of 2048 Hz.

For all selected patients, the ECoG grid consisted of one 
or two large grids, spatially arranged in four or six times 
eight electrodes, and some additional strips consisting of 
eight electrodes each. We discarded all data from electrodes 
not used to stimulate with SPES as well as dysfunctional 
electrodes. Table 1 shows the selected number of electrodes 
per patient.

Cross‑Correlation

CC networks are non-directional weighted networks con-
structed from ongoing inter-ictal ECoG data. For consist-
ency, all ongoing ECoG data are resampled to 512 Hz if 
necessary. We band-pass filtered the data to the � -, � - and 
�-band, i.e. between 4 and 30 Hz , following (Sinha et al. 
2014). Next, we divided all segments of ECoG data with-
out artefacts into non-overlapping epochs of 20 s (starting 
from the beginning of each segment and neglecting remain-
ing parts or segments of < 20 s). We selected the last 60 
epochs, so 20 min in total, for further analysis. For each of 
the selected epochs we proceed as follows for every pair 
of electrodes. First, we estimate the cross-correlation func-
tion for all time lags m with |m| ≤ M and M the maximal 
lag in samples. Next, we set the connection strength as the 
maximum absolute value of this estimated cross-correlation 
function. We take a maximal lag of M = 26 samples corre-
sponding to a time of 50 ms . We average over all 60 epochs 
to obtain the mean connectivity.

Granger Causality

GC networks are constructed from the same inter-ictal 
ECoG data as CC networks. In contrast to CC networks, GC 
networks are directional. The main idea behind GC is that a 
connection from x to y is present if the prediction of the time 
series of y improves significantly by incorporating the past 
of the time series of x (Bressler and Seth 2011; Ding et al. 

2006). In this study we use conditional GC, a multivariate 
form of GC, which besides the past of the time series x and 
y also uses the past of all other time series to determine the 
connectivity from x to y. This method reduces spurious con-
nectivity, e.g. connections that arise due to common input 
(Barnett and Seth 2014).

GC relies on fitting multivariate autoregressive models 
(MVAR models) to the data. The model order m of this 
MVAR model determines the length of the history taken 
into account and must be specified. If we want to capture a 
history of 50 ms at a sampling rate of 512 Hz , as in "Cross-
correlation" section, we would need m = 26 . For such high 
model orders many unknowns must be estimated in the 
MVAR model. To avoid overfitting of the model, enough 
data points and as a consequence long time series must be 
considered. For such long time series the assumption of 
(approximate) stationarity is likely to fail. By downsampling 
the required model order can be reduced, while a longer 
history can be taken into account (Murin et al. 2016, 2018).

Our complete procedure to calculate GC is as follows. 
First, we resample the ECoG data to 128 Hz . Next, first-order 
differencing is applied to enhance stationarity (Seth 2010). 
We select 60 epochs of 20 s in the same way as we do for 
CC (actually the same). Next, we calculate conditional GC 
in the time domain using the MVGC toolbox (Barnett and 
Seth 2014). We set the model order to m = 7 , which is suf-
ficient to capture 50 ms of history. Statistical significance 
is assessed using the recommended options of the MVGC 
toolbox, i.e. Granger’s F-test with a significance level of 0.05 
and the false discovery rate method to account for multi-
hypothesis testing. For each epoch this results in a binary 
matrix with an entry being one if GC finds a significant 
connection and zero otherwise. Finally, we obtain the mean 
connectivity by averaging over all 60 epochs. The resulting 
network is directional with weights between zero and one.

SPES Network

SPES networks are constructed using ERs. First, the ERs 
are detected from ECoG data using an automatic detector 
(see Supplementary Material 1). This detector determines 
whether an ER is present for every combination of stimula-
tion pair and response electrode. Next, the SPES network 
is constructed. As for the CC and GC networks every node 
in this network represents an electrode. A connection from 
node k to l is present if at least one ER is detected at elec-
trode l after any stimulation involving electrode k. The 
resulting network is directional and has binary weights.

Localizing Broca’s and Wernicke’s Area

In three patients both the areas of Broca and Wernicke have 
been covered by the electrode grid. As part of clinical routine 
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the precise locations of those two areas have been determined 
using electrocortical stimulation mapping (ESM). In ESM 
pulse trains of 4–7 s, 50 Hz , 0.2–0.3 ms, 4–15 mA (stimulation 
amplitude was altered to avoid afterdischarges) are applied dur-
ing a picture naming task and in case of Wernicke’s area also 
during item presentation in a Token Test. If repeated stimula-
tion interferes with language (either inability to name or under-
stand, or paraphasia) and the cause is not anarthria (sound pro-
duction is unaffected) the stimulated electrode pair is marked as 
positive for language. Stimulations are applied to horizontally 
and, in contrast to SPES, also vertically and diagonally adjacent 
electrode pairs. An individual electrode is marked positive if it 
was part of at least two positively marked pairs.

Comparing Networks

To compare CC and GC with SPES connectivity we need to 
cast the networks in the same form. We obtain binary CC and 
GC networks by thresholding the edge weights; if the weight 
of an edge exceeds this threshold, then there is a connection 
in the dichotomized network. The threshold h∗ is determined 
using a data-driven approach. This data-driven approach is 
inspired by both (Rummel et al. 2015) and the definition of 
outliers in a boxplot. Let Q1 and Q3 denote the first and third 
quartile of the set of all edge weights. Then Q3 − Q1 denotes 
the inter-quartile range, which is a measure for the spread. We 
set h∗ ∶= max(Q3 + w(Q3 − Q1), 0.1) with w a parameter. We 
use w = 1.5 , which is the standard choice for defining outliers 
(Rummel et al. 2015).

The dichotomized GC network and the SPES network are 
both directional, unweighted networks and hence they can be 
compared. A non-directional variant of the SPES network is 
constructed by putting an edge between nodes i and j if either 
i → j or j → i is present in the directional SPES network. 
This non-directional SPES network can be compared with the 
dichotomized CC network.

Next, we test if edges of the CC and GC networks coincide 
with those in the SPES network using a hypergeometric test for 
overrepresentation. Under the null hypothesis the connections 
of the functional network are distributed proportionally over 
existing and non-existing SPES connections. This hypothesis 
will be tested against the alternative hypothesis that CC/GC 
connections are overrepresented in the set of SPES connec-
tions. In other words, we test whether it is more likely to find 
a CC/GC connection between two nodes if there is a SPES 
connection between these two nodes.

The probability of finding k CC/GC connections in a set of 
ns SPES connections (and consequently ns − k non-existing 
CC/GC connections) is, under the null hypothesis, given by a 
hypergeometric distribution:

pns,nf (k) =

(
nf

k

)(
n − nf

ns − k

)/(
n

ns

)
,

with nf  the total number of CC/GC connections and 
n the total number of possible connections. We have 
n = Nel(Nel − 1) for the comparison between GC and SPES 
and n = Nel(Nel − 1)∕2 for the comparison between CC and 
SPES. Let nsf  denote the number of connections in both the 
SPES and the CC/GC network. Under the null hypothesis, 
the probability P to have nsf  or more CC/GC connections in 
the set of SPES connections is given by:

We will reject the null hypothesis if P < 0.01.
We also investigate the dependence of our results on the 

threshold for CC/GC. Let h be the threshold for the CC or 
GC network. Take ac(h) as the fraction of positive agree-
ment between the SPES and CC/GC network, i.e. the num-
ber of connections that arise in both the SPES and the CC/
GC network dichotomized using threshold h divided by the 
number of SPES connections. If ac is one all connections in 
the SPES network are also part of the CC/GC network. If 
ac is zero then none of the SPES connections are part of the 
CC/GC network. Equivalently, define anc(h) as the fraction 
of negative agreement, i.e. the number of non-existing SPES 
and CC/GC connections as a fraction of the total number of 
non-existing SPES connections. If anc is one then all non-
existing SPES connections are also non-existing in the CC/
GC network in which case all connections in the CC/GC 
network are part of the SPES network. Further, we calculate 
the total agreement, i.e. the number of agreeing connections 
and non-existing connections as fraction of the total num-
ber of possible connections. We define hma as the threshold 
maximizing the total agreement.

Finally, we study connectivity between electrodes in Bro-
ca’s and Wernicke’s area in all three networks. We examine 
the number of connections found between both areas as a 
fraction of nbw , the maximal number of possible connec-
tions between electrodes in Broca’s and Wernicke’s area. 
For the directional networks, i.e. SPES and GC, nbw is given 
by 2nbnw and for the CC network by nbnw , where nb and nw 
denote the number of electrodes in Broca’s and Wernicke’s 
area respectively.

Results

Cross‑Correlation and SPES

In Fig. 1b the agreement and disagreement between the 
adjacency matrices of the (non-directionalized) SPES and 
(dichotomized) CC network for patient 2 is shown (see 
Supplementary Material 2 for others). Observe that CC 

P =

min{ns,nf}∑

k=nsf

pns,nf (k).
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connections are located mainly at the sub-diagonals of the 
connectivity matrix that are directly next to the diagonal 
or eight columns away from the diagonal. Physically these 
entries correspond to the nearest neighbours of an electrode. 
In contrast, SPES connections are also found between more 
distant nodes. Further, almost all of the CC connections are 
contained in the SPES network, while the reverse is not true. 
So, the strong CC connections form a subnetwork of the 
non-directionalized SPES network. Adding surrogate testing 
to quantify the significance of CC connections as in (Rum-
mel et al. 2011) yields the same results (results not shown).

The latter effect is robust with respect to changes in the 
threshold for the correlation network as indicated in the his-
togram in Fig. 1c displaying the distribution of CC strengths. 
The distribution is somewhat skewed, with a peak around 
0.1 and a long tail towards the higher correlation values. The 
peak consists mostly of pairs of nodes that are not connected 

in the SPES network, while the tail is almost completely 
constituted by SPES connections. If we therefore slightly 
change the threshold for the CC network, then the dichoto-
mized CC network would still be contained almost entirely 
in the SPES network.

The latter is not the case anymore if the threshold is set to 
hma , for which the agreement between the networks is maxi-
mal (see Fig. 1d). As hma is smaller than h∗ more connections 
are included in the CC network. The additional agreement 
comes at the expense of adding many more non-SPES con-
nections to the CC network.

The observations above apply to all patients. In Table 2 
the results of the statistics for overrepresentation are shown. 
In all six patients the P-values are small and hence CC con-
nections are overrepresented in the SPES network. Figure 2a 
depicts the dependence on the threshold for CC in relation 
to the agreement with the SPES network. We observe that 

Fig. 1   Patient 2 a Schematic 
layout of the electrode grid. b, 
d Comparison of the adjacency 
matrices of the SPES and CC 
network for threshold h∗ and hma 
respectively. The numbers of 
the electrodes correspond to the 
layout in (a). c Histogram of the 
distribution of the CC connec-
tions. The dashed and dotted 
lines indicate the thresholds h∗ 
and hma respectively

(a) (b)

(c) (d)

Table 2   Summary of statistics 
for comparison of CC and SPES

Pat h∗ n ns nf nsf P

1 0.44 1540 658 56 54 1.7 × 10−18

2 0.43 1540 566 134 128 7.0 × 10−52

3 0.23 2556 1535 283 246 1.3 × 10−25

4 0.55 1653 519 47 45 3.2 × 10−21

5 0.55 990 648 59 55 3.0 × 10−7

6 0.32 3916 2600 415 406 7.3 × 10−64
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ac increases if the threshold of the CC network is lowered, 
while on the other hand anc remains close to 1 for a relatively 
large range of thresholds. This observation means that for 
a broad range of thresholds the CC network is contained 
almost entirely in the SPES network. On the other hand, the 
network induced by CC contains between 20 and 45% of 
the connections of the SPES network for a negative agree-
ment, anc = 0.95 . So the CC network forms only a part of 
the SPES network.

Granger Causality and SPES

Figure 3a shows the level of agreement between the adja-
cency matrices of the SPES and (dichotomized) GC net-
work for patient 2 (see Supplementary Material 2 for oth-
ers). Like CC connections, GC mainly finds connections 
between geometrically close nodes. Approximately 70% of 

the detected GC connections are part of the SPES network. 
A histogram containing the distribution of GC strengths 
is displayed in Fig. 3b. This distribution has its maximum 
at 0 and decays quickly. The thin tail of the distribution is 
mostly constituted by SPES connections.

The observations above apply to all patients and sug-
gest that GC connections are overrepresented in the SPES 
network. It follows from the statistical test that this over-
representation is indeed the case as can be seen in Table 3. 
The dependence on the threshold for GC in relation to 
the agreement with the SPES network can be found in 
Fig. 2b. Although the effect is weaker than in the CC case, 
ac increases if the threshold of the CC network is lowered, 
while anc remains close to one for a relatively large range 
of thresholds. For patient 1 approximately 12% of the SPES 
connections are part of the GC network for anc = 0.95 , in 
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Fig. 2   ac (solid) and anc (dashed) as function of the threshold for a SPES and CC and b SPES and GC for all patients
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Fig. 3   Patient 2 a, c Comparison of the adjacency matrices of the 
SPES and GC network for thresholds h∗ and hma respectively. The 
numbers of the electrodes correspond to the layout in Fig. 1a. b His-

togram of the distribution of the GC connections. The dashed and 
dotted lines indicate the thresholds h∗ and hma respectively
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the other patients this is much higher and varies between 
20 and 25%.

Broca–Wernicke Connectivity

The electrode grids of patients 3, 5 and 6 covered both 
Broca’s and Wernicke’s area. In Figs. 4, 5 and 6 the SPES, 
CC and GC networks restricted to the electrodes in these 
areas are displayed for these patients. For patient 3 Broca’s 
area consists of four electrodes. Three of them (50, 51 and 
58) are neighbouring electrodes, while 34 is located further 
away, i.e. 2 cm away from 50 (see Supplementary Mate-
rial 2 for the schematic location of the electrodes). Wer-
nicke’s area is covered by two neighbouring electrodes. In 
Broca’s area 67% of all possible connections are found in the 
SPES network, while for CC and GC this is 50% and 17% 
respectively. In both the CC and GC network electrode 34 is 
isolated, which agrees with our previous finding that those 
methods find predominantly close-by connections. SPES, 
however, finds connections to this more distant node. On the 
other hand, electrodes 50 and 51 are reciprocally connected 

in both the CC and GC network, while there is no edge in the 
SPES network between those two electrodes. The absence of 
SPES connections is partly a consequence of how we build 
the SPES network. As electrode 51 is located at the end of a 
row in the grid it is part of only one stimulation pair, namely 
50–51, therefore it is impossible to find a connection from 51 
to 50 in the SPES network. The reverse connection was also 
not found as electrode 51 became saturated when stimulat-
ing electrode pair 49–50. The two electrodes in Wernicke’s 
area are reciprocally connected in the CC and GC network, 
while SPES could not recover the connection from 31 to 32 
as the only stimulation pair containing electrode 31 is the 
pair 31–32. Connectivity between Broca’s and Wernicke’s 
areas is only found in the SPES network. All the connections 
except one are from Broca’s to Wernicke’s area.

For patient 5, Broca’s and Wernicke’s areas consist of 
3 and 4 neighbouring electrodes respectively (see Sup-
plementary Material 2 for the location of the electrodes). 
The electrodes in Broca’s area are fully connected to each 
other in the SPES network. In the CC and GC networks we 
find only a third of all possible connections in Broca. In 

Table 3   Summary of statistics 
for comparison of GC and SPES

Pat h∗ n ns nf nsf P

1 0.10 3080 969 165 105 2.3 × 10−18

2 0.10 3080 825 205 138 2.5 × 10−36

3 0.10 5112 2193 219 175 2.6 × 10−30

4 0.10 3306 791 107 83 1.3 × 10−32

5 0.45 1980 980 209 181 1.6 × 10−32

6 0.37 7832 3739 636 550 9.1 × 10−101

(a) SPES

31 32

34
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51

58
B

W

(b) CC

31 32

34

50

51
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W

(c) GC

31 32

34

50

51
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B

W

Fig. 4   Connectivity between nodes in Broca (B) and Wernicke (W) for patient 3 inferred by a SPES, b CC and c GC. CC and GC networks are 
dichotomized using threshold h∗
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Wernicke’s area the SPES network is also well-connected, 
containing 75% of all possible connections. The CC net-
work has a relatively high internal connectivity, as 2/3 of 
all possible connections are present. In the GC network 
on the other hand, only a quarter of all possible connec-
tions are found. For patient 5, as for patient 3, only the 
SPES network shows connectivity between Broca’s and 
Wernicke’s area, however the orientation is reversed; all 
connections except one are directed from Wernicke’s to 
Broca’s area.

For the last patient, 2 electrodes were placed on Broca’s 
area while there were 6 on Wernicke’s area. In all three 
networks the 2 electrodes in Broca’s area were reciprocally 
connected. In Wernicke’s area the SPES network contains 
93% of all possible connections. The CC and GC are also 
relatively well-connected finding 80% and a half of all pos-
sible connections respectively. In contrast to the other two 
patients some CC and GC connections are found between 
Broca’s and Wernicke’s area. For GC this is the reciprocal 
connection between electrodes 10 and 30, which is 8% of 

(a) SPES
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13

23

2431
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B

(b) CC

76

13

23

2431

44

W

B

(c) GC

76

13

23

2431

44

W

B

Fig. 5   Connectivity between nodes in Broca (B) and Wernicke (W) for patient 5 inferred by a SPES, b CC and c GC. CC and GC networks are 
dichotomized using threshold h∗
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Fig. 6   Connectivity between nodes in Broca (B) and Wernicke (W) for patient 6 inferred by a SPES, b CC and c GC. CC and GC networks are 
dichotomized using threshold h∗
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all possible connections. The CC network also contains a 
connection between 9 and 30, yielding a total of 17% of all 
possible connections. These percentages are still much lower 
than the SPES network which finds one third of all possible 
connections from Broca’s area to Wernicke’s area and one 
half in opposite direction.

Discussion

Network Comparison

We have compared connectivity derived from SPES to CC 
and GC networks derived from on-going inter-ictal ECoG. 
All three methods yield primarily nearest neighbour connec-
tions, however SPES networks are usually connected more 
densely and include more distant connections than CC and 
GC networks. We find a strong relationship between CC and 
SPES networks, i.e. strong CC connections form a subset of 
the SPES network. The relation between SPES and GC net-
works is weaker. Although GC connections coincide more 
frequently with SPES connections compared to non-existing 
SPES connections, they do not form a subset of the SPES 
network.

One of the most important factors underlying the differ-
ence between the SPES and CC/GC networks is the process 
by which networks are inferred. Non-evoked connectivity 
methods try to recover connectivity from passive observa-
tions using statistical dependencies between the time series 
of nodes. Long range connections may have small ongoing 
influences that are easily overpowered by activity of local 
circuits and their common input. CC and GC will therefore 
find only weak coupling between such nodes, as has been 
observed in a computational modeling study (Ponten et al. 
2010). This phenomenon might be typical for the centimeter-
scale at which ECoG is recorded. In SPES, connections are 
activated strongly, due to the electrical stimulus. This causes 
a large response at the receiving electrode, which makes 
it distinguishable from the ongoing activity. This might 
explain the difficulty of detecting long-range connections 
among networks based on ongoing ECoG activity, compared 
to SPES networks.

In our study, all three constructed networks use the elec-
trodes of the ECoG grid as nodes which enables a straight-
forward comparison between the networks. Moreover, as 
all three networks represent local connectivity their scale 
is equal. Other studies have compared SPES to larger scale 
networks inferred using whole-brain imaging modalities like 
diffusion weighted imaging (DWI) and resting-state func-
tional magnetic resonance imaging (fMRI). A higher overlap 
than expected by chance was found between edges of dichot-
omized DWI and SPES networks (Parker et al. 2018). On 
the other hand, the correlation between connection strengths 

taken over the whole brain is low both for comparing SPES 
with DWI (Jones et al. 2014; Donos et al. 2016b; Parker 
et al. 2018) and fMRI (Keller et al. 2011; Jones et al. 2014). 
There are however clusters of brain regions that have similar 
connectivity in networks constructed with SPES as well as 
DWI (Donos et al. 2016b) and fMRI (Keller et al. 2011).

An example of such a cluster is the language circuit, in 
which a strong relation was found between DWI and SPES 
amplitude and latency (Conner et al. 2011). This relation 
is in accordance with earlier studies on DWI (Catani et al. 
2005) and CCEP (Matsumoto et al. 2004) in the language 
circuit. Similar results were found for a comparison between 
the amplitude of CCEP and resting-state fMRI (Keller et al. 
2011). Here it was found that CCEP connections starting 
from Broca, Wernicke or sensory-motor regions show a 
much higher resting-state fMRI connectivity compared to 
non-existing CCEP connections starting from these regions.

The classical language circuit was the first functional net-
work studied with CCEP (Matsumoto et al. 2004). Bidirec-
tional connectivity between Broca’s and Wernicke’s area was 
found, in contrast to the traditional Wernicke–Geschwind 
model, which hypothesized only connectivity from Wer-
nicke’s to Broca’s area (Dronkers et al. 2000). Stimulation 
of electrodes in Wernicke’s area elicits less well-pronounced 
responses in electrodes in Broca’s area compared to the other 
way around. These results have been confirmed by multiple 
CCEP studies (see Matsumoto et al. 2017 for an overview). 
Our findings are in accordance with these results. However, 
in patient 3 the connections are predominantly from Broca’s 
to Wernicke’s area, while in patient 5 the reverse holds. This 
result could be a consequence of our definition of Broca’s 
and Wernicke’s area, namely as electrodes that are part of 
at least two stimulation pairs marked positive for language 
using ESM.

In contrast to the SPES network, we find that CC and 
GC networks reveal only some connectivity between Broca’s 
and Wernicke’s area in one of the three patients. This result 
could be expected because those two methods yield mostly 
local connections. Another explanation could be the state 
of the patient during ECoG acquisition. The only patient for 
which CC and GC reveal connections between Broca and 
Wernicke, patient 6, was busy with a language task during 
the ongoing ECoG recordings. One could therefore expect 
that Broca’s and Wernicke’s area were more active. Never-
theless, CC and GC find only a fraction of the connections 
that are found with SPES.

Methodological Issues

There are many methodological issues in constructing func-
tional networks from on-going ECoG starting already with 
pre-processing of the ECoG data. First of all, there are mul-
tiple options for referencing ECoG data. We used a common 
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reference montage with an extracranial reference electrode 
located on the contralateral mastoid. A common reference 
montage has the disadvantage that noise on the reference 
electrode affects all channels of the recorded ECoG data. 
For an extracranial reference this is more problematic than 
for an intracranial reference, as the former is more suscep-
tible to pick up muscle artefacts. Unfortunately, it was not 
possible to use an intracranial reference electrode as we do 
not apply epidural reference electrodes during grid record-
ings. To reduce the influence of common reference noise 
we removed the parts of the recordings in which common 
reference artefacts were visible according to an expert clini-
cal neurophysiologist (FSSL). Further, the common refer-
ence noise will increase the level of background correlations 
which may lead to spurious connections (Bastos and Schof-
felen 2015). We therefore used the data-driven threshold 
h∗ which ensures that only correlations that are sufficiently 
above the background level will be included, at the cost of 
a less extended dichotomized network. As an alternative to 
a common reference montage bipolar and average reference 
montages may be used. These montages try to remove the 
common reference noise by taking linear combinations of 
the signals, but this changes the interpretation of the nodes 
and, moreover, it creates linear dependencies between the 
signals. The latter proved to be problematic when we tried 
to calculate multivariate GC. Given these practical con-
straints, this is the only approach allowing us to compare 
the networks.

Another methodological issue is the length of the epochs 
for calculating functional connectivity. If those epochs are 
too long the time series might not be stationary. On the other 
hand, the epochs should be long enough to reliably infer the 
connectivity. In the case of CC for example, two finite inde-
pendent time series may show a high correlation, although 
this is theoretically zero for infinite ones (Rummel et al. 
2015). In this study we took epochs of 20 s as preliminary 
investigations showed the CC values to stabilize for longer 
epochs. For consistency we used the same epoch length for 
GC.

We observed that CC is a robust functional connectivity 
measure. GC in contrast, is much more sensitive to non-
stationarity of the time series and small artefacts. This sen-
sitivity might be because GC is a noise-driven method which 
needs a certain amount of stochasticity in the data. In ECoG 
recordings this stochasticity can be too small causing the 
factors mentioned above to dominate the time series (Barnett 
and Seth 2014).

The SPES networks we constructed are based on ERs 
found with our automatic detector. The principle of the 
detector is straightforward and uses the amplitude of 
responses relative to the baseline to qualify a response as ER 
or not. Similar principles are applied in other studies (Lacruz 
et al. 2007; David et al. 2013; Entz et al. 2014). We have 

validated our detector on visually classified responses (see 
Supplementary Material 1). An alternative for our binary 
classification is to use the amplitude of the response itself to 
infer the strength of a connection as is often used in CCEP 
studies (Matsumoto et al. 2004; Conner et al. 2011; Enatsu 
et al. 2012). The amplitude, however, depends on multiple 
factors including how well an electrode makes contact to 
the cortex. Alternatively, a variable amplitude protocol may 
be used to infer connection strengths for SPES (Donos et al. 
2016a, b).

Another potential problem in the construction of SPES 
networks is the effect of volume conduction (VC) (Shimada 
et al. 2017). Due to the direct and artificial nature of the 
stimulation, a large source of neuronal activity can be gener-
ated which might be picked up by electrodes surrounding the 
stimulation pair. Note that this phenomenon is not about VC 
of the electrical stimulation itself. The result could be that 
spurious local connectivity is found (Shimada et al. 2017). 
We investigated the influence of VC in Supplementary Mate-
rial 3 and concluded that its effects in our SPES data are 
small. It is, therefore, not necessary to account for VC effects 
in our SPES networks.

A point of attention is the non-stationarity of brain con-
nectivity. We chose to select ongoing ECoG data recorded 
just preceding SPES as the patient state during that time 
would be most similar to the one during stimulation. 
Although functional connectivity was calculated over sev-
eral minutes, we noted that differences in the results were 
small in general. The network converged rapidly to an aver-
age structure as has been described before (Kramer et al. 
2011). In contrast to functional connectivity, the presence 
of a SPES connection is measured over approximately one 
minute. One might therefore think that variation in SPES 
connectivity is high, however this is not the case; SPES net-
works are highly reproducible. In preliminary research we 
found an agreement in connectivity between two SPES ses-
sions of around 75%, which is in-line with another CCEP 
study (Entz et al. 2014).

Overview

The data in this study is obtained from intracranial grid 
recordings in patients with refractory epilepsy. In this field 
the study of brain networks may help to improve localiza-
tion of the epiletogenic focus (Haneef and Chiang 2014; 
Khambhati et al. 2016). An interesting recent development 
is to combine networks with computational models (Terry 
et al. 2012; Benjamin et al. 2012; Hebbink et al. 2017). In 
these models, the activity of the neuronal population under-
lying each node is modeled by a neural mass. The nodes 
influence each others’ dynamics according to the connectiv-
ity of the network. By using patient-specific networks the 
effect of epilepsy surgery can be predicted (Goodfellow et al. 
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2016; Sinha et al. 2017; Jirsa et al. 2017; Lopes et al. 2017), 
however many challenges still remain before these meth-
ods could be applied in clinical practice (Eissa and Schevon 
2017; Youngerman et al. 2017).

One of the questions in this approach is which type of 
network should be used. To date, computational studies have 
used networks derived from ongoing intracranial EEG data, 
both inter-ictal (Sinha et al. 2017) as well as seizure data 
(Goodfellow et al. 2016; Lopes et al. 2017). However, as 
we showed in this study, inter-ictal CC and GC networks do 
not capture all known anatomical connections, for instance 
those between Broca and Wernicke. SPES networks might 
be a good alternative as such models would incorporate 
more physiological connections. Moreover, SPES ER net-
works contain information about both the seizure onset zone 
(van Blooijs et al. 2018; Boido et al. 2014) and seizure prop-
agation (Enatsu et al. 2012; Mouthaan et al. 2016). It would 
therefore be interesting to compare SPES and ictal networks.

Another issue is the limited covering of electrode grids 
which results in localized sampling only. In a computational 
network approach this limited covering leads to boundary 
effects. A possible solution is to incorporate a patient spe-
cific-network into a larger, generic, full-brain network. For 
SPES, there are some brain atlases available (David et al. 
2013; Donos et al. 2016b) which could be beneficial for such 
studies. Seen in this light our work gives a better foundation 
for the use of networks in such future computational studies.
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