Skip to main content
. 2019 Apr 22;9:126. doi: 10.1038/s41398-019-0461-2

Table 3.

Prediction accuracy of 4- and 6-marker models

Variable 1st sample set (CON n = 30, SCZ n = 30) 2nd sample set (CON n = 30, SCZ n = 30) Combined (CON n = 60, SCZ n = 60)
OR P-valuea Prediction accuracyb OR P-value Prediction accuracy OR P-value Prediction accuracy
4-marker model
MX1 11.91 0.017 26.57 0.016 19.46 <0.001
GLRX3 0.06 0.036 81.7% 4.99 0.507 73.3% 0.46 0.384 77.5%
UROD 0.11 0.011 (AUC = 0.86) 0.55 0.609 (AUC = 0.72) 0.44 0.108 (AUC = 0.82)
GART 0.02 0.006 0.01 0.006 0.01 <0.001
6-marker model
MX1 7.68 0.079 16.72 0.049 20.48 <0.001
GLRX3 0.04 0.03 2.37 0.741 0.48 0.431
UROD 0.07 0.012 81.7% 0.79 0.875 78.3% 0.51 0.235 77.5%
GART 0.01 0.011 (AUC = 0.88) 0.003 0.008 (AUC = 0.66) 0.01 <0.001 (AUC = 0.82)
MAPRE1 0.19 0.095 103.8 0.052 0.73 0.629
TBCB 0.13 0.050 1.93 0.616 0.42 0.138

OR odds ratio, Combined combined results of 1st sample set and 2nd sample set, AUC the area under the receiver operating characteristic curves

aP-value: multivariate logistic regression analysis

bPrediction accuracy: [1—overall misclassification rate (OMR)] × 100 (%)