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Comparison of Deep Learning 
Approaches for Multi-Label Chest 
X-Ray Classification
Ivo M. Baltruschat1,2, Hannes Nickisch 3, Michael Grass3, Tobias Knopp   1,2 & Axel Saalbach3

The increased availability of labeled X-ray image archives (e.g. ChestX-ray14 dataset) has triggered a 
growing interest in deep learning techniques. To provide better insight into the different approaches, 
and their applications to chest X-ray classification, we investigate a powerful network architecture in 
detail: the ResNet-50. Building on prior work in this domain, we consider transfer learning with and 
without fine-tuning as well as the training of a dedicated X-ray network from scratch. To leverage 
the high spatial resolution of X-ray data, we also include an extended ResNet-50 architecture, and a 
network integrating non-image data (patient age, gender and acquisition type) in the classification 
process. In a concluding experiment, we also investigate multiple ResNet depths (i.e. ResNet-38 and 
ResNet-101). In a systematic evaluation, using 5-fold re-sampling and a multi-label loss function, we 
compare the performance of the different approaches for pathology classification by ROC statistics and 
analyze differences between the classifiers using rank correlation. Overall, we observe a considerable 
spread in the achieved performance and conclude that the X-ray-specific ResNet-38, integrating non-
image data yields the best overall results. Furthermore, class activation maps are used to understand 
the classification process, and a detailed analysis of the impact of non-image features is provided.

In the United Kingdom, the care quality commission recently reported that – over the preceding 12 months – a 
total of 23,000 chest X-rays (CXRs) were not formally reviewed by a radiologist or clinician at Queen Alexandra 
Hospital alone. Furthermore, three patients with lung cancer suffered significant harm because their CXRs had 
not been properly assessed1. The Queen Alexandra Hospital is probably not the only hospital having problems 
with providing expert readings for every CXR. Growing populations and increasing life expectancies are expected 
to drive an increase in demand for CXR readings.

In computer vision, deep learning has already shown its power for image classification with superhuman 
accuracy2–5. In addition, the medical image processing field is vividly exploring deep learning. However, one 
major problem in the medical domain is the availability of large datasets with reliable ground-truth annota-
tion. Therefore, transfer learning approaches, as proposed by Bar et al.6, were often considered to overcome such 
problems.

Two larger X-ray datasets have recently become available: The CXR dataset from Open-i7 and the 
ChestX-ray14 dataset from the National Institutes of Health (NIH) Clinical Center8. Figure 1 illustrates four 
selected examples from ChestX-ray14. Due to its size, the ChestX-ray14 consisting of 112,120 frontal CXR images 
from 30,805 unique patients attracted considerable attention in the deep learning community. Triggered by the 
work of Wang et al.8 using convolution neural networks (CNNs) from the computer vision domain, several 
research groups have begun to address the application of CNNs for CXR classification. In the work of Yao et al.9,  
they presented a combination of a CNN and a recurrent neural network to exploit label dependencies. As a 
CNN backbone, they used a DenseNet10 model which was adapted and trained entirely on X-ray data. Li et al.11  
presented a framework for pathology classification and localization using CNNs. More recently, Rajpurkar et al.12  
proposed transfer-learning with fine tuning, using a DenseNet-12110, which raised the AUC results on 
ChestX-ray14 for multi-label classification even higher.

Unfortunately, a faithful comparison of approaches remains difficult. Most reported results were obtained 
with differing experimental setups. This includes (among others) the employed network architecture, loss 
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function and data augmentation. In addition, differing dataset splits were used and only Li et al.11 reported 5-fold 
cross-validated results. In contrast to these results, our experiments (Sec. 3) demonstrate that performance of a 
network depends significantly on the selected split. To have a fair comparison, Wang et al.8 released an official 
split later. Yao et al.13 and Guendel et al.14 reported results for this official split. While Guendel et al.14 hold the 
state-of-the-art results in all fourteen classes with a location-aware DenseNet-121.

To provide better insights into the effects of distinct design decisions for deep learning, we perform a system-
atic evaluation using a 5-fold re-sampling scheme. We empirically analyze three major topics:

	 1.	 weight initialization, pre-training and transfer learning (Section 2.1)
	 2.	 network architectures such as ResNet-50 with large input size (Section 2.2)
	 3.	 non-image features such as age, gender, and view position (Section 2.3)

Prior work on ChestX-ray14 has been limited to the analysis of image data. In clinical practice however, radi-
ologists employ a broad range of additional features during the diagnosis. To leverage the complete information 
of the dataset (i.e. age, gender, and view position), we propose in Section 2.3 a novel architecture integrating this 
information in addition to the learned image representation.

Methods
In the following, we cast pathology detection as a multi-label classification problem. All images = → …X x{ , ,1
→ → ∈x x},N i   are associated with a ground truth label →yi , while we seek a classification function 

→
→f : X Y  that 

minimizes a specific loss function l using N training sample-label pairs (→xi , 
→yi ), i = 1 … N. Here, we encode the 

label for each image as a binary vector → ∈ =y {0, 1}M  (with M labels). We encode “No Finding” as an explicit 
additional label and hence have M = 15 labels. After an initial investigation of weighting loss functions such as 
positive/negative balancing8 and class balancing, we noticed no significant difference and decided to employ the 
class-averaged binary cross entropy (BCE) as our objective:

∑→ →
= = − − − − .= y f

M
H y f H y f y f y f( , ) 1 [ , ], with [ , ] log (1 )log(1 ) (1)m

M
m m1

Prior work on the ChestX-ray14 dataset concentrates primarily on ResNet-50 and DenseNet-121 architec-
tures. Due to its outstanding performance in the computer vision domain10, we focus in our experiments on the 
ResNet-50 architecture15. To adapt the network to the new task, we replace the last dense layer of the original 
architecture with a new dense layer matching the number of labels and add a sigmoid activation function for our 
multi-label problem (see Table 1).

Weight Initialization and Transfer Learning.  We investigate two distinct initialization strategies for the 
ResNet-50. First, we follow the scheme described by He et al.5, where the network parameters are initialized with 
random values and thus the model is trained from scratch. Second, we initialize the network with pre-trained 
weights, where knowledge is transferred from a different domain and task. Furthermore, we distinguish between 
off-the-shelf (OTS) and fine-tuning (FT) in the transfer-learning approach.

A major drawback in medical image processing with deep learning is the limited size of datasets compared to 
the computer vision domain. Hence, training a CNN from scratch is often not feasible. One solution is 
transfer-learning. Following the notation in the work of Pan et al.16, a source domain D X= P X{ , ( )}s s s s  with task 

= ⋅f{ , ( )}s s sT Y  and a target domain = P X{ , ( )}t t t tD X  with task = ⋅f{ , ( )}t t tT Y  are given with ≠s t   and/or 
 ≠s t. In transfer-learning, the knowledge gained in s and s  is used to help learning a prediction function ft(⋅) 
in t.

Employing an off-the-shelf approach17,18, the pre-trained network is used as a feature extractor, and only the 
weights of the last (classifier) layer are adapted. In fine-tuning, one chooses to re-train one or more layers with 
samples from the new domain. For both approaches, we use the weights of a ResNet-50 network trained on 
ImageNet as a starting point19. In our fine-tuning experiment, we retrained all conv-layers as shown in Table 1.

Figure 1.  Four examples of the ChestX-ray14 dataset. ChestX-ray14 consists of 112,120 frontal chest X-rays 
from 30,805 patients. All images are labeled with up to 14 pathologies or “No Finding”. The dataset does 
not only include acute findings, as the pneumothorax in figure (c), but also treated patients with a drain as 
“pneumothorax” (d).
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Architectures.  In addition to the original ResNet-50 architecture, we employ two variants: First, we reduce 
the number of input channels to one (the ResNet-50 is designed for the processing of RGB images from the 
ImageNet dataset), which should facilitate the training of an X-ray specific CNN. Second, we increase the input 
size by a factor of two (i.e. 448 × 448). To keep the model architectures similar, we only add a new max-pooling 
layer after the first bottleneck block. This max-pooling layer has the same parameters as the “pooling1” layer (i.e. 
3 × 3 kernel, stride 2, and padding). In Fig. 2, our changes are illustrated at the image branch. A higher effective 
resolution could be beneficial for the detection of small structures, which could be indicative of a pathology (e.g. 
masses and nodules). In the following, we use the postfix “-1channel” and “-large” to refer to our model changes.

Finally, we investigate different model depths with the best performing setup. First, we implement a shallower 
ResNet-38 where we reduce the number of bottleneck blocks for conv2_x, conv3_x, and conv4_x down to two, 

Layer name Output size Original 50-layer Off-the-shelf Fine-tuned

conv1 112 × 112 7 × 7, 64-d, stride 2 same fine-tuned

pooling1 56 × 56 3 × 3, 64-d, max pool, stride 2 same same

conv2_x 56 × 56









×
×

×









×

‐
‐
‐

1 1, 64 d, stride1
3 3, 64 d, stride1

1 1, 256 d, stride1
3 same fine-tuned

conv3_0 28 × 28









×
×
×










‐
‐
‐

1 1, 128 d, stride2
3 3, 128 d, stride1
1 1, 512 d, stride1

same fine-tuned

conv3_x 28 × 28









×
×
×









×

‐
‐
‐

1 1, 128 d, stride1
3 3, 128 d, stride1
1 1, 512 d, stride1

3 same fine-tuned

conv4_0 14 × 14









×
×

×










‐
‐
‐

1 1, 256 d, stride2
3 3, 256 d, stride1

1 1, 1024 d, stride1
same fine-tuned

conv4_x 14 × 14









×
×

×









×

‐
‐
‐

1 1, 256 d, stride1
3 3, 256 d, stride1

1 1, 1024 d, stride1
5 same fine-tuned

conv5_0 7 × 7









×
×

×










‐
‐
‐

1 1, 512 d, stride2
3 3, 512 d, stride1

1 1, 2048 d, stride1
same fine-tuned

conv5_x 7 × 7









×
×

×









×

‐
‐
‐

1 1, 512 d, stride1
3 3, 512 d, stride1

1 1, 2048 d, stride1
2 same fine-tuned

pooling2 1 × 1 7 × 7, 2048-d, average pool, 
stride 1 same same

dense 1 × 1 1000-d, dense-layer 15-d, dense-layer

loss 1 × 1 1000-d, softmax 15-d, sigmoid, BCE

Table 1.  Architecture of the original, off-the-shelf, and fine-tuned ResNet-50. In our experiments, we use the 
ResNet-50 architecture and this table shows differences between the original architecture and ours (off-the-shelf 
and fine-tuned ResNet-50). If there is no difference to the original network, the word “same” is written in the 
table. The violet and bold text emphasizes, which parts of the network are changed for our application. All layers 
do employ automatic padding (i.e. depending on the kernel size) to keep spatial size the same. The conv3_0, 
conv4_0, and conv5_0 layers perform a down-sampling of the spatial size with a stride of 2.

Figure 2.  Patient-data adapted model architecture: ResNet-50-large-meta. Our architecture is based on 
the ResNet-50 model. Because of the enlarged input size, we added a max-polling layer after the first three 
ResBlocks. In addition, we fused image features and patient features at the end of our model to incorporate 
patient information.
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two, and three, respectively. Secondly, we also test the ResNet-101 and increased the number of conv_3 blocks 
from 5 to 22 compare to the ResNet-50.

Non-Image Features.  ChestX-ray14 contains information about the patient age, gender, and view position 
(i.e. if the X-ray image is acquired posterior-anterior (PA) or anterior-posterior (AP)). Radiologists use informa-
tion beyond the image to conclude which pathologies are present or not. The view position changes the expected 
position of organs in the X-ray images (i.e. PA images are horizontally flipped compared to AP). In addition, 
organs (e.g. the heart) are magnified in an AP projection as the distance to the detector is increased.

As illustrated in Fig. 2, we concatenate the image feature vector (i.e. output of the last pooling layer with 
dimension 2024 × 1) with the new non-image feature vector (with dimension 3 × 1). Therefore, view position and 
gender is encoded as {0,1} and the age is linearly scaled 

X X[ min( ), max( )] [0,1]pa pa , in order to avoid a bias 
towards features with a large range of values. In our experiments, we used “-meta” to refer our model architecture 
with non-image features.

ChestX-ray14 Dataset.  To evaluate our approaches for multi-label pathology classification, the entire cor-
pus of ChestX-ray14 (Fig. 1) is employed. In total, the dataset contains 112, 120 frontal chest X-rays from 30,805 
patients. The dataset does not include the original DICOM images but Wang et al.8 performed a simple pre-
processing based on the encoded display settings while the pixel depth was reduced to 8-bit. In addition, each 

(a) Diseases

Pathology True False Prevalence [%]

Cardiomegaly 2,776 109,344 2.48

Emphysema 2,516 109,604 2.24

Edema 2,303 109,817 2.05

Hernia 227 111,893 0.20

Pneumothorax 5,302 106,818 4.73

Effusion 13,317 98,803 11.88

Mass 5,782 106,338 5.16

Fibrosis 1,686 110,434 1.50

Atelectasis 11,559 100,561 10.31

Consolidation 4,667 107,453 4.16

Pleural Thicken. 3,385 108,735 3.02

Nodule 6,331 105,789 5.65

Pneumonia 1,431 110,689 1.28

Infiltration 19,894 92,226 17.74

Table 2.  Overview of label distributions in the ChestX-ray14 dataset.

Figure 3.  Distribution of patient age in the ChestX-ray14 dataset. Each bin covers a width of two years. The 
average patient age is 46.87 years with a standard deviation of 16.60 years.

(b) Meta-information

Female Male Ratio

Patient Gender
63,340 48,780 1.30

PA AP Ratio

View Position 67,310 44,810 1.50

Table 3.  Overview of label distributions in the ChestX-ray14 dataset.
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5Scientific Reports |          (2019) 9:6381  | https://doi.org/10.1038/s41598-019-42294-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

image was resized to 1024 × 1024 pixel without preserving the aspect ratio. In Table 2 and Fig. 3, we show the 
distribution of each class and the statistics for non-image information. The prevalence of individual pathologies is 
generally low and varies between 0.2% and 17.74% as shown in Table 2. While, the distribution of patient gender 
and view position is quite even with a ratio of 1.3 and 1.5, respectively (see Table 3). In Fig. 3, the histogram shows 
the distribution of patient age in ChestX-ray14. The average patient age is 46.87 years with a standard deviation 
of 16.60 years.

To determine if the provided non-image features contain information for a disease classification, we per-
formed an initial experiment. We trained a very simple Multi-layer Perceptron (MLP) classifier only with 
the three non-image feature as input. The MLP classifier has a low average AUC of 0.61 but this still indicates 
that those non-image features could help to improve classification results when provided to our novel model 
architecture.

Experiments and Results
For an assessment of the generalization performance, we perform a 5 times re-sampling scheme20. Within each 
split, the data is divided into 70% training, 10% validation, and 20% testing. When working with deep learning, 
hyper-parameters, and tuning without a validation set and/or cross-validation can easily result in over-fitting. 
Since individual patients have multiple follow-up acquisitions, all data from a patient is assigned to a single 
subset only. This leads to a large patient number diversity (e.g. split two has 5,817 patients and 22,420 images 
whereas split 5 has 6,245 patients and the same number of images). We estimate the average validation loss over 
all re-samples to determine the best models. Finally, our results are calculated for each fold on the test set and 
averaged afterwards.

To have a fair comparison to other groups, we conduct an additional evaluation using the best performing 
architecture with different depth on the official split of Wang et al.8 in Section 3.1.

Implementation.  In all experiments, we use a fixed setup. To extend ChestX-ray14, we use the same geomet-
ric data augmentation as in the work of Szegedy et al.3. At training, we sample various sized patches of the image 
with sizes between 8% and 100% of the image area. The aspect ratio is distributed evenly between 3:4 and 4:3. 
In addition, we employ random rotations between ±7° and horizontal flipping. For validation and testing, we 
rescale images to 256 × 256 and 480 × 480 pixels for small and large spatial size, respectively. Afterwards, we 
use the center crop as input image. As in the work of He et al.5, dropout is not employed21. As optimizer, we use 
ADAM22 with default parameters for β1 = 0.9 and β2 = 0.999. The learning rate lr is set to lr = 0.001 and lr = 0.01 
for transfer-learning and from scratch, respectively. While training, we reduce the learning rate by a factor of 2 
when the validation loss does not improve. Due to model architecture variations, we use batch sizes of 16 and 8 
for transfer-learning and from scratch with a large input size, respectively. The models are implemented in CNTK 
and trained on GTX 1080 GPUs yielding a processing time of around 10 ms per image.

Pathology

Without non-image features With non-image features

OTS FT 1channel large OTS FT 1channel large

Cardiomegaly 72.7 ± 1.8 88.5 ± 0.7 88.9 ± 0.5 89.7 ± 0.3 75.9 ± 1.4 88.4 ± 0.8 90.2 ± 0.4 89.8 ± 0.8

Emphysema 77.8 ± 2.1 89.2 ± 1.0 87.0 ± 0.8 88.3 ± 1.3 79.8 ± 1.9 89.4 ± 1.2 87.4 ± 1.3 89.1 ± 1.2

Edema 84.4 ± 0.6 89.1 ± 0.4 89.1 ± 0.6 88.8 ± 0.5 85.7 ± 0.5 89.1 ± 0.7 89.0 ± 0.6 88.9 ± 0.3

Hernia 78.8 ± 1.4 85.5 ± 3.8 88.1 ± 4.2 87.5 ± 4.5 81.9 ± 2.5 88.2 ± 3.2 89.3 ± 4.4 89.6 ± 4.4

Pneumothorax 77.3 ± 1.3 87.0 ± 0.8 85.7 ± 0.9 85.9 ± 0.9 79.1 ± 1.2 86.5 ± 0.6 85.4 ± 0.7 85.9 ± 1.1

Effusion 79.4 ± 0.4 87.1 ± 0.2 87.6 ± 0.2 87.6 ± 0.2 80.6 ± 0.4 87.2 ± 0.3 87.6 ± 0.2 87.3 ± 0.3

Mass 66.8 ± 0.6 82.2 ± 1.0 83.3 ± 0.6 83.9 ± 0.9 68.6 ± 0.6 82.2 ± 1.0 83.3 ± 0.7 83.2 ± 0.3

Fibrosis 72.0 ± 0.9 80.0 ± 0.9 79.9 ± 0.8 79.2 ± 1.6 73.9 ± 0.8 80.0 ± 0.9 79.6 ± 0.5 78.9 ± 0.5

Atelectasis 71.8 ± 0.6 80.3 ± 0.7 79.9 ± 0.4 79.2 ± 0.7 73.2 ± 0.7 80.1 ± 0.6 79.3 ± 0.6 79.1 ± 0.4

Consolidation 74.3 ± 0.3 79.5 ± 0.5 80.6  ±  0.4 80.0 ± 0.3 75.3 ± 0.3 79.6 ± 0.5 80.4 ± 0.5 80.0 ± 0.7

Pleural Thicken. 68.8 ± 1.0 79.0 ± 0.7 78.4 ± 0.9 78.0 ± 1.1 70.8 ± 1.1 78.6 ± 1.1 78.2 ± 1.3 77.1 ± 1.3

Nodule 65.0 ± 0.8 72.6 ± 0.9 73.3 ± 0.8 75.1 ± 1.3 66.5 ± 0.7 74.7 ± 0.6 74.0 ± 0.7 75.8 ± 1.4

Pneumonia 66.4 ± 2.7 74.4 ± 1.6 74.3 ± 1.5 75.3 ± 2.2 68.3 ± 2.3 73.3 ± 1.3 74.8 ± 1.5 76.7 ± 1.5

Infiltration 65.9 ± 0.2 69.9 ± 0.6 70.2 ± 0.3 70.2 ± 0.5 67.0 ± 0.4 70.2 ± 0.2 70.1 ± 0.5 70.0 ± 0.7

Average 73.0 ± 1.1 81.7 ± 1.0 81.9 ± 0.9 82.1 ± 1.2 74.8 ± 1.1 82.0 ± 0.9 82.0 ± 1.0 82.2 ± 1.1

No Findings 71.6 ± 0.3 76.9 ± 0.5 77.3 ± 0.3 77.1 ± 0.4 72.5 ± 0.3 76.8 ± 0.4 77.1 ± 0.4 77.1 ± 0.3

Table 4.  AUC result overview for all our experiments. In this table, we present averaged results over all five 
splits and the calculated standard deviation (std) for each pathology. We divide our experiments into three 
categories. First, without and with non-image features. Second, transfer-learning with off-the-shelf (OTS) and 
fine-tuned (FT) models. Third, from scratch where “1channel” refers to same input size as in transfer-learning 
but changed number of channels. “large” means we changed the input dimensions to 448 × 448 × 1. For better 
comparison, we present the average AUC and the standard deviation over all pathologies in the last row. Bold 
text emphasizes the overall highest AUC value. Values are scaled by 100 for convenience.
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Results.  Table 4 summarizes the outcome of our evaluation. In total, we evaluate eight different experimen-
tal setups with varying weight initialization schemes and network architectures as well as with and without 
non-image features. We perform an ROC analysis using the area under the curve (AUC) for all pathologies, 
compare the classifier scores by Spearman’s pairwise rank correlation coefficient, and employ the state-of-the-art 
method Gradient-weighted Class Activation Mapping (Grad-CAM)23 to gain more insight into our CNNs. 
Grad-CAM is a method for visually assessing CNN model predictions. The method highlights important regions 
in the input image for a specific classification result by using the gradient of the final convolutional layer.

The results indicate a high variability of the outcome with respect to the selected dataset split. Especially for 
“Hernia”, which is the class with the smallest number of positive samples, we observe a standard deviation of up 
to 0.05. As a result, an assessment of existing approaches and comparison of their performance is difficult, since 
prior work focuses mostly on a single (random) split.

With respect to the different initialization schemes, we observe already reasonable results for OTS networks 
that are optimized on natural images. Using fine-tuning, the results are improved considerably, from 0.730 to 
0.819 AUC on average. A complete training of the ResNet-50-1channel using CXRs results in a rather comparable 
performance. Only the high-resolution variant of the ResNet-50-large outperforms the FT approach by 0.002 
on average AUC. In particular, for smaller pathologies like nodules and masses an improvement is observed (i.e. 
0.018 and 0.006 AUC increase, respectively), while for other pathologies a similar, or slightly lower performance 
is estimated.

Finally, all our experiments with non-image features slightly increase the AUC on average to its counterpart 
(i.e. without non-image feature). Our from scratch trained ResNet-50-large-meta yields the best overall perfor-
mance with 0.822 average AUC.

To get a better insight why the non-image features only slightly increased the AUC for our fine-tuned and from 
scratch trained models, we investigated the capability of predict the non-image features based on the extracted 
image features. We used our from scratch trained model (i.e. ResNet-50-large) as a feature extractor and trained 
three models to predict the patient age, patient gender, and view position (VP) – i.e. ResNet-50-large-age, ResNet-
50-large-gender, ResNet-50-large-VP. We employed the same training setup as in our experiments before. First, 
our ResNet-50-large-VP model can predict with a very high AUC of 0.9983 ± 0.0002 the correct VP (i.e. we 
encoded AP as true and PA as false). After choosing the optimal threshold based on Youden index, we calculated 
a sensitivity and specificity of 99.3% and 99.1%, respectively. Secondly, the ResNet-50-large-gender predicts the 
patient gender also very precisely with a high AUC of 0.9435 ± 0.0067. The sensitivity and specificity with 87.8% 
and 85.9% is also high. Finally, to evaluate the performance of the ResNet-50-large-age we report the mean abso-
lute error (MAE) with standard deviation because age prediction is a regression task. The model achieved a mean 
absolute error of 9.13 ± 7.05 years. The results show that the image features already encode information about the 
non-image features. This might be the reason that our proposed model architecture with the non-image features 
at hand did not increased the performance by a large margin.

Furthermore, the similarity between the trained models in terms of their predictions was investigated. 
Therefore, Spearman’s rank correlation coefficient was computed for the predictions of all model pairs, and aver-
aged over the folds. The pairwise correlations coefficients for the models are given in Table 5. Based on the degree 
of correlation, three groups can be identified. First, we note that the “from scratch models” (i.e. “1channel” and 
“large”) without non-image features have the highest correlation of 0.93 amongst each other, followed by the 
fine-tuned models with 0.81 and 0.80 for “1channel” and “large”, respectively. Second, the OTS model surprisingly 
has higher correlation with the from scratch models than the fine-tuned model. Third, for models with non-image 
feature, no such correlation is observed and their value is between 0.32 to 0.47. This indicates that models which 
have been trained exclusively on X-ray data achieve not only the highest accuracy, but are furthermore most 
consistent.

While our proposed network architecture achieves high AUC values in all categories of the ChestX-ray14 
dataset, the applicability of such a technology in a clinical environment depends considerably on the availability 

Without With

OTS FT 1channel large OTS FT 1channel large

Without

OTS — 0.65 0.74 0.73 0.46 0.38 0.40 0.59

FT 0.65 — 0.81 0.80 0.38 0.42 0.43 0.64

1channel 0.74 0.81 — 0.93 0.41 0.43 0.47 0.71

large 0.73 0.80 0.93 — 0.40 0.43 0.47 0.71

With

OTS 0.46 0.38 0.41 0.40 — 0.32 0.33 0.39

FT 0.38 0.42 0.43 0.43 0.32 — 0.35 0.42

1channel 0.40 0.43 0.47 0.47 0.33 0.35 — 0.45

large 0.59 0.64 0.71 0.71 0.39 0.42 0.45 —

Table 5.  Spearman’s rank correlation coefficient is calculated between all model pairs and is averaged over all 
five splits. Our experiments are grouped into three categories. First, “Without” and “With” non-image features. 
Second, transfer-learning with off-the-shelf (OTS) and fine-tuned (FT) models. Third, from scratch where 
“1channel” refers to same input size as in transfer-learning but changed number of channels. “large” means we 
changed the input dimensions to 448 × 448 × 1. We identify three clusters: all models under “With”, models 
trained from scratch and “Without”, and the “OTS” model.
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of data for model training and evaluation. In particular, for the NIH dataset the reported label noise8 and the 
medical interpretation of the label are an important issue. As mention by Luke Oakden-Rayner24, the class “pneu-
mothorax” is often labeled for already treated cases (i.e. a drain is visible in the image which is used to tread the 
pneumothorax) in the ChestX-ray14 dataset. We employ Grad-CAM to get an insight, if our trained CNN picked 
up the drain as a main feature for “pneumothorax”. Grad-CAM visualizes the areas which are most responsible 
for the final prediction as a heatmap. In Fig. 4, we show two examples of our test set where the highest activations 
are around the drain. This indicates that the network learned not only to detect an acute pneumothorax but also 
the presence of chest drains. Therefore, the utility of the ChestX-ray14 dataset for the development of clinical 
applications is still an open issue.

Comparison to other approaches.  In our evaluation, we noticed a considerable spread of the results in 
terms of AUC values. Next to the employed data splits, this could be attributed to the (random) initialization of 
the models, and the stochastic nature of the optimization process.

When ChestX-ray14 was made publicly available, only images and no official dataset splitting was released. 
Hence, researcher started to train and test their proposed methods on their own dataset split. We noticed a 
large diversity in performance with different splits of our re-sampling. Therefore, a direct comparison to other 
groups might be miss leading in the sense of state-of-the-art results. For example, Rajpurkar et al.12 reported 
state-of-the-art results for all 14 classes on their own split. In Fig. 5, we compare our best performing model 
architecture (i.e. ResNet-50-large-meta) of the re-sampling experiments to Rajpurkar et al. and other groups. For 
our model, we plot the minimum and maximum AUC over all re-samplings as error bars to illustrate the effect of 
random splitting. We achieve state-of-the-art results for “effusion” and “consolidation” when directly comparing 
our AUC (i.e. averaged over 5 times re-sampling) to former state-of-the-art results. Comparing the maximum 
AUC over all re-sampling splits results in state-of-the-art performance for “effusion”, “pneumonia”, “consolida-
tion”, “edema”, and “hernia” and indicates that a fair comparison between groups without the same splitting might 
be non-conclusive.

Later, Wang et al.8 released an official split of the ChestX-ray14 dataset. To have a fair comparison to other 
groups, we report results on this split for our best performing architecture with different depths – ResNet-
38-large-meta, ResNet-50-large-meta, and ResNet-101-large-meta – in Table 6. First, we compare our results 
to Wang et al.8 and Yao et al.13 because Guendel et al.14 used an additional dataset – PLCO dataset25 – with 
185,000 images. While the ResNet-101-large-meta already has a higher average AUC with 0.785 and in 12 out 
of 14 classes a higher individual AUC, the performance is compared to our ResNet-38-large-meta and ResNet-
50-larg-meta lower. Reducing the number of layers increased the averaged AUC from 0.785 to 0.795 and 0.806 
for ResNet50-large-meta and ResNet38-larg-meta, respectively. Hence, our results indicate that training a model 

Figure 4.  Grad-CAM result for two example images. In the first one, we marked the location of the 
pneumothorax with a yellow box. As shown in the Grad-CAM image next to it, the models highest activation for 
the prediction is within the correct area. The second row shows a negative example where the highest activation, 
which was responsible for the final predication “pneumothorax”, is at the drain. This indicates that our trained 
CNN picked up drains as a main feature for “pneumothorax”. We marked the drain with yellow arrows.
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with less parameter on Chest-Xray14 is beneficial for the overall performance. Secondly, Guendel et al.14 reported 
state-of-the-art results for the official split in all 14 classes with an averaged AUC of 0.807. While our ResNet-
38-large-meta is trained with 185,000 images less, it still achieved state-of-the-art results for “Emphysema”, 
“Edema”, “Hernia”, “Consolidation”, and “Pleural Thicken.” and a slight less average AUC of 0.806.

Figure 5.  Comparison of our best model to other groups. We sort the pathologies with increasing average AUC 
over all groups. For our model, we report the minimum and maximum over all folds as error bar to illustrate the 
effect of splitting.

Pathology
Wang 
et al.8

Yao  
et al.13

Guendel  
et al.14

“-large-meta”

ResNet-38 ResNet-50 ResNet-101

Cardiomegaly 0.810 0.856 0.883 0.875 0.877 0.865

Emphysema 0.833 0.842 0.895 0.895 0.875 0.868

Edema 0.805 0.806 0.835 0.846 0.842 0.828

Hernia 0.872 0.775 0.896 0.937 0.916 0.855

Pneumothorax 0.799 0.805 0.846 0.840 0.819 0.839

Effusion 0.759 0.806 0.828 0.822 0.818 0.818

Mass 0.693 0.777 0.821 0.820 0.810 0.796

Fibrosis 0.786 0.743 0.818 0.816 0.800 0.778

Atelectasis 0.700 0.733 0.767 0.763 0.755 0.747

Consolidation 0.703 0.711 0.745 0.749 0.742 0.734

Pleural Thicken. 0.684 0.724 0.761 0.763 0.742 0.739

Nodule 0.669 0.724 0.758 0.747 0.736 0.738

Pneumonia 0.658 0.684 0.731 0.714 0.703 0.694

Infiltration 0.661 0.673 0.709 0.694 0.694 0.686

Average 0.745 0.761 0.807 0.806 0.795 0.785

No Findings — — — 0.727 0.725 0.720

Table 6.  AUC result overview for our experiments on the official split. In this table, we present results for our 
best performing architecture with different depth (i.e. ResNet38-large-meta, ResNet50-large-meta, ResNet101-
large-meta) and compare them to other groups. Additionally we provide an average AUC over all pathologies in 
the last row. Bold text emphasizes the overall highest AUC value.
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Discussion and Conclusion
We present a systematic evaluation of different approaches for CNN-based X-ray classification on ChestX-ray14. 
While satisfactory results are obtained with networks optimized on the ImageNet dataset, the best overall results 
can be reported for the model that is exclusively trained with CXRs and incorporates non-image data (i.e. view 
position, patient age, and gender).

Our optimized ResNet-38-large-meta architecture achieves state-of-the art results in five out of fourteen 
classes compared to Guendel et al.14 (who had state-of-the-art results in all fourteen classes on the official split). 
For other classes even higher scores are reported in the literature (see e.g. Rajpurkar et al.12). However, a compar-
ison of the different CNN methods with respect to their performance is inherently difficult, as most evaluations 
have been performed on individual (random) partitions of the datasets. We observed substantial variability in 
the results when different splits are considered. This becomes especially apparent for “Hernia”, the class with the 
fewest samples in the dataset (see also Fig. 5).

While the obtained results suggest that the training of deep neural networks in the medical domain is a viable 
option as more and more public datasets become available, the practical use of deep learning in clinical practice 
is still an open issue. In particular, for the ChestX-ray14 datasets, the rather high label noise8 of 10% makes an 
assessment of the true network performance difficult. Therefore, a clean test set without label noise is needed for 
clinical impact evaluation. As discussed by Oakden-Rayner24, the quality of the (automatically generated) labels 
and their precise medical interpretation may be a limiting factor addition to the presence of treated findings. Our 
Grad-CAM results proves Oakden- Rayner’s concerns about the “pneumothorax” label. In a clinical setting, i.e. 
for the detection of critical findings, the focus would be on the reliably identification of acute cases of pneumotho-
rax, while a network trained on ChestX-ray14 would also respond to cases with a chest drain.

Future work will include investigation of other model architectures, new architectures for leveraging label 
dependencies and incorporating segmentation information.

Data Availability
The datasets analyzed during the current study are available in the ChestXray-NIHCC repository, https://nihcc.
app.box.com/v/ChestXray-NIHCC.
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