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SUMMARY

Using RNA-Seq we analyzed gene expression changes asso-
ciated with Oc1/Hnf6 loss in mouse pancreas. We performed
chromatin immunoprecipitation sequencing to identify
direct transcriptional targets of Oc1/Hnf6 in pancreatic
exocrine tissue. Our results solidify a role for Oc1/Hnf6 in
establishing pancreas identity and suggest that duct/acinar
identity is dependent on differential levels of Oc1/Hnf6
expression.

BACKGROUND & AIMS: The Onecut 1 transcription factor
(Oc1, a.k.a. HNF6) promotes differentiation of endocrine and
duct cells of the pancreas; however, it has no known role in
acinar cell differentiation. We sought to better understand the
role of Oc1 in exocrine pancreas development and to identify its
direct transcriptional targets.

METHODS: Pancreata from Oc1Dpanc (Oc1fl/fl;Pdx1-Cre) mouse
embryos and neonates were analyzed morphologically. High-
throughput RNA-sequencing was performed on control and
Oc1-deficient pancreas; chromatin immunoprecipitation
sequencing was performed on wild-type embryonic mouse
pancreata to identify direct Oc1 transcriptional targets.
Immunofluorescence labeling was used to confirm the RNA-
sequencing /chromatin immunoprecipitation sequencing results
and to further investigate the effects of Oc1 loss on acinar cells.
RESULTS: Loss of Oc1 from the developing pancreatic epithe-
lium resulted in disrupted duct and acinar cell development.
RNA-sequencing revealed decreased expression of acinar cell
regulatory factors (Nr5a2, Ptf1a, Gata4, Mist1) and functional
genes (Amylase, Cpa1, Prss1, Spink1) at embryonic day (e) 18.5
in Oc1Dpanc samples. Approximately 1000 of the altered genes
were also identified as direct Oc1 targets by chromatin
immunoprecipitation sequencing, including most of the previ-
ously noted genes. By immunolabeling, we confirmed that
Amylase, Mist1, and GATA4 protein levels are significantly
decreased by P2, and Spink1 protein levels were significantly
reduced and mislocalized. The pancreatic duct regulatory fac-
tors Hnf1b and FoxA2 were also identified as direct Oc1 targets.

CONCLUSIONS: These findings confirm that Oc1 is an impor-
tant regulator of both duct and acinar cell development in the
embryonic pancreas. Novel transcriptional targets of Oc1 have
now been identified and provide clarity into the mechanisms of
Oc1 transcriptional regulation in the developing exocrine
pancreas. Oc1 can now be included in the gene-regulatory
network of acinar cell regulatory genes. Oc1 regulates other
acinar cell regulatory factors and acinar cell functional genes
directly, and it can also regulate some acinar cell regulatory
factors (eg, Mist1) indirectly. Oc1 therefore plays an important
role in acinar cell development. (Cell Mol Gastroenterol Hepatol
2019;7:841–856; https://doi.org/10.1016/j.jcmgh.2019.02.004)
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Abbreviations used in this paper: ADM, acinar-to-ductal metaplasia;
ChIP-Seq, chromatin immunoprecipitation followed by high-
throughput sequencing; CK19, Cytokeratin 19; Cym, Chymosin; HH,
Hedgehog; Hnf1b, hepatocyte nuclear factor 1b; Hnf6, hepatocyte
nuclear factor 6; Ihh, Indian hedgehog; Inhba, Inhibin, Beta A; Mist1,
muscle, intestine, stomach transcription factor 1; MPC, multipotent
pancreatic progenitor cell; Nr5a2, nuclear receptor subfamily 5, group
A, member 2; Oc1, Onecut1; PDAC, pancreatic ductal adenocarci-
noma; Pdx1, pancreatic and duodenal homeobox 1; Ptch2, Patched 2;
Ptf1a, Pancreas transcription factor, 1a; RNA-Seq, RNA-sequencing;
Smo, Smoothened; Sox9, SRY-related HMG-box 9; Spink 1, serine
protease inhibitor Kazal type 1; TUNEL, terminal deoxynucleotidyl
transferase dUTP nick end labeling.
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The exocrine pancreas serves a vital function in digestion
through production and transport of digestive enzymes. The
pancreatic acinar cells produce and secrete digestive en-
zymes into the lumen of the pancreatic ducts, which in turn
transport them to the rostral duodenum. The exocrine
pancreas is also the source of serious diseases, such as
pancreatitis, intrapapillary mucinous neoplasia, and pancre-
atic ductal adenocarcinoma (PDAC). The most serious of
these, PDAC, afflicts more than 50,000 individuals in the
United States every year with only approximately 8% of
diagnosed individuals surviving past 5 years.1 In spite of its
name and histologic appearance, PDAC is believed to origi-
nate from the pancreatic acinar cells.2 PDACdevelopment and
progression are marked by re-activation of pathways asso-
ciated with exocrine pancreas development including Wnt,
Notch, and Hedgehog (HH) signaling as well as decreased
expression of transcription factors that regulate acinar cell
identity.3 For that reason, a more complete understanding of
exocrine pancreas development and maintenance of acinar
differentiation will provide better avenues to therapeutic
approaches.

All cells of the pancreas originate from a pool of multi-
potent pancreatic progenitor cells (MPCs).4 Specification and
differentiation of pancreatic cell types is orchestrated by a
cascade of transcription factors. Two of the most upstream of
these are the forkhead box family members Foxa1 and Foxa2.
Together they redundantly regulate expression of the
essential pancreatic transcription factor, Pdx1 (pancreatic
and duodenal homeobox 1). In the absence of Foxa1 and
Foxa2, Pdx1 expression is lost and severe pancreatic hypo-
plasia results.5 Many pancreas transcription factors are
initially broadly expressed and then become increasingly
restricted to particular cell fates,whereas others are activated
specifically in lineage-restricted cells. For example, Pdx1 is
initially expressed in all MPCs but as development pro-
gresses, it becomes highly upregulated in the b-cell lineage. It
is still present at low levels in mature acinar cells and be-
comes downregulated in ducts.6 The transcription factors
Ptf1a (Pancreas transcription factor, 1a) and Nr5a2 (Nuclear
receptor subfamily 5, group A, member 2) are expressed in
MPCs but become restricted to mature acinar cells,7-14

whereas Mist1 (muscle, intestine, stomach transcription fac-
tor 1) is only expressed once cells have become committed to
an acinar cell fate.15-17 Similar to Ptf1a and Nr5a2, Hnf1b
(Hepatocyte nuclear factor 1 b) and Sox9 (SRY-related HMG-
box 9) are transcription factors expressed in MPCs; howev-
er, they become restricted to mature duct cells.18-25 These
factors all have key roles in regulating the development,
function, and identity of the cell type in which they are
expressed. Ptf1a inactivation in development results in near
complete pancreatic agenesis, and inactivation in adults re-
sults in loss of acinar cell identity.7-10 Nr5a2 inactivation in
development results in a severely hypoplastic pancreaswith a
disproportionate loss of acinar cells. Loss of Sox9 during
pancreas development results in pancreas hypoplasia,
whereas inactivation in adults sensitizes duct cells to
dysplasia.2,20,23,24 Hnf1b-null mice similarly develop a
severely hypoplastic pancreatic bud, and inactivation later in
development results in duct dysmorphogenesis and loss of
ductal primary cilia.18,19,21,22 These studies all demonstrate
the importance of lineage-restricted transcription factors in
regulation of exocrine pancreas development.

The Onecut1 (Oc1, formally known as Hepatocyte nuclear
factor 6 [Hnf6]) transcription factor is also expressed in
MPCs but, unlike the previously mentioned factors, in adults
it is expressed in both acinar and duct cells where it is
expressed at a low and high level, respectively.26,27 Oc1
plays important roles in activating the endocrine specifica-
tion program during pancreas development27,28 and during
differentiation of the pancreatic ducts.26 Oc1 inactivation
throughout the pancreatic epithelium in early pancreas
development results in a hypoplastic pancreas, ductal cysts,
duct hyperplasia, a multilayered duct epithelium, and loss of
primary cilia.26,27,29 Additionally, Oc1 inactivation during
development results in postnatal acinar cell defects resem-
bling pancreatitis including fibrosis, acinar-to-ductal meta-
plasia (ADM), and inflammation,27,29 suggesting a role for
Oc1 in regulation of both duct and acinar cell development.
These findings are further supported by human PDAC
studies that correlate progression of precancerous lesions
(pancreatic intraepithelial neoplasms) with loss of OC1
protein and gene expression.30,31

Very little is known about how Oc1 regulates exocrine
pancreas differentiation. Of the known direct Oc1 targets in
the pancreas (Pdx1, Ngn3, MafA, and Hnf4a), most are
endocrine-specific. Only Pdx1 is expressed in the exocrine
lineage (where it is expressed at a low level in subpopulations
of acinar cells).10,28,32-39 Oc1 directly binds to and regulates
the Hnf1b promoter in liver cholangiocytes,40,41 but it is un-
clear if this direct regulation also exists in thepancreatic ducts.
The goal of the current study was to identify additional Oc1
targets to better understand how Oc1 regulates exocrine
pancreas development. We found that loss of Oc1 from the
developing pancreatic epithelium results in severe exocrine
dysplasia and altered gene expression consistent with
impaired acinar cell differentiation. We also identified novel
direct Oc1 transcriptional targets in late-gestation pancreata
using chromatin immunoprecipitation followed by
high-throughput sequencing (ChIP-Seq).
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Results
Exocrine Pancreas Dysplasia in Embryonic and
Neonatal Oc1Dpanc Mice

We previously reported pancreatic hypoplasia in Oc1Dpanc

mice at e14.5 and exocrine dysplasia (ADM, fibrosis, peri-
ductal hemorrhaging) at 3 weeks of age.27 These pheno-
types demonstrated that Oc1 has a role in regulating
exocrine pancreas development; however, we wanted to
determine when exocrine dysplasia first developed. We
thus examined pancreata from Oc1Dpanc mice just before
birth at e18.5 and immediately after birth at postnatal day
(P)2. It was evident that exocrine pancreas development
was disrupted in Oc1Dpanc pancreata at e18.5 as the
pancreatic ducts were dilated, there was reduced acinar
eosinophilia (Figure 1A and A’), and reduced acinar cell
area (Figure 1E, Table 1) with a trend toward increased
duct cell area (Figure 1G). These findings are consistent
with global Oc1-/- animals and our previous Oc1Dpanc

animals,26,27 and were even more pronounced at P2
(Figure 1B, B’, F, and H, Table 1). Hematoxylin and eosin
staining appeared to show increased fibrosis in both e18.5
and P2 Oc1Dpanc pancreata, which we analyzed further with
sirius red staining for collagen (Figure 1C, C’, D, and D’).
There was no statistically significant increase in pancreatic
collagen at e18.5 (not shown), but there was a significant
increase in pancreatic collagen at P2 (Figure 1I). Finally,
cells expressing markers of both duct (Cytokeratin 19
[CK19]) and acini (amylase) could be detected in P2
Oc1Dpanc pancreata (Figure 1J and K) consistent with ADM.
Together, these data suggest an impairment in exocrine
pancreas development and acinar cell identity.

The relative acinar cell area appeared to progressively
decrease from e18.5 to P2, so we predicted that this
reduction was caused by either increased acinar cell death
or reduced acinar cell proliferation. Acinar cell proliferation
was significantly increased at e18.5 (Figure 2A1, A2, and C)
but not at P2 (Figure 2A3, A4, and C). Using terminal
deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) labeling to detect apoptotic cells, we found that
there was a significant increase in acinar cell death at both
e18.5 and P2 in Oc1Dpanc pancreata (Figure 2B and D). These
findings demonstrate altered acinar cell population
dynamics in Oc1Dpanc samples.
Loss of Oc1 From the Pancreatic Epithelium
Results in Significant Gene Expression Changes
During Development

To better understand the role of Oc1 in regulating
exocrine pancreas development, we used RNA-sequencing
(RNA-Seq) to determine how loss of Oc1 affects global
gene expression. Total RNA was extracted from e18.5
exocrine-enriched samples. There was some variability in
gene expression between biologic replicates (Figure 3A);
however, many gene expression changes were consistent in
Oc1Dpanc samples. Of the 1842 affected genes, 1004 showed
decreased expression and 838 had increased expression
(Figure 3B). Among the 25 most significantly affected genes,
all had decreased expression except Cym (chymosin), a
peptidase produced by gastric chief cells (Figure 3C). Many
of the most significantly reduced genes were enzymes, such
as amylase, trypsins, trypsin-like peptidases, or peptidase
inhibitors that are normally expressed by pancreatic acinar
cells (eg, Amylase, Prss1, Prss3, Try4, Try10, and Spink1)
(Figure 3C). Accordingly, expression of acinar-lineage tran-
scription factors, such as Mist1, Gata4, Nr5a2, and Ptf1a, was
also decreased. Interestingly, Onecut2 (Oc2) was 1 of the
most significantly upregulated transcription factors. How-
ever, increased expression of this closely related factor
clearly does not compensate for the loss of Oc1. Analysis of
Biological Processes and Cellular Component categories
revealed changes in genes associated with metabolic and
developmental processes, membranes and vesicles, and
nuclear factors (Figure 3D). The finding that acinar cells
were disproportionally affected was further supported by
gene ontology analysis using WebGestalt, which identified
“Enzyme Inhibitor Activity” and “Endopeptidase Activity” as
2 of the 5 most significantly altered groups (Supplementary
Tables 1–3). These findings imply that Oc1 regulates
expression of acinar cell genes that include other
coregulating transcription factors and functional genes.

Another interesting finding was that “Wnt-Activated
Receptor Activity,” “Wnt-Protein Binding,” and “Frizzled
Binding” were identified as significantly altered pathways
(Supplementary Tables 1–3). Examination of the compo-
nents of these pathways demonstrated that the differentially
expressed genes in Oc1Dpanc samples were all upregulated.
Wnt signaling is known to be an important mediator of
exocrine pancreas development, but also acinar cell prolif-
eration. It is possible that the enhanced acinar cell prolif-
eration we observed in Oc1Dpanc pancreata is caused by
activation of the Wnt pathway. Another pathway with
noticeable changes was HH signaling. Ihh (Indian hedgehog,
ligand), Ptch2 (Patched2 HH receptor), Smo (Smoothened,
patched target), Gli1, and Gli2 (transcription factor effectors
of HH signaling) were all upregulated. Of note, HH signaling
must be specifically repressed in the foregut endoderm to
allow for pancreas specification to take place and is inactive
in normal exocrine pancreas homeostasis. It is thus inter-
esting that expression of genes associated with other fore-
gut endoderm-derived organs (Cym, Irx3/4, Vill, Lgr5) was
significantly increased in Oc1Dpanc samples. Collectively,
these gene expression changes reveal that inactivation of
Oc1 in the developing pancreatic epithelium has a significant
impact on the developing exocrine pancreas and potentially
alters the identity of pancreatic cells.
Oc1 Inactivation in the Developing Pancreatic
Epithelium Has Persistent Impacts on Postnatal
Gene Expression

Analysis of RNA-Seq from exocrine-enriched samples at
P2 also revealed significantly altered expression of 280
genes in Oc1Dpanc samples despite some variability between
biologic replicates (Figure 4A). Expression of 172 genes was
downregulated, whereas 108 genes showed increased
expression (Figure 4B). Approximately half of the genes



Figure 1. Exocrine dysplasia in Oc1Dpanc pancreata. Representative hematoxylin and eosin images from e18.5 (A and A’)
and P2 (B and B’) Control (A and B) and Oc1Dpanc pancreata (A’ and B’). Representative images of sirius red/fast green staining
from e18.5 (C and C’) and P2 (D and D’) Control (C and D) and Oc1Dpanc pancreata (C’ and D’). e18.5 (n ¼ 3 mice); P2 (n ¼ 5
mice). Images captured at �20. Amylase-positive area at e18.5 (E, n ¼ 3 mice) and P2 (F, n ¼ 5 mice); ratio of
CK19þ:Amylaseþ area at e18.5 (G, n ¼ 3 mice) and P2 (H, n ¼ 5 mice). (I) Collagen-positive area at P2 (n ¼ 5 mice). (J)
Representative immunofluorescence images of amylase (red) and CK19 (green) in Control and Oc1Dpanc pancreata at P2. Scale
bar represents 100 mm. (K) Split channel of boxed area in J Oc1Dpanc. **P � .01, ***P � .001 by 2-tailed Student t test. H&E,
hematoxylin and eosin.
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Table 1.Quantification of Acinar Area

Stage

% Acinar area/pancreas area

P valueControl Oc1Dpanc

E18.5 (n ¼ 3) 55.3% ± 6.1% 29.0% ± 13.2% .0345

P2 (n ¼ 5) 40.9% ± 6.4% 18.1% ± 7.1% .0007

Data are presented as the mean ± standard deviation.
P value derived from 2-tailed Student t tests.

2019 Oc1 Regulates Pancreas Exocrine Transcription 845
altered in P2 Oc1Dpanc samples are shared with e18.5
Oc1Dpanc samples (Figure 4C). Several acinar cell functional
genes were altered at both ages (eg, Amylase, Cela1, Cpa1/2,
Prss2, and Spink1) suggesting that Oc1 directly regulates
acinar cell function at both stages. Examination of the 25
most significantly altered genes (Figure 4D) supports pre-
viously published findings that Oc1 is required for endo-
crine cell differentiation.27,28

WebGestalt analysis identified pathways associated with
peptidase activity as 4 of the 5 most significantly affected
pathways in the Biological Function category at P2
(Figure 4E, Supplementary Tables 4–6). These gene
expression changes support the observed exocrine dysplasia
in Oc1Dpanc pancreata because dysplastic acinar cells have
impaired peptidase expression. Similar to e18.5, compo-
nents of the HH pathway were upregulated (Ihh, Gli1, Ptch1,
and Ptch2) at P2 but components of the Wnt signaling
pathway were largely unaffected. Interestingly, Inhba
(Inhibin, Beta A), which has been associated with acinar cell
dysplasia in pancreatic cancers,42 was 1 of the most signif-
icantly upregulated genes (5.788-fold). Its activity could
contribute to the increased extracellular matrix deposition
observed in Figure 1. Oc2 was also upregulated at P2 (albeit
to a lesser extent than at e18.5). In all, the RNA-Seq results
from P2 Oc1Dpanc samples confirm a continued decrease in
expression of multiple acinar cell functional genes.
Identification of Direct Oc1 Targets in e18.5
Pancreata

To better understand how Oc1 directly regulates devel-
opment of the exocrine pancreas we performed ChIP-Seq on
whole pancreata from wildtype e18.5 mice. At this age, Oc1
is excluded from all hormoneþ cells thereby allowing us to
select for targets in the pancreatic ducts and acinar cells.
There were approximately 7400 peaks identified, which
were associated with 4962 genes. These peaks were
enriched in the 5’ untranslated regions and proximal pro-
moters (<500 bp from transcription start sites) of the
associated genes (Figure 5A). Of the 4962 genes associated
with Oc1 binding peaks, 499 had altered gene expression in
the e18.5 Oc1Dpanc RNA-Seq indicating that Oc1 directly
regulates transcription of these genes (Figure 5B). Motif
analysis of our ChIP-Seq data also identified peaks of tran-
scription factors that are known to associate with Oc1
(Figure 5C), suggesting that in acinar cells, Oc1 regulates
gene expression cooperatively with other transcription
factors.
Among the most noticeable direct Oc1 targets were
Ptf1a, Nr5a2, and Gata4 (Figure 5D–F), transcription factors
that play vital roles in the specification, differentiation, and
function of pancreatic acinar cells. All 3 of these factors had
reduced expression in the Oc1Dpanc RNA-Seq samples
implying that Oc1 positively regulates their expression. A
significant Oc1 binding peak was also identified in Area III
of the Pdx1 promoter (Figure 5G), the area that is known to
promote nonendocrine expression of Pdx1.43 Taken
together, these data suggest that in acinar cells Oc1 func-
tions, at least in part, through regulating other transcription
factors. Oc1 also directly bound to regions associated with
acinar cell functional genes, such as Amylase, Prss1/2, Prss2,
Pnlip, Pnliprp1/2, and Spink1 (not shown). Expression of
each of these functional genes was decreased in Oc1Dpanc

pancreata. Thus, Oc1 directly regulates genes important for
acinar cell identity and function and other acinar cell tran-
scription factors.

We and others have demonstrated that loss of Oc1 from
the developing pancreas results in ductal cysts, duct hy-
perplasia, and tortuous ducts.26,27 Thus, we predicted that
the ChIP-Seq analysis would identify direct Oc1 targets that
could be attributed to duct cells. The transcription factors
Hnf1b and FoxA2, both of which are expressed in MPCs at
early stages and later in the pancreatic ducts, were identi-
fied as direct Oc1 targets (Figure 5H and I). Other duct-
specific genes, such as Prox1 or Sox9, were not identified
as targets in our analysis.

Although Oc1 functions as a transcriptional activator for
many genes important in exocrine pancreas development, it
also seems to function as a transcriptional repressor for
genes associated with other endoderm-derived lineages.
Both gastric and intestinal-associated genes were identified
as direct Oc1 targets in the ChIP-Seq experiment and had
increased expression the Oc1Dpanc RNA-Seq. Most notable
among these genes were the transcription factor Irx3, the G-
protein coupled receptor Lgr5, and the cytoskeleton-related
factor Vill.
Confirmation of Direct Oc1 Targets in e18.5
Pancreata

We next performed immunofluorescence imaging to
validate the Oc1 targets identified by ChIP-Seq and RNA-Seq.
For example, expression of Mist1, an acinar-lineage tran-
scription factor, was found to be decreased by RNA-Seq
analysis, but there were no Oc1 binding motifs associated
with the Mist1 gene (suggesting indirect regulation). To
confirm the RNA-Seq data, we examined Mist1 protein
expression by immunolabeling. At e18.5 most acinar cells in
Oc1Dpanc pancreata have lower Mist1 levels than cells in
control pancreata (Figure 6A1 and A2). However, the
average number of Mist1-positive cells was not altered
(Figure 6C1). In contrast, by P2, both the level of Mist1
protein and the number of Mist1-positive cells were
decreased in Oc1Dpanc (Figure 6A3, A4, and C2).

GATA4 is another acinar-lineage transcription factor.
RNA-Seq analysis found that Gata4 expression decreased in
Oc1Dpanc pancreata. Chip-Seq analysis further identified the



Figure 2. Altered acinar cell proliferation and death in Oc1Dpanc pancreata. (A) Representative immunofluorescence im-
ages of amylase (red), Ki67 (green), and DAPI (blue) from e18.5 (A1 and A2) and P2 (A3 and A4) Control (A1 and A3) and
Oc1Dpanc (A2 and A4) pancreata. Images in the white dotted line box are shown at increased magnification at lower left. Arrows
indicate Ki67-positive cells, arrowheads indicate Ki67-negative cells. (B) Representative immunofluorescence images of
amylase (red), TUNEL (green), and DAPI (blue) from e18.5 (B1 and B2) and P2 (B3 and B4) Control (B1 and B3) and Oc1Dpanc

(B2 and B4) pancreata. (C) Quantification of acinar cell proliferation at e18.5 (C1) and P2 (C2). (D) Quantification of acinar cell
apoptosis at e18.5 (D1) and P2 (D2). n ¼ 5 mice for each group. **P � .01, *P � .05 by 2-tailed Student t test.
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Gata4 gene as a direct target of Oc1. By immunolabeling, we
found that at e18.5 there was increased heterogeneity of
GATA4 expression in acinar cells of Oc1Dpanc pancreata. A
subpopulation of cells had lower GATA4 expression in
Oc1Dpanc (compare Figure 6B1 with B2). However, overall,
using quantitative immunofluorescence we did not find a
significant difference in the average GATA4 intensity be-
tween Oc1Dpanc and control acinar cells (Figure 6D1). By P2,
GATA4 intensity became significantly reduced in Oc1Dpanc

(Figure 6B3, B4, and D2). Putting our RNA-Seq, ChIP-Seq,
and immunofluorescence data together, we propose that
Oc1 directly and positively regulates GATA4 expression. We
also examined the expression of Ptf1a, another acinar line-
age transcription factor, by immunofluorescence. Both our
ChIP-Seq and RNA-Seq data suggest that Oc1 positively and
directly regulates Ptf1a, but unfortunately, we cannot draw
any firm conclusions at this time because of the variation in
immunolabeling between samples (data not shown).

In addition to transcription factors, we also explored
the expression level of the acinar cell functional protein
Spink1, which was identified as a direct transcriptional
target of Oc1. Spink1 is important to prevent the



Figure 3. Gene expression changes in e18.5 exocrine-enriched Oc1Dpanc samples. (A) Heatmap of gene expression from
RNA-Seq for each of 2 biologic replicates for Control (red bar at top) and Oc1Dpanc (blue bar at top). Green indicates high
expression; red indicates low expression. (B) Volcano plot of genes with differential expression in Oc1Dpanc samples. Signif-
icant gene expression changes were determined by an FDR of 0.05 and log2 fold change of 1. Blue dots represent significantly
reduced genes; red dots represent significantly increased genes with log2 fold change on the x-axis and adjusted P value on y-
axis. (C) Plot of 25 most significantly altered genes. Log2 fold change is plotted on the x-axis and gene names are plotted on
the y-axis. (D) Bar graphs representing gene ontology analysis of biologic process, cellular component, and molecular
function. See Supplementary Tables 1–3 for further detail.
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premature activation of trypsin to prevent autodigestion
of the pancreas. At e18.5, Spink1 protein intensity was
significantly reduced in Oc1Dpanc (compare Figure 7A
and B, quantified in E1). We also found that in most
acinar cells in control pancreata, Spink1 was uniformly
distributed (Figure 7A2 and A3), but in Oc1Dpanc pan-
creata, there are high-intensity patches of Spink1 pro-
tein localized at the cortex of some cells (Figure 7B2
and B3), indicating defects in intracellular localization
of Spink1 in Oc1Dpanc mutants. At P2, the disparity in
Spink1 localization between control and Oc1Dpanc pan-
creata becomes more pronounced. In most acinar cells
in control pancreata, Spink1 is evenly distributed
throughout the cytoplasm (Figure 7C and F1). However,
in a subpopulation of cells in the mutants, Spink1 ac-
cumulates at the cell cortex (closely apposed to E-cad-
herin labeling) with almost no protein in the central
cytoplasm (Figure 7D3, D4, and F2). Cells with cortical
Spink1 often show additional defects in epithelial or-
ganization as indicated by E-cadherin immunolabeling,
and are potentially undergoing ADM, as we have pre-
viously observed with loss of Oc1.27 There remains a
subpopulation of acinar cells with relatively normal
cytoplasmic Spink1 distribution in the Oc1Dpanc pan-
creata (Figure 7D1).
Conclusions
The current study provides the first report of direct

transcriptional targets of the critical transcription factor
OC1 (formerly known as Hnf6) in the developing exocrine
pancreas. Together our data suggest that in the exocrine
pancreas cells, Oc1 functions via at least 3 mechanisms: (1)
direct and indirect regulation of acinar lineage transcription
factors, (2) direct regulation of acinar cell functional genes,
and (3) direct regulation of duct lineage genes. Our data also
suggest that Oc1 cooperates with other endoderm tran-
scription factors that bind near Oc1 target sequences to
regulate exocrine gene expression. Our results also solidify a
role for Oc1 in establishing pancreas identity, because
expression of posterior foregut genes normally restricted
from the pancreas anlagen was elevated in the absence of
Oc1.

Loss of Oc1 from the developing pancreatic epithelium
results in impaired development of the pancreatic ducts and
acinar cells.26,27 These findings, paired with the findings
that OC1 expression is lost from acinar cells in human
PDAC,30,31 suggest that Oc1 has a role in regulation of acinar
cell identity. Here we show that inactivation of Oc1 during
pancreas development results in embryonic acinar cell
dysplasia that becomes progressively more severe after
birth. These findings are consistent with other models of



Figure 4. Geneexpression
changes in P2 exocrine-
enriched Oc1Dpanc

samples. (A) Heatmap of
gene expression from
RNA-Seq for each of 2
biologic replicates for
Control (red bar at top) and
Oc1Dpanc (blue bar at top).
Green indicates high
expression; red indicates
low expression. (B) Vol-
cano plot of genes with
differential expression in
Oc1Dpanc samples. Signifi-
cant gene expression
changes were determined
by an FDR of 0.05 and log2
fold change of 1. Blue dots
represent significantly
reduced genes; red dots
represent significantly
increased genes with log2
fold change on the x-axis
and adjusted P value on y-
axis. (C) Venn diagram
illustrating overlapping
gene expression changes
at e18.5 and P2. (D) Plot of
25 most significantly
altered genes. Log2 fold
change is plotted on the x-
axis and gene names are
plotted on the y-axis. (E)
Bar graphs representing
gene ontology analysis of
biologic process, cellular
component, and molecular
function. See
Supplementary Tables 4–6
for further detail.
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impaired acinar cell differentiation, such as inactivation of
Nr5a2, which results in acinar hypoplasia and disrupted
acinus morphology.13 The Oc1Dpanc phenotype is distinct
from knockout models of acinar cell transcription factors,
such as Mist1 or Gata6, which are dispensable for acinar cell
differentiation, but vital for postnatal acinar cell iden-
tity.16,44-48 Indeed, both Mist1 and Gata6 embryonic
knockout models have little to no phenotype before birth. Of
note, GATA4 and GATA6 have partially redundant roles in
pancreas organogenesis and inactivation of both factors
during embryogenesis has severe consequences for both
endocrine and exocrine pancreas development.49-51 Thus,
morphology of the Oc1Dpanc pancreas is more similar to that
of knock-out models for factors regulating acinar cell dif-
ferentiation (Nr5a2) than acinar cell identity and function
(Mist1, Gata6) suggesting that Oc1 contributes to regulation
of acinar cell differentiation.

The reduction in acinar cell area in Oc1 mutants likely
results from a combination of reduced specification and
differentiation from MPCs as well as increased acinar cell



Figure 5. Identification of direct Oc1 targets in e18.5 pancreata. (A) Genomic regions with enrichment of reads in Oc1 ChIP-
Seq samples. Yellow indicates higher incidence of reads. (B) Venn diagram illustrating overlap of genes with altered expression
in e18.5 Oc1Dpanc RNA-Seq samples (red) with genes associated with Oc1 binding peaks in e18.5 ChIP-Seq samples (blue). (C)
Motif analysis of other transcription factor binding sites identified near Oc1 binding cites in Oc1 targets. (D–I) Sashimi plots of
Oc1 binding peaks. Each track (red or light blue peak build-up) shows alignments from an individual biologic replicate. Gene
coding regions are represented as darker blue annotations at the bottom of each plot. (D) Ptf1a. (E) Nr5a2. (F) Gata4. (G) Pdx1.
(H) Hnf1b. (I) FoxA2.
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apoptosis. Our finding that acinar cell death was increased
in Oc1Dpanc pancreata was not surprising given the severely
disrupted acinar compartment; however, the finding that
acinar cell proliferation was increased at e18.5 was unex-
pected. Increased proliferation to compensate for reduced
specification or differentiation is not unprecedented in the
pancreas. We have previously demonstrated that such a
process can occur in b cells52 and others have shown that
that epithelial cells of primitive ducts can proliferate in or-
der to produce more endocrine progenitors.53 Additionally,
acinar cells show increased proliferation following injury in
adult pancreata,54,55 so it is possible that such a mechanism
is also functioning in Oc1Dpanc acinar cells at e18.5 to
compensate for the reduced acinar cell area. Postnatal
acinar cell proliferation is partially regulated by Wnt
signaling.54-56 Our RNA-Seq results indicated that e18.5
Oc1Dpanc pancreata had increased expression of multiple
components of the Wnt pathway, so it seems likely that
Wnt-activation is closely connected with the observed in-
crease in proliferation. Of note, Wnt7b (which contributes to
regulation of pancreas morphogenesis57) was identified as a
direct target of Oc1 in our ChIP-Seq analysis and also
showed increased mRNA expression, likely caused by direct
loss of Oc1 activity.

Our RNA-Seq results revealed decreased expression of
many important acinar cell genes including regulatory



Figure 6. (A) Representative immunohistochemistry images of Mist1 (brown) from e18.5 (A1 and A2) and P2 (A3 and A4)
Control (A1 and A3) and Oc1Dpanc pancreata (A2 and A4). Arrows show cells with high Mist1 expression; arrowheads show
cells with low Mist1 expression. (B) Representative immunofluorescence images of Gata4 (green) and DAPI (red) from e18.5
(B1 and B2) and P2 (B3 and B4) Control (B1 and B3) and Oc1Dpanc pancreata (B2 and B4). (C) Quantification of the number of
Mist1-positive cells at e18.5 (C1) and P2 (C2). (D) Quantification of Gata4 intensity at e18.5 (D1) and P2 (D2). n ¼ 3 mice for
each group. *P � .05 by 2-tailed Student t test.
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Figure 7. Representative immunofluorescence images of Spink1 (red), E-cadherin (green), and DAPI (blue) from e18.5
(A and B) and P2 (C and D) Control (A and C) and Oc1Dpanc pancreata (B and D). Boxed region in A1 is shown at higher
magnification in A2 and A3. Boxed region in B1 is shown at higher magnification in B2 and B3. Boxed region in C1 is shown at
higher magnification in C2 and C3. White dotted line in C2 indicates the long axis of the cell used for scan in F1. Boxed region
in D1 is shown at higher magnification in D2. Two boxed regions in D2 are further zoomed in D3 and D4 or D5 and D6. White
dotted line in D5 indicates the long axis of the cell used for scan in F2. (B) Arrows indicate high intensity Spink1 patches. (D)
Arrows indicate Spink1 protein accumulated at the cell cortex. (E) Quantification of Spink1 intensity at e18.5 (E1) and P2 (E2).
n ¼ 3 mice for each group. **P � .001 by 2-tailed Student t test. (F) Intensity line scan across the long axis of the cell indicated
by the white lines in C2 (F1, Control) and D5 (F2, Oc1Dpanc).

2019 Oc1 Regulates Pancreas Exocrine Transcription 851
transcription factors (Ptf1a, Nr5a2, Mist1) and functional
genes (Prss1/2, Spink1, Amylase). These findings suggest an
impairment in acinar cell identity and are consistent with
the observed morphologic changes. Additionally, we
detected increased expression of genes associated with
other endoderm-derived organs, such as Cym, Vill, Irx3/4,
and Lgr5 as well as increased expression of components of
the HH signaling pathway. Expression of these genes could
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indicate a misallocation of pancreatic cells to alternative
endoderm fates. Although histologic analyses did not reveal
any obvious morphologic changes consistent with other
endodermal derivatives, it is possible that cells in Oc1Dpanc

pancreata express a complement of genes associated with
overlapping cell fate phenotypes. This possibility suggests
that Oc1 functions in the pancreatic epithelium in part to
repress specification of nonpancreatic foregut endoderm
fates.

Notably, the observed gene expression changes were still
significant in spite of the variability between samples. The
sample variability may be caused by the following: (1) in-
clusion of some endocrine cells in control samples, (2) the
stress of dissociating the tissue and the subsequent selec-
tion of exocrine-enriched samples, and (3) “survival bias”
whereby mutant acinar cells showing the strongest pheno-
type are less likely to survive the tissue dissociation pro-
cedure. The presence of activated digestive enzymes likely
contributed to the greater RNA-Seq variability observed at
P2 compared with e18.5. Yet, consistent and significant gene
expression changes were still detected in our biologic rep-
licates providing support for the veracity of these findings.

We were surprised that few of the genes affected in
Oc1Dpanc samples were associated with pancreatic ducts,
and it is unlikely that duct cells were not significantly
affected by loss of Oc1. Duct cells only constitute a small
percentage of pancreatic cells and thus the changes in
expression could have been masked by the changes in acinar
cell gene expression. In spite of the limited ability to detect
these targets, FoxA2 and Hnf1b were identified as direct Oc1
targets. These findings are consistent with Oc1 directly
regulating these 2 genes in hepatocytes and chol-
angiocytes.35,58-61 Sorting of labeled pancreatic duct cells
would likely yield additional gene expression changes and
Oc1 targets associated with the ductal phenotype.

The identification of direct Oc1 targets in e18.5 pancreas
provides novel information about the mechanism of how
Oc1 regulates gene expression in the developing pancreas.
These results demonstrate that Oc1 functions to promote
expression of select acinar cell regulatory factors, such as
Ptf1a, Nr5a2, and Pdx1. Notably, each of these factors is
necessary for specification and differentiation of acinar cells
during pancreas development. Oc1 did not bind to any
known regulatory sequence of the Mist1 gene even though
its expression was reduced in Oc1Dpanc samples, suggesting
an indirect mechanism of regulation. Additionally, our
studies revealed that Oc1 directly binds Area III of the Pdx1
promoter, suggesting a nonendocrine role for regulation of
Pdx1 by Oc1. Pdx1 is indeed expressed in acinar cells, albeit
at low levels, so we were surprised to find that Pdx1 gene
expression was not significantly reduced in our RNA-Seq
analysis. It is possible that Oc1 does not actively regulate
Pdx1 gene expression at this time in spite of its binding to
Area III. Interestingly, Gata4 was identified as a direct Oc1
target but not Gata6. As noted above, these 2 factors have
partially redundant roles in pancreas development, so it is
possible that Oc1 contributes to the more nuanced regula-
tion of these 2 factors. Oc1 also directly regulates acinar cell
functional genes, such as Prss1/2, Amylase, and Spink1.
These findings demonstrate that Oc1 has a previously un-
known role in actively regulating acinar cell function
through promoting expression of select digestive enzymes.

The accumulation of Spink1 at the cell cortex may be a
consequence of the defects of cell polarity in Oc1Dpanc. Un-
der normal conditions, Spink1 is packaged together with
trypsin into the zymogen granules and then secreted from
apical surface of acinar cells in a tightly regulated
manner.62,63 Our previous work has demonstrated that Oc1
deletion leads to defects of cell polarity.27 It is possible that
when acinar cell polarity was disrupted, Spink1 failed to be
secreted properly. However, the intracellular transportation
machinery is still transporting Spink1 toward the cortex,
leading to the accumulation of Spink1 underneath the cor-
tex. Overall, our immunofluorescence analysis shows
stronger defects in protein expression and localization at P2
than e18.5. The stronger phenotype at P2 likely reflects the
cumulative defects of losing Oc1 at earlier stages.

Both ChIP-Seq and RNA-Seq provide a starting point for
understanding gene function. However, because of biologic
complexity, candidate pathways/genes identified by such
analysis need to be further validated at the protein
expression level. Our immunofluorescence analysis found
that Gata4, Mist1 expression start to decrease at E18.5, and
the defects deteriorate at P2, suggesting Oc1 regulates
acinar cell function through these transcription factors.
Among the functional genes, we are particularly interested
in Spink1 (also called Spink3 in mouse). Our ChIP-Seq shows
Spink1 is a direct target of Oc1. Spink1 is important to
prevent the self-digestion of the pancreas by the premature
activation of trypsin. It was shown that Spink1 prevents
serine protease-dependent cell apoptosis.64 Losing Spink1
in mice directly leads to autophagic cell death of acinar
cells.65 Therefore, Oc1 might regulate acinar cell survival
through Spink1.

Together, the current findings suggest that Oc1 has an
important role in regulating differentiation and identity of
acinar cells. However, it remains possible that some of the
acinar dysplasia phenotypes observed in Oc1Dpanc samples
involve cell-nonautonomous effects of Oc1 inactivation in
the ducts. Defects in the pancreatic ducts have been previ-
ously demonstrated to have secondary effects on the acinar
cells66,67 and inactivation of Oc1 in ducts results in a
phenotype very similar to the Oc1Dpanc model described
here.29 This group has also shown that overexpression of
Oc1 in acinar cells can cause ADM and loss of acinar cell
identity.68 It is possible that Oc1 dosage is an important
determining factor for acinar cell identity versus duct cell
identity. The current work provides a foundation for future
work into the mechanisms whereby Oc1 regulates duct and
acinar cell development.
Methods
Animals

Oc1 floxed mice are described elsewhere.27 The Pdx1-Cre
transgenic mice are described elsewhere.69 Control mice
carried the Pdx1-Cre transgene; Oc1Dpanc mice had the ge-
notype Oc1fl/fl;Pdx1-Cre. All mice were on a mixed genetic
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background. Mice were maintained on a 12-hour light/dark
cycle and provided food and water ad libitum. All experi-
ments involving mice were approved by the Institutional
Animal Care and Use Committee of Vanderbilt University
Medical Center. All authors had access to the study data and
reviewed and approved the final manuscript.

Tissue Preparation and Imaging
Digestive organs were fixed for 4 hours in 4% para-

formaldehyde at room temperature, dehydrated, cleared in
xylenes, and embedded in paraffin. Paraffin-embedded
tissues were cut at 5 mm, deparaffinzed in xylene, and rehy-
drated in water. Fluorescent and bright field images were
captured using either an Olympus BX41 microscope, the
Aperio ScanScope microscope and slide scanner (Vista, CA),
or a Nikon spinning disk confocal driven by Nikon Elements
or Nikon 600 with MagnaFire software (Optronics Engi-
neering, Goleta, CA). Hematoxylin and eosin staining was
performed as described elsewhere.70 For sirius red/fast
green staining, slides were incubated 1 hour in the staining
solution (1mg/ml Direct Red 80 [Sigma, St. Louis, MO], 1mg/
ml Fast Green [Sigma] in 3%picric acid solution), washed 2�
5’ in acidified water (1% glacial acetic acid solution), dehy-
drated, and mounted with a xylene-based mounting medium.

Immunofluorescence
For embryonic and postnatal analyses, tissue sections

approximately 150 mm apart (2–4 per animal) were
analyzed. Primary antibodies were: rat a-CK19 (TROMA III;
Developmental Studies Hybridoma Bank, Iowa City, IA;
1:500), goat a-amylase (Santa Cruz Biotechnologies, Dallas,
TX; 1:500), rabbit a-Ki67 (Jackson Laboratories, West
Grove, PA; 1:500), mouse a-GATA4 (Invitrogen, Carlsbad,
CA, 1:500), rabbit a-Spink1 (LSBio, Seattle, WA, 1:100), and
rabbit a-Mist1 (a gift from Dr Stephen Konieczny, Purdue
University). TUNEL labeling was carried out using the
ApoAlert DNA Fragmentation Assay Kit (Clontech, Mountain
View, CA) following the manufacturer’s protocol. Species-
specific secondary antibodies were conjugated to Cy2, Cy3,
or Cy5 and diluted 1:500. Labeling with the a-CK19 anti-
body required incubation with 0.2 mg/mL proteinase K.
Labeling with the a-Ki67 antibody required heat-mediated
antigen retrieval in a 10-mM sodium citrate buffer.

RNA Acquisition and Sequencing
Pancreata were dissected from e18.5 and P2 mice,

dissociated with collagenase, and exocrine-enriched sam-
ples (islets excluded) were collected for RNA extraction in
500 ml Trizol reagent (ThermoFisher, Waltham, MA). Total
RNA was generated from 2 animals per genotype. RNA was
isolated using the RNeasy Micro kit (Qiagen, Germantown,
MD) according to manufacturer’s instructions. RNA con-
centration and integrity were assessed using a ND-1000
Spectrophotometer (NanoDrop) and the 2100 Electropho-
resis Bioanalyzer (Agilent, Santa Clara, CA) at Vanderbilt
Technologies for Advanced Genomics (VANTAGE) Core. Li-
braries of 100-bp fragments were generated for each sam-
ple by the VANTAGE Core. Libraries were pair-end
sequenced to a depth of 50 million reads on an Illumina
hiSeq2000 (San Diego, CA). Sequences were aligned to the
mm10 genome and DESeq271 was used to determine
differentially expressed genes using an FDR cutoff of
0.05 and log2-fold change of 1 by the Vanderbilt Technolo-
gies72,73 was used to perform gene ontology analysis.

Chromatin Immunoprecipitation Preparation and
Sequencing

For each of 2 biologic replicates, 3–4 e18.5 pancreata
were combined and minced with fine scissors. Samples were
fixed 10 minutes in 1.11% formaldehyde at room temper-
ature and reactions quenched by adding glycine to a final
concentration of 0.125 M. Samples were homogenized by
hand with plastic pestles. Chromatin was sheared with a
Diagenode Bioruptor for a total of 22.5 minutes to an
average length of 300 bp. ChIP was performed with 200 mg
of DNA and 10 mg of Oc1 antibody (Rabbit a-Hnf6, Santa
Cruz Biotechnology sc-13050) and Protein A/G plus agarose
beads (Santa Cruz Biotechnology). DNA was purified from
each reaction with the MinElute PCR Purification kit (Qia-
gen). Libraries were generated by HudsonAlpha Institute for
Biotechnology (Huntsville, AL). Libraries were pair-end
sequenced at 50 bp on an Illumina HiSeq 2000 platform
to a depth of 50 million reads. Sequences were aligned to
the mm10 genome and peaks were called using MACS2
software with an FDR of 0.05 by VANGARD.

Data Analysis and Statistics
To quantify acinar cell area, pancreas tissue was stained

with hematoxylin and eosin. Colors were separated using a
customized algorithm in Python. Image J particle analysis
was used to quantify the whole pancreas area and acinar
area after color separation. For immunofluorescence label-
ing shown in Figures 1, 2, 6, and 7, a total of 3–5 mice were
analyzed for each group. For each mouse, 2–4 tissue sec-
tions approximately 150 mm apart were analyzed. The
average value for each mouse was then used to compare
between different groups. Image analysis was performed
either with ImageScope software from the Aperio suite
(Vista, CA) or with Image J. Image contrast, brightness, and
gamma were adjusted equally for each image to bring out
the details of the images for the purpose of illustration. Data
are presented as the mean ± standard deviation. Statistical
analyses were performed as 2-tailed Student t tests using
GraphPad Prism 6 software.
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