DNA AND CELL BIOLOGY
Volume 38, Number 4, 2019
© Mary Ann Liebert, Inc.

Pp. 281-285

DOI: 10.1089/dna.2018.4579

DNACB BIT

microRNA-Mediated Tumor—Microbiota Metabolic
Interactions in Colorectal Cancer

Ce Yuan'? and Subbaya Subramanian'?

Worldwide, colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Recent advances in
high-throughput technologies have shown that the gut microbiota may have a major influence on human health,
including CRC. Nonetheless, how the gut microbiota interacts with tumor cells in CRC patients is largely
unknown. Studies have shown that the microbiota fills in a variety of niche metabolic pathways that the host
does not possess. For example, the microbiota produces butyrate, which provides the colon’s epithelial cells
with about 70% of their energy needs. The typically fast proliferation of tumor cells in CRC patients drastically
alters the tumor’s nutrient microenvironment. Those alterations correspond to the microbiota composition and
functional changes. In tumor cells, a central mediator of metabolic changes is the aberrant expression of
microRNAs (miRNAs). In this study, we explored recent insights into metabolic interactions between the
microbiota and tumor cells in CRC pathobiology, focusing on the role of miRNAs. These observations support
our view that miRNAs may also serve as mediators of the metabolites’ effects.
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Introduction

IN THE UNITED STATES, colorectal cancer (CRC) is the
third most commonly diagnosed type of cancer and the
second most frequent cause of cancer-related deaths (Siegel
et al., 2018). In 2018, an estimated 140,250 people will be
diagnosed with CRC, and 50,630 will die from it. More than
a third of CRC patients will not be alive 5 years after their
diagnosis. In recent years, our understanding of the micro-
organisms living in the intestines (collectively called the
microbiota) has grown; we now know that the microbiota
plays an important role in many diseases, including CRC
(Burns et al., 2015; Nakatsu et al., 2015). An average hu-
man’s intestine contains more than 10'* microorganisms,
including commensal bacteria, pathogenic bacteria, viruses,
and fungi.

The gut microbiota actively metabolizes undigested food
and substances shed from the intestinal cells, thereby gen-
erating energy and sending vital nutrients back to the host
(Louis et al., 2014). Without the microbiota, the colon’s
epithelial cells will undergo autophagy and will fail to
maintain their structure (Donohoe et al., 2011). In the nor-
mal colon, epithelial cells primarily use butyrate as energy.
Tumor cells, however, require a large amount of glucose as
their energy source to sustain growth, creating a large amount
of lactate as the end product in the tumor microenvironment.

In addition, to support the formation of new cell membranes,
the tumor has increased needs for lipid biogenesis. So the
change in the energy source preferred by proliferating tumor
cells profoundly alters the nutrient composition of the tumor
microenvironment.

In recent years, researchers have found a consistent
connection between a dysfunctional gut microbiota (dys-
biosis) and CRC (Shen et al., 2010; Wang et al., 2012;
Burns et al., 2015; Nakatsu et al., 2015). Yet the direc-
tionality and the mediators between CRC and dysbiosis re-
main unclear (Yuan et al., 2018a). Given the drastic changes
in the nutrient composition of the tumor microenvironment
and the role of the microbiota in metabolism, there is un-
doubtedly a metabolic interaction between the tumor and its
microbiota. In this study, we explored recent insights into
metabolic interactions between the microbiota and tumor
cells in CRC patients, focusing on the impact of microRNAs
(miRNAs). We hypothesized that miRNAs are the mediators
of the metabolites’ effects (Fig. 1A).

Tumor Nutrient Microenvironment Changes

The development of CRC entails a complex interplay
between the epithelial cells, the microbiota, and the immune
system in the tumor microenvironment (Tjalsma et al.,
2012), and multiple signaling pathways play critical roles in
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both tumorigenesis and tumor progression. Tumor metabo-
lism changes have been well studied and characterized. One
of the hallmarks is an increase in glycolysis as the primary
energy source, known as the Warburg effect (Warburg,
1956).

Several studies have found altered metabolite levels in
both tissues and stools of CRC patients. In tissue samples
(as compared with adjacent normal tissues), glucose levels
were significantly lower, whereas levels of lactate and fatty
acids were significantly higher (Hirayama et al., 2009; Weir
et al., 2013; Brown et al., 2016). In stool samples of CRC
patients, amino acid levels were higher than normal; levels
of fatty acids, lower (Hirayama et al., 2009; Weir et al.,
2013; Brown et al., 2016). This nutrient composition change
in CRC patients correspond to the tumor’s increased needs
of glucose for energy and fatty acids for proliferation.

miRNAs play a critical role in regulating the metabolism
of CRC patients and in sustaining the needs of tumor cells
(Fig. 1B). The extracellular glucose is first transported into
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cells through the glucose transporter 1 (GLUTI) receptor,
which is a downstream target of the mammalian target of
rapamycin (mTOR) gene. In CRC patients, the mTOR gene
is regulated by miR-144. Higher expression of miR-144
inhibits expression of the mTOR gene, leading to reduced
glucose uptake by the tumor cells; thus, higher expression of
miR-144 is associated with a good prognosis for CRC pa-
tients (Iwaya et al., 2012).

After the glucose is transported into the cytosol, it un-
dergoes glycolysis—a process regulated by the alternative
splicing of pyruvate kinase (PK). Higher levels of two PK
isoforms, M1 (PKM1) and M2 (PKM?2), in cells will lead to
increased glycolysis, instead of oxidative phosphorylation
(Sun et al., 2012; Taniguchi et al., 2015a, 2015b). These
studies have found that overexpressing miR-124 (another
regulator of the mTOR gene) in CRC cells can lead to
higher PKM1:PKM?2 ratios, thus inhibiting glycolysis and
control tumor cell growth. The end product of glycolysis,
pyruvate, will then be metabolized into lactate by lactate
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dehydrogenase A (LDHA), which is commonly upregulated
in CRC patients. LDHA is a rate-limiting enzyme of gly-
colysis. A loss in LDHA expression is thus associated with
decreased adenosine triphosphate (ATP) production and
cell proliferation (Wang et al., 2015). In CRC cell lines,
various miRNAs—including miR-34a/c, miR-369-3p,
miR-374a, and miR-4524a/b—have been shown to inhibit
LDHA expression (Wang et al., 2015). The lactate produced
by the tumor cells can function as signaling molecules that
further affect tumor cell metastasis, angiogenesis, and im-
mune escape (Hirschhaeuser et al., 2011).

In addition to altered glucose metabolism, CRC cells also
have altered macromolecule metabolism. We postulate that
the reason for the higher levels of fatty acids in CRC pa-
tients’ tissue samples (relative to their stool samples) is the
increased need for membrane synthesis to support cell
proliferation (Hirayama et al., 2009; Weir et al., 2013;
Brown et al., 2016). One of the most important genes con-
trolling this pathway is the fatty acid synthase (FASN) gene.
The enzyme encoded by the FASN gene is critical for
controlling the synthesis of lipids, a process required for cell
membrane formation. In breast cancer and osteosarcoma,
studies have found that miR-195 and miR-424 target the
FASN gene, thus inhibiting cell proliferation, invasion, and
metastasis (Mao et al., 2012; Long et al., 2013; Singh et al.,
2015). Both of those miRNAs are significantly upregulated
in CRC tissues, according to the Cancer Genome Atlas
(TCGA) data set, suggesting such miRNA-mediated lipo-
genesis may also happen in CRC. In addition, because FASN
is potentially important to T cell immunity (Buck et al.,
2015), the dynamics of the miR-424/FASN axis in tumor
and immune cell function are currently being worked out.
Other pathways with downstream effects on metabolism,
such as PTEN and AKT/PI3K, are also modulated by miR-
NAs (Song et al., 2008; Schee et al., 2013; Fang et al., 2014,
Wang et al., 2014; Wei et al., 2014). Based on current ev-
idence, it is clear that aberrant miRNA expression in CRC
cells profoundly alters the nutrient composition of the tumor
microenvironment.

Regulation of Host miRNAs
by Microbiota Metabolites

In the healthy intestinal tract, the microbiota is dominated
by the Bacteroidetes and Firmicutes phyla, which together
comprise about 70% of the microbiota (Burns et al., 2015).
Several taxa of bacteria have been implicated in the mi-
crobiota of CRC patients. In their stool samples, at the
species level, a consistently higher abundance of Bacter-
oides fragilis and Fusobacterium nucleatum has been found.
A higher abundance of the Bacteroidetes phylum and a
lower abundance of the Firmicutes phylum have been ob-
served in CRC patients. A recent meta-analysis of various
CRC microbiota data sets found, for the tissue-associated
microbiota, a consistently higher abundance of F. nucle-
atum, Parvimonas, and Streptococcus; nine studies in that
meta-analysis found a consistently lower abundance of
Faecalibacterium and Ruminococcaceae (Shah et al., 2018).

As mentioned previously, the microbiota is a powerhouse
of metabolite production. It fills in many niche metabolic
pathways that are not present in the human host. The gut
microbiota produces about 70% of the energy required by
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the intestinal epithelial cells in the form of butyrate. Buty-
rate belongs to the short-chain fatty acids (SCFAs) that are
produced by the gut microbiota through the fermentation of
complex carbohydrates. In addition to being the major fuel
source for normal intestinal epithelial cells, butyrate also
functions as a histone deacetylase inhibitor (HDACi). This
function is especially important in CRC patients, in part
because the tumor cells switch from using butyrate to glu-
cose as the major source of energy: the Warburg effect
(Warburg, 1956). In CRC cells, high butyrate concentrations
reduce MYC expression, which in turn reduces the levels of
the miR-17-92 cluster miRNAs (Hu et al., 2015). The
overexpression of miR-17-92a cluster in CRC cells has been
shown to lead to cell proliferation, metastasis, and angio-
genesis (Dews et al., 2010; Zhang et al., 2014; Ke et al.,
2015). These suggest MYC/miR-17-92a cluster mediate
butyrate’s antitumor function in CRC cells. Butyrate also
exerts antiproliferation effects on CRC in vitro, through
directly regulating the miR-203, miR-106b, and miR-135a
expression (Schlérmann et al., 2015; Han et al., 2016).
Other members of the SCFA family, acetate and propionate,
also act as HDACI. Because acetate and propionate can pass
through the epithelial cells, they can exert their effect in T
cells in the tumor microenvironment, by regulating the
mTOR pathway (Park et al., 2015). Those effects suggest
that butyrate and other SCFA members might help slow
CRC progression through modulating tumor miRNA ex-
pression and the function of tumor-infiltrating T cell. Un-
fortunately, in the CRC microbiota, the fecal SCFA levels
and the butyrate-producing bacteria levels are all lower than
in the normal microbiota (Weir et al., 2013; Yuan et al.,
2018a).

Conclusions and Perspectives

Our current knowledge supports the belief that gut mi-
crobes can alter tumor cells in CRC patients through the
metabolites being produced. These metabolites can affect
miRNA expression in the tumor cells, leading to alterations
in many important signaling pathways. According to recent
evidence, metabolites mediate interactions between the
host’s microbiota and tumor cells. Our view that miRNAs
are the mediators of the metabolites’ effects is supported by
both experimental and computational findings, as reviewed
earlier (Fig. 1B).

Currently, no tissue-level data set on the microbiota’s
metabolites exists. So, our laboratory recently used a non-
human primate model to analyze global interactions be-
tween the microbiota and metabolites in healthy intestines
(Yuan et al., 2018b). Doing so has brought us one step
closer to finally understanding the metabolic interactions
between the microbiota and the host. Of note, miRNAs are
part of a complex highly dynamic web of interactions. Other
recent studies suggest that miRNAs can directly affect the
growth of bacteria and that tumor cells’” miRNAs can affect
the stromal and immune cells in the tumor microenviron-
ment (Zhuang et al., 2012; Kohlhapp et al., 2015; Liu et al.,
2016; Teng et al., 2018). A recent effort to develop a mouse
model with humanized microbiota may further propel the
field of tumor—microbiota metabolic interactions (Staley
et al., 2017). Future research will require incorporating
humanized microbiota animal models with a dual approach
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that leverages high-throughput genomics and metabolomics
technologies.
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