1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Nat Cell Biol. Author manuscript; available in PMC 2019 June 01.

-, HHS Public Access
«

Published in final edited form as:
Nat Cell Biol. 2018 December ; 20(12): 1349-1360. doi:10.1038/s41556-018-0236-7.

Tumour heterogeneity and metastasis at single-cell resolution

Devon A. Lawsonl2"* Kai Kessenbrock?3", Ryan T. Davisl, Nicholas Pervolarakis34, and
Zena Werb®
1Department of Physiology and Biophysics, University of California, Irvine, CA, USA.

2Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.
3Department of Biological Chemistry, University of California, Irvine, CA, USA.
4Center for Complex Biological Systems, University of California, Irvine, CA, USA.

SDepartment of Anatomy, and Helen Diller Comprehensive Cancer Center, University of
California, San Francisco, CA, USA.

Abstract

Tumours comprise a heterogeneous collection of cells with distinct genetic and phenotypic
properties that can differentially promote progression, metastasis and drug resistance. Emerging
single-cell technologies provide a new opportunity to profile individual cells within tumours and
investigate what roles they play in these processes. This Review discusses key technological
considerations for single-cell studies in cancer, new findings using single-cell technologies and
critical open questions for future applications.

Heterogeneity is pervasive in human cancer and manifests as morphological differences
between cells or distinct karyotypic patterns, protein and biomarker expression levels and
genetic profilesl2. Tumours are complex ecosystems of malignant cells surrounded by non-
malignant stroma, including fibroblasts, endothelial cells and infiltrating immune cells3->.
Intratumour heterogeneity arises through various mechanisms (Fig. 1). In clonal evolution
models, stochastic accumulation of mutations through genomic instability results in
increasing genetic diversity, with the tumour acquiring subclones with distinct genotypes
over time®. Heterogeneity is also generated through cellular differentiation. In cancer stem
cell (CSC) models, cancers are hierarchically organized with a stem cell-like population,
sustaining tumour growth through self-renewal and differentiation’. The tumour
microenvironment also generates intratumour heterogeneity by exerting different selective
pressures in distinct regions of the tumour8-11, These models are not mutually exclusive and
act together to create a complex system with multiple layers of heterogeneity established by
the distinct genetic, epigenetic, transcriptomic, proteomic and functional properties of
different cells.

Reprints and permissions information is available at www.nature.com/reprints.
"Correspondence should be addressed to D.A.L. dalawson@uci.edu; or K.K. kai.kessenbrock@uci.edu.

Competing interests
The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


http://www.nature.com/reprints

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Lawson et al.

Page 2

Nevertheless, most cancer research and therapy decisions are carried out at the whole-
population level. Standard treatment strategies target a single receptor or pathway, treating
cancer as a homogenous disease. Even new precision medicine programmes, such as the
NCI-MATCH (National Cancer Institute—Molecular Analysis for Therapy Choice) trial,
which genetically profiles individual patient tumours to determine the most appropriate
targeted therapy, do not consider the number of cells that express the targeted variant and
only require it to be detectable above background!2. This therapeutic approach may fail for
many reasons: if the variant is not critical to drive tumour growth or not expressed in the
tumour-promoting cell populations; if some cell populations have additional driver or
resistance mutations; or if tumour growth, viability or resistance is encoded at the non-
genetic level.

However, technologies for interrogating the whole genome, transcriptome, epigenome and
proteome in single cells are maturing. Advances in accuracy, throughput, automation,
computational analysis and cost provide the potential to profile thousands of cells from an
individual tumour. A first goal in cancer is to characterize the extent of intratumour
heterogeneity in individual tumours, at various regulatory levels, from genotype to
phenotype, and to spatially localize cell populations within tumours. Subsequently,
understanding the function and effect of different cell populations on tumorigenesis,
including which features promote tumour initiation, progression or drug resistance, will also
be key. Functional characterization will be particularly challenging, as there is no clear
method for extrapolating cell function from large-scale ‘omics’ data aside from traditional
experimental interrogation. In the long term, new insights may be translated to the clinic, for
example, to enable tumour composition analysis for diagnostics and therapeutic assignment,
or to identify pre-existing drug-resistant subclones prior to treatment. In this Review, we
discuss important technological considerations for experimental designs in cancer research,
review single-cell studies that have provided new insights in tumour biology and present
open questions for future single-cell applications.

Technological considerations for single-cell studies of cancer

Single-cell technologies have advanced rapidly in the past several years. Currently available
protocols vary in cell capture method, library preparation chemistry and throughput (Table
1) (reviewed in refs 13-16). Most protocols require single-cell suspension, so the first critical
consideration is optimizing tumour dissociation to generate a cell suspension that is fully
representative of the intact tumour in terms of cell populations, their frequencies and
expression programmes. Digestion of solid tumours eliminates spatial information and can
obscure the true programme of individual cells1”-18, Although there is no consensus for how
to measure these profound effects, cellular diversity after dissociation can be analysed by
flow cytometry for known cell types or markers for the specific tumour type. Populations are
typically validated by follow-up analyses in situ, but this approach only confirms their
existence and does not determine whether all cell populations in the tumour were accounted
for after cell dissociation. Ultimately, identification of the same populations using different
protocols would increase confidence in the results.
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Technologies for transcriptome analysis are the most advanced and have been used to profile
CSCs, map differentiation trajectories, describe drug resistance programmes and define the
immune infiltrate in tumours19-21, The first single-cell transcriptome technologies utilized
microfluidics to capture cells followed by multiplex quantitative PCR (qPCR) for selected
genes, but most recent studies favour single-cell RNA sequencing (scRNA-seq) to enable
assessment of the entire transcriptome. Selection of the most appropriate SCRNA-seq
protocol depends on the sample size, the number of cells to be sequenced and whether
transcript counting or full-length mRNA sequencing is desired (Table 1). When large cell
numbers must be sequenced, high-throughput, semi-automated droplet-based approaches
(for example, inDrop?2 and Dropseq?3) are optimal. However, these approaches typically
achieve lower transcriptome coverage and detect fewer lowly expressed genes, and there is
very limited transcript sequence coverage due to 3" end counting, precluding single-
nucleotide variant (SNV) and splicing analyses!’ (Table 1). Droplet-based protocols are also
less amenable to studying small cell numbers, for instance, circulating tumour cells (CTCs),
disseminated tumour cells or micrometastases. For such samples, cell isolation by flow
cytometry or micromanipulation followed by manual library preparation in microwell plates
is more tractable. These protocols typically amplify full-length mRNA by switching
mechanism at 5" end of RNA template (SMART) or alternative chemistries, which enable
full-length mRNA sequencing for SNV, splicing and deeper transcriptome analyses2427. For
tissues that are preserved or cannot be readily dissociated, single-nucleus RNA-seq
approaches, such as DroNc-seq?8 or microwell-based single-nucleus RNA-seq??, may be
optimal (Table 1).

Although less widely utilized, single-cell genome analysis has been used to track clonal
dynamics, infer evolutionary trajectories and compare paired primary and metastatic
tumours (as detailed below). A major challenge is that the DNA must be massively amplified
with minimal error. Several alternative chemistries have been developed for whole-genome
amplification, which are alternatively better suited for SNV or copy number variant (CNV)
analyses (Table 1). Another major issue for single-cell genome studies is that, unlike whole-
transcriptome approaches in which lower sequencing depth can still provide robust
information about cell identity, the genome has a fixed, large size and there is effectively no
cheap way to sequence it. Many single-cell studies are beginning to opt for lower breadth
and sequence either the whole exome or a targeted panel of genes (reviewed in ref. 15),
Analysis of single-cell genomic data is also more challenging and less standardized owing to
technical errors, such as uneven amplification and allelic dropout. Allelic dropout, in which
a particular region of one chromosome is not amplified, is the main technical and analytic
challenge and requires imputation of the missing data. Imputation of variants based on
probability can be incorrect and confound conclusions. Experimental methods that increase
chromosomal compliment, such as in vitro clonal amplification or selection of cells
undergoing mitosis, may enable more accurate genotyping30-31. Comparison of whole-

genome amplification approaches and selected analytic methods can be found in refs
15,32-36

Protocols to measure other regulatory levels, such as the epigenome and proteome, are
developing rapidly, as are multiscale approaches to analyse multiple regulatory levels in the
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same cell (that is, multi-omics) and methods for spatial analysis in intact tissues. Selected
methods are highlighted in Box 1.

Genetic heterogeneity and subclonal dynamics

Most tumours comprise subpopulations of cells with distinct genotypes called subclones.
Next-generation sequencing data have revealed that a tumour possesses on average over
10,000 somatic mutations: ~2—8 in “driver’ genes that confer a selective growth advantage,
and ~30-60 protein-coding changes in ‘passenger’ genes that may alter other cellular
functions3’. Subclonal diversification arises through genomic instability and numerous
mechanisms, including homologous recombination deficiency, chromosome instability,
chromothripsis, misregulation of APOBEC enzyme activity and drug treatment8:38-46,
Several models for subclonal diversification have been proposed based on next-generation
sequencing data of bulk human tumour samples, the prevailing being linear, branching,
neutral and punctuated models (reviewed in ref. 47). Most next-generation sequencing
studies report branching evolution in human cancers, including leukaemia, breast and liver
cancers, colorectal cancer, ovarian cancer, prostate cancer, kidney cancer, melanoma and
brain cancer (reviewed in ref. 47).

Although sophisticated statistical and mathematical models have been developed to infer
subclonal dynamics and tumour evolution from bulk data, they rely on major assumptions
and cannot extrapolate single-cell genotypes because overlapping mutation frequencies
cannot be assigned to the same or different cells, technical errors may yield imprecise
mutation frequencies and detection limits preclude identification of rare subclones® (Fig. 2).
Single-cell genome analyses mitigate many of these limitations and, most importantly, can
determine whether mutations are in the same or different cells. This can help to address
important questions about subclonal dynamics, such as how specific subclones interact (for
example, collaborate versus compete), which subclones can invade and metastasize, how
subclonal composition affects clinical outcome and how drug resistance evolves (for
example, from pre-existing clones versus the acquisition of new mutations).

Single-cell studies of subclonal heterogeneity have produced new details about subclonal
frequencies and their evolution during tumour progression. Single-nucleus sequencing of
breast tumours showed that copy number evolution occurred in short bursts early in tumour
evolution, whereas point mutations evolved gradually over time to produce more extensive
clonal diversity#®. This provides support for a combined punctuated—branched model for
tumour evolution in breast cancer. Genetically distinct clones with unique biological and
clinical properties have been identified in acute lymphoblastic leukaemia, colon and breast
tumours by single-cell genome analysis#®-50. For example, targeted single-cell SNV analysis
of patients with acute lymphoblastic leukaemia revealed codominant clones, and showed
that KRAS mutations occurred late in disease development but were not sufficient for clonal
dominance?®. In a case study of colon cancer, the dominant clone possessed APCand 7P53
mutations typical of colon cancers, but a rare subclone with CDC27and PABPCI mutations
was also identified®®. These studies suggest that combinatorial therapies that target multiple
subclones may produce better results against polyclonal disease.

Nat Cell Biol. Author manuscript; available in PMC 2019 June 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Lawson et al.

Page 5

A study investigating clonal evolution during breast cancer invasion showed a direct lineage
relationship between non-invasive ductal carcinoma in situ and adjacent invasive ductal
carcinoma lesions in individual patients with breast cancer using topographical single-cell
sequencing®!. These results indicate that most mutations and CNVs evolved within the ducts
prior to invasion, with multiple clones escaping from the ducts and co-migrating into the
adjacent tissues to establish invasive carcinomas. These findings contrast with models for
cancer cell invasion proposing that distinct clones give rise to in situ and invasive tumour
cells®2-54, and argue against the notion that extrinsic stimuli (that is, “field effects’) cause
multifocal disease.

Single-cell genetic analysis has also provided new insights into the longstanding debate over
whether drug resistance is caused by the selection of rare pre-existing clones or through
acquired resistance by induction of new mutations. Single-cell DNA sequencing of
longitudinal samples from patients with breast cancer before and after neoadjuvant
chemotherapy showed that resistant genotypes are pre-existing and selected by
chemotherapy®®. Interestingly, ScCRNA-seq of the same samples showed that the
transcriptome profiles of cells pre-treatment and post-treatment were entirely distinct. Cells
with resistant programmes were undetectable before treatment, although subsets of cells
expressing individual genes associated with chemoresistance could be identified. These data
indicate that chemoresistance is conferred through both genetic selection and induction of
new transcriptome programmes.

Single-cell analyses of CTCs have also revealed genetic mechanisms of drug resistance.
Studies of CTCs from patients with breast cancer have shown heterogeneity for genes
important for diagnosis and therapy response, such as ERBB2and PIK3CA®57. Analysis of
CTCs from patients with small-cell lung cancer revealed distinct molecular mechanisms for
resistance to chemotherapy®8. CTCs from chemoresistant patients displayed different CNV
profiles than CTCs from chemorefractory patients, suggesting a different genetic basis for
immediate resistance (chemorefractory) versus delayed resistance (chemoresistant). A
classifier was also developed to distinguish between the two types of patients, supporting the
application of single-cell genomics for CTC-based diagnostics®8.

There are still several limitations to single-cell genomic analyses that prevent their more
general use in experimental and clinical practice. Technical limitations that hinder confident
SNV calling due to allelic dropout are a major issue. Understanding of the biological
function and clinical importance of specific genetic clones is also lacking. It will be critical
to decipher how a single-cell genotype translates into cellular function, how individual
clones affect tumour behaviour and how clones interact to promote tumour progression,
metastasis and drug resistance. Innovative strategies are needed to address the lack of a
universal approach for the isolation of specific genetic clones and experimental interrogation
of their function.

Non-genetic heterogeneity and cellular differentiation

ScRNA-seq studies have shown that many normal tissues are maintained by a pool of adult
stem cells that differentiate into multiple ‘cell types’ with distinct “cell states’ distinguished
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by more subtle differences in differentiation, activation, metabolic state or stage of the cell
cycle59-85 (Fig. 2c). Similarly, tumours also contain CSCs, which behave like normal stem
cells in their capacity to self-renew, differentiate and propagate the tumour upon transplant
(reviewed in ref. 66). However, some tumours do not follow this model67:68. One outstanding
question is to what degree CSCs and other tumour cell populations maintain the
developmental programme of their normal cell counterparts, versus dedifferentiating or
assuming an aberrant cell state (Fig. 2d). Single-cell technologies provide the opportunity to
measure cell states in individual cells and map tumour cells onto the normal spectrum of
allowable cell types and states of their tissue of origin.

One of the first single-cell studies in cancer used a single-cell multiplex qPCR approach to
show that human colon cancers contain distinct cell populations that mirror the cellular
lineages of the normal colon®. This transcriptional heterogeneity was not due to underlying
genetic heterogeneity, as injection of single CSCs into immune-deficient mice gave rise to
monoclonal tumours as heterogeneous as the parental one. A study of human
oligodendroglioma using sScRNA-seq2° showed that tumours were composed of astrocyte-
like and oligodendrocyte-like cells and a rare subpopulation of undifferentiated cells
resembling neural stem cells. Similar to the colon cancer study, CNV and SNV analysis
showed that each subclonal lineage displayed similar hierarchies. Both studies found
differences in the tumour cells relative to their normal counterparts. In the
oligodendroglioma study, the two glial lineages seemed to originate from the stem cell-like
population, without the discrete differentiation intermediates observed in the normal tissue.
Rather, a continuum of differentiation profiles was observed along each lineage, indicating
that tumour cells may exist in more dynamic and less discrete differentiation states than
normal cells?0 (Fig. 2d). Another study of oligodendroglioma showed that progression to
more advanced stages was associated with expansion of primitive cells, with tumours
bearing less similarity to the cellular composition of normal tissues®®. However, the lack of
normal cell population profiling in these studies makes it difficult to discern how similar
each population was to its healthy counterpart. Likewise, in the colon cancer study??, several
cell subpopulations typical of the normal colon were absent in the tumours, suggesting that
there was a skewing or block in normal differentiation® (Fig. 2d).

Single-cell studies of acute myelogenous leukaemia (AML) have shown similar alterations
in normal differentiation. A mouse model of AML was shown to contain two cell types: one
resembling granulocyte/monocyte progenitors and the other macrophage and dendritic
cells’®. Normal and leukaemic counterparts showed significantly different gene network
modules, suggesting an aberrant programme in leukaemic cells. Altered myeloid
differentiation has also been observed in human paediatric AML by single-cell mass
cytometry. In one report, two alternative approaches, PhenoGraph and statistical analysis of
perturbation response (SARA), were used to compare signalling programmes in normal
haematopoietic and leukaemic cells’?. Although both primitive and mature monocytelike
cells were identified in all patients, they displayed different degrees of aberrant myeloid
differentiation, which did not correlate with the cell-surface marker phenotype. In AML,
enumeration of primitive CD34*/CD45!°W lasts is often used for clinical diagnosis and
classification of leukaemias’2. This study showed that intrinsic signalling programmes were
often decoupled from the cell-surface phenotype, challenging the standard diagnostic
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approach. Many patients possessed CD34~ leukaemic cells displaying primitive signalling
programmes, and the percentage of primitive cells rather than cell-surface phenotype was
more predictive of overall survival .

These studies suggest that cancer cells often resemble normal cell types and states, but
acquire aberrant programmes and display skewed differentiation towards more restricted
lineages than their tissue of origin. Defining the aberrant programmes in single cells with
relevance to stability and plasticity may reveal new mechanistic insight and therapeutic
targeting strategies.

Heterogeneity in diagnostics and therapy response

Mechanisms of drug response have also been studied at the single-cell level. CTCs have
been a major focus as they offer a non-invasive window into tumour response. One study
reveals that the majority of patients with prostate cancer with varying stages of disease and
resistance to androgen deprivation therapies harboured CTCs with at least one type of
androgen receptor alteration’3. Furthermore, patients on the second-line androgen receptor
inhibitor enzalutamide (administered after the development of resistance to androgen
deprivation therapy) often had CTCs with activated non-canonical Wnt signalling,
showcasing how different mechanisms for generating non-genetic heterogeneity can produce
drug resistance, and that tracking this through assaying CTCs is clinically feasible.

Single-cell mass cytometry has also been used to measure differential responses to
chemotherapy in patients with AML. The percentage of proliferating stem and progenitor-
like leukaemic cells was shown to be significantly correlated with therapy response, in
addition to signalling abnormalities in primitive AML cell populations’®. Patients with
clinically favourable subtypes of AML demonstrated a higher fraction of cells in S-phase
than other subtypes. This suggests that the quiescent state facilitates cancer cell protection
and survival during therapy. In another study, chemotherapy increased phenotypic diversity
away from traditional stem cell phenotypes in patients with AML®. This finding contrasts
with classic resistance models that suggest selection of a more primitive cell population
during treatment results in outgrowth of a more uniform population.

ScRNA-seq has also shown how standard diagnostic bulk tumour profiling can mask
clinically relevant heterogeneity. Glioblastomas can be stratified into four distinct subtypes
based on their MRNA expression signature: proneural, neural, classical and mesenchymal?6,
Interestingly, SCRNA-seq analysis showed that glioblastomas contain cells that resemble
each of the four subtypes, even though this is not observed in bulk analyses. Increased
intratumour heterogeneity was also associated with decreased survival, perhaps because of
improper patient stratification and treatment assignment, or enhanced genomic instability,
tumour evolution or resistance’”.

Single-cell analyses may also eventually be valuable for predictive diagnostics. Single-cell
analysis of targeted transcriptome (SCAT Tome), which predicts drug response for individual
cells based on transcriptome signatures using an assortment of machine learning methods,
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was able to predict response to proteasome inhibitor treatment in patients with multiple
myeloma’®.

Despite these new discoveries, several limitations of single-cell analyses are worth further
consideration. As in single-cell genome studies, assigning function to cell populations is the
biggest challenge for most non-genetic single-cell studies. Gene ontology and gene set
enrichment analyses can provide clues for signalling pathways that are overrepresented in a
cell population, but most of these tools are developed for bulk transcriptome analysis and
handle missing data poorly (reviewed in refs 79.80), As most sScRNA-seq protocols only
detect 10-40% of the transcriptome, they are not optimal for studying lowly expressed
genes, such as those encoding transcription factors, or for the investigation of specific
signalling pathways. Dropout of signalling intermediates makes determining whether a
pathway is activated challenging. It is also often difficult to determine what constitutes a true
cell population, as slight changes in clustering parameters can produce different results. How
to decide what represents a cell type versus a cell state continues to be a major debate in the
field, particularly for rare cell populations, which may represent cells transiently switching
from one state to another or true rare cell types. The only way to assign function to a cell
population is through conventional experimentation, which most single-cell reports lack. It is
also important to consider that tumour behaviour is probably more than just the sum of its
individual cell parts, with different cell populations synergizing or collaborating to take on
new macroscale functions and behaviours that are not observable using reductionist
approaches. If so, new integrated informatic, experimental and modelling approaches for
analysing single cells will be necessary to truly understand tumour behaviour.

Heterogeneity and metastasis

Metastasis remains the cause of most patient mortality and continues to be challenging to
treat clinically and investigate experimentally. The general dogma is that metastasis is
carried out by rare cells with unique cellular and molecular properties8?. Single-cell
investigations now enable the identification and characterization of such cells, including
their localisation in primary tumours, and the effect of genetic versus non-genetic and
intrinsic versus extrinsic factors on metastasis (Fig. 3).

Next-generation sequencing studies of bulk tumour samples indicate that metastasis is
initiated by a subclone of the primary tumour. In one study, whole-genome sequencing
identified numerous point mutations and small indels represented in higher frequencies in
the brain metastatic tumour than in the paired primary breast tumour®2, Similar disparities in
mutation frequencies have been reported in paired tumours and metastases from patients
with pancreatic and renal cancers, in which the metastasis founder subclones localized to a
specific region in the primary tumours, supporting a subclonal model for metastasis
initiation83:84. One confounding issue in these studies is that the metastases often possessed
unique mutations that were not found in paired primary tumours83. This makes it
challenging to infer the genotype of the original metastasis founder cells, because it is not
clear whether the metastasis-exclusive mutations were present in the primary tumour below
the limit of detection or whether they arose after metastatic seeding via parallel evolution
(Fig. 2b).
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Single-cell genome studies of metastasis are beginning to resolve these challenges. Early
single-cell studies of metastasis focused on disseminated tumour cells in the bone marrow of
patients with breast cancer, and found that these cells disseminate early in tumour evolution
by karyotype and subchromosomal variant analyses8:86. This is corroborated by reports
showing that metastatic lesions similarly derive from early dissemination events87:88. Other
single-cell genetic methods have generated contradictory findings. A single-cell CNV
analysis of breast cancer metastasis showed that a single clonal expansion formed the patient
primary tumour and seeded its metastasis®®. Single-cell CNV and SNV analysis in patients
with colon cancer showed monoclonal metastatic seeding in one patient and polyclonal in
another®. The authors of that study also concluded that metastasis occurred late in primary
tumour evolution in both patients, as the metastases harboured all of the trunk mutations that
were present in the primary tumour cells85-88.91-93,

Single-cell genomic analyses also provide evidence for collective cell migration as a
mechanism for cancer cell invasion. Topographical single-cell sequencing analysis showed
that multiple clones co-migrated through the basement membrane of breast ducts and into
adjacent tissues to establish invasive breast carcinomas®L. This is consistent with previous
work showing collective cell migration at the invasive front of tumours, as well as
observations that CTC clusters in the bloodstream are more effective than single CTCs for
seeding metastasis4-9.

Single-cell genome analyses of patient CTCs also provide insight into the genotype of
potential metastasis-initiating cells. CTCs display substantial subclonal diversity, suggesting
that cells of various genotypes are capable of entering the circulation®’. This includes very
rare subclones, as CTCs from patients with colon cancer were reported to carry SNVs that
were only present in the paired primary tumours at very low frequencies®. Another study
found that CTCs in patients with breast cancer often possess variants that are not found in
the primary tumour, indicating that they either represent a rare subclone or occur after
dissemination®’. Importantly, the CTCs were heterogeneous for mutations in two common
breast cancer drug targets, ERBBZ2and P/K3CA, so identifying which CTCs subsequently
produce metastases has direct clinical relevance.

As it is clear that metastatic propensity is not encoded exclusively at the genetic level
(reviewed in ref. 99), it will be necessary to investigate other programmes (for example,
transcriptomic and epigenetic) driving metastatic progression at single-cell resolution.
Single-cell multiplex gPCR technology has shown that metastasis is initiated by cells with
stem cell and epithelial-mesenchymal transition-like characteristics in patient-derived
xenograft models of breast cancer'0. This is consistent with results from the MMTV-PyMT
breast cancer mouse model showing CSCs as the origin of metastasis!?1, as well as reports
implicating stem cell and epithelial-mesenchymal transition programmes in other breast
cancer models93.102, A recent sScRNA-seq study of human head-and-neck cancers further
implicated epithelial-mesenchymal transition in metastasis193. Future studies should utilize
single-cell technologies as a new opportunity to investigate other major outstanding
questions about metastatic progression, such as what drives metastatic latency and
reawakening, how metastatic cells interact with their microenvironment and how they
develop resistance to anti-tumour immunity.
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Heterogeneity in the microenvironment

The cellular composition of the tumour microenvironment is critical for disease progression
and patient prognosis'94 and changes dramatically during tumorigenesis due to increased
angiogenesis, tumour-associated inflammation and fibrosis8. Emerging single-cell tools bear
great potential to profile the individual cell types comprising the tumour ecosystem, to
determine how they differ from normal homeostasis and to reconstruct feedback
mechanisms mediating cell-to-cell communications between tumour and stromal cells (Fig.
1).

A fundamental caveat in bulk cancer genomic analyses (for example, The Cancer Genome
Atlas) is that the differences in transcriptomic signatures between tumours may arise due to
differential infiltration of immune and other stromal cell types rather than differences in the
tumour cells. This can be addressed with analyses at single-cell resolution. Indeed, SCRNA-
seq analysis has revealed that the bulk transcriptome differences between oligodendroglioma
and astrocytoma driven by mutant IDH are primarily due to alterations within stromal
macrophage and microglial populations®. Another study matched the transcriptomes of
non-malignant cells to cell-type-specific expression profiles and inferred the signalling
dialogue between cancer cells and their microenvironment2L, This revealed distinct patterns
of exhaustion or activation of tumour-infiltrating T cells in some tumours, suggesting they
may exhibit differential responses to immunotherapies??.

Breakthroughs in cancer immunotherapy have sparked intensive research into tumour—
immune cell interactions using genomic tools, and single-cell analysis pipelines will be
instrumental in these approaches19%. SCRNA-seq analysis of human metastatic melanoma
revealed specific homeostatic modules in monocytes and dendritic cells within the tumour
microenvironment106, A recent systems-level approach using single-cell mass cytometry
demonstrated that engagement of systemic and peripheral immunity is critical for tumour
rejection after immunotherapyl97. Future approaches would need to dissect the specificity of
anti-tumour immunity before and after checkpoint inhibition, for example, using single-cell
V(D)J sequencing to identify the T cell and B cell clones associated with anti-tumour
immunity108. Direct comparison of single-cell expression signatures from stromal cells in
the tumour microenvironment to those in other physiologically similar conditions (for
example, inflammation or wound healing) will also determine whether the tumour context
induces changes within the normal spectrum of states that a cell may adopt under different
conditions or whether cells assume an aberrant tumour microenvironment-specific
programme that is not found in normal physiological contexts (Fig. 3c,d).

Future directions

Given its effect on tumour behaviour and clinical outcome, measurements of intratumour
heterogeneity should be increasingly incorporated into standard clinical practice. Single-cell
targeted DNA sequencing has been commercialized for cancer diagnostics in AML09, In
addition, commercial sScCRNA-seq platforms are simple, automated and fast enough to be
immediately amenable for diagnostic applications. The continuous release of higher-
throughput sequencers will also continue to drive cost down10. Thus, the main hurdles to
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clinical implementation will probably be upstream and downstream of the single-cell
technology itself. First, analysis of single-cell sequencing data requires computational skill,
so pipelines for demultiplexing, alignment and cell population analysis should be packaged
into software and integrated into instrumentation in a single workflow. Furthermore, we lack
automated instrumentation or consensus protocols to generate single-cell suspensions from
an excised tumour without human intervention. Typical laboratory workflows are manual,
low-throughput and not sufficiently reproducible for clinical application. Third, sampling
bias is a notable hindrance and it may be necessary to catalogue whole tumours for accurate
assessment of heterogeneity. In many cases, only small biopsies are available or patients are
pre-treated with neoadjuvant therapies before sample procurement, which may alter the
cellular composition of the tumour. However, the main hurdle to clinical implementation
will be data interpretation. To harness the power of single-cell assessment of intratumour
heterogeneity beyond descriptive cataloguing, we need to first elucidate the biological and
clinical functions of different cell populations and develop new ways to specifically target
them.
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Box 11
Emerging technologies for single-cell analyses in cancer

Single-cell transcriptome and genome studies have emerged as vital tools for
investigating mechanisms of cancer, and more technologies are being adapted to operate
in single-cell resolution to explore the disease in ways that were previously unavailable.
This is exemplified by several common protocols for epigenetic analysis that now can be
performed at the single-cell level, including DNase-seq36 and ATAC-seq!37-138 for
defining regions of open chromatin, Hi-C for investigation of chromosomal contacts!39,
ChIP-seq for histone position mapping4?, bisulfite sequencing (single-cell bisulfite-
seq)14! or bisulfite-free methods (single-cell CGI-seq)42 for measuring DNA
methylation state, and CLEVER-seq!43 and scAba-seql44 to measure active DNA
demethylation by 5-fluorocytosine sequencing and 5-hydroxymethylcytosine sequencing,
respectively. Multiscale analysis of multiple regulatory levels in the same cell is also an
area of rapid development and provides the potential to comprehensively understand how
and why malignant cells produce a particular phenotype, function or behaviour.
Combinatorial methods currently exist for analysis of the genome and transcriptome
(G&T-seq and DR-seq)14°-147 epigenome and transcriptome (scMT-seq, scTrio-seq and
scNMT-seq)148-150  and techniques for studying the proteome and transcriptome are in
development151.152_ Single-cell proteomics are another area of paramount interest as
protein expression is the ultimate functional output of the cell. Although there are no
commercial methods for whole-proteome level analysis, several technologies for high-
parameter protein analysis in single cells have been developed. Time of flight mass
cytometry (CyTOF), which utilizes heavy metal-conjugated antibodies to quantify protein
expression by time-of-flight inductively coupled plasma mass spectrometry, can
theoretically multiplex up to 135 parameters in single cells53-155, The co-detection by
indexing (CODEX) platform also enables high-parameter protein expression analysis
using an in situ polymerization-based indexing procedure and fluorescently barcoded
antibodies®®. This provides the added advantage of spatial localization of cell
populations within the native tissue context. Spatial genomics technologies for single-cell
analysis, such as FISSEQ!7, seqFISH1%8 or MERFISH26, are another area of rapid
development, which reveal cellular neighbourhoods that are specific to the tumour
microenvironment. Ultimately, spatial approaches will allow investigators to define
changes in cell populations that associate with specific histological and pathological
tissue phenotypes.
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Fig. 1 I. Common types of intratumour heterogeneity and its regulation by intrinsic and extrinsic
factors.

Tumours comprise a heterogeneous population of cells, which is regulated by both intrinsic
and extrinsic factors. Tumour cells vary in biomarker expression, epigenetic landscape,
hypoxic state, metabolic state, stage of differentiation, invasive potential and genotype due
to genomic instability. The tumour microenvironment can also be heterogeneous, in which
different types of fibroblasts, pro-tumour and anti-tumour immune infiltrate, vascular and
lymphatic vessel density and extracellular matrix (ECM) composition affect tumour cell
heterogeneity and function.
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Fig. 2 I. Deciphering subclonal composition and cell types and states in single-cell omics data.
a, Inferring clonal trajectories and subclonal heterogeneity from bulk primary tumour

genome sequencing data. In this example experiment, a tumour is sampled at a single time
point (dotted lines). The table shows the frequency of each detected mutation. The panels
show three (of many) possible clonal trajectories that can be inferred. The nodes represent
points at which a mutation occurred, and overlapping coloured regions indicate that each of
the mutations is present within any cell that is part of that population. b, Challenges
associated with deciphering the genotype of a metastatic founder clone and subclonal
trajectories from bulk genome sequencing of paired metastatic and primary tumours. The
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table shows the observed mutation frequencies in an example experiment in which a
metastatic tumour from the individual in a was sequenced. The panels show three possible
explanations for the observed frequencies. ¢, Cell types and states found in normal tissues.
Tissues comprise different mature “cell types’ (labelled 1-5), which carry out specified
functions. Cells within a ‘type’ can exist in a spectrum of allowable “cell states’ depending
on the physiological status of the tissue. Mature cell types are derived from stem cells
through a series of discrete differentiation intermediates or progenitors. The circles represent
single cells, and the colour clouds represent the spectrum of allowable states. The density of
circles represents the probability of observing a cell with that phenotype in a SCRNA-seq
experiment. d, Tumour cell types and states differ from normal tissue. Single-cell studies
have shown that tumours contain stem-like cells (CSCs) and that differentiation is often
noisy, skewed towards specific cell lineages.
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Fig. 3 I. Genetic and phenotypic properties of metastasis-initiating cells at the single-cell level.
Metastasis is a rare event, in which most cancer cells cannot progress through major

bottlenecks associated with invasion, intravasation, extravasation, seeding and colonization
to produce a malignant macrometastatic tumour. In this model, cancer cells are
heterogeneous in genotype (nuclei) and phenotype (cytoplasm), and metastasis-initiating
cells possess a distinct combination of both. Dashed arrow indicates that cancer cells within
micrometastases can die. Death rates within micrometastases can balance proliferation rates,
and thereby prevent progression to macrometastasis by the failure to produce net positive
growth.
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