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Abstract

Tumours comprise a heterogeneous collection of cells with distinct genetic and phenotypic 

properties that can differentially promote progression, metastasis and drug resistance. Emerging 

single-cell technologies provide a new opportunity to profile individual cells within tumours and 

investigate what roles they play in these processes. This Review discusses key technological 

considerations for single-cell studies in cancer, new findings using single-cell technologies and 

critical open questions for future applications.

Heterogeneity is pervasive in human cancer and manifests as morphological differences 

between cells or distinct karyotypic patterns, protein and biomarker expression levels and 

genetic profiles1,2. Tumours are complex ecosystems of malignant cells surrounded by non-

malignant stroma, including fibroblasts, endothelial cells and infiltrating immune cells3–5. 

Intratumour heterogeneity arises through various mechanisms (Fig. 1). In clonal evolution 

models, stochastic accumulation of mutations through genomic instability results in 

increasing genetic diversity, with the tumour acquiring subclones with distinct genotypes 

over time6. Heterogeneity is also generated through cellular differentiation. In cancer stem 

cell (CSC) models, cancers are hierarchically organized with a stem cell-like population, 

sustaining tumour growth through self-renewal and differentiation7. The tumour 

microenvironment also generates intratumour heterogeneity by exerting different selective 

pressures in distinct regions of the tumour8–11. These models are not mutually exclusive and 

act together to create a complex system with multiple layers of heterogeneity established by 

the distinct genetic, epigenetic, transcriptomic, proteomic and functional properties of 

different cells.
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Nevertheless, most cancer research and therapy decisions are carried out at the whole-

population level. Standard treatment strategies target a single receptor or pathway, treating 

cancer as a homogenous disease. Even new precision medicine programmes, such as the 

NCI-MATCH (National Cancer Institute—Molecular Analysis for Therapy Choice) trial, 

which genetically profiles individual patient tumours to determine the most appropriate 

targeted therapy, do not consider the number of cells that express the targeted variant and 

only require it to be detectable above background12. This therapeutic approach may fail for 

many reasons: if the variant is not critical to drive tumour growth or not expressed in the 

tumour-promoting cell populations; if some cell populations have additional driver or 

resistance mutations; or if tumour growth, viability or resistance is encoded at the non-

genetic level.

However, technologies for interrogating the whole genome, transcriptome, epigenome and 

proteome in single cells are maturing. Advances in accuracy, throughput, automation, 

computational analysis and cost provide the potential to profile thousands of cells from an 

individual tumour. A first goal in cancer is to characterize the extent of intratumour 

heterogeneity in individual tumours, at various regulatory levels, from genotype to 

phenotype, and to spatially localize cell populations within tumours. Subsequently, 

understanding the function and effect of different cell populations on tumorigenesis, 

including which features promote tumour initiation, progression or drug resistance, will also 

be key. Functional characterization will be particularly challenging, as there is no clear 

method for extrapolating cell function from large-scale ‘omics’ data aside from traditional 

experimental interrogation. In the long term, new insights may be translated to the clinic, for 

example, to enable tumour composition analysis for diagnostics and therapeutic assignment, 

or to identify pre-existing drug-resistant subclones prior to treatment. In this Review, we 

discuss important technological considerations for experimental designs in cancer research, 

review single-cell studies that have provided new insights in tumour biology and present 

open questions for future single-cell applications.

Technological considerations for single-cell studies of cancer

Single-cell technologies have advanced rapidly in the past several years. Currently available 

protocols vary in cell capture method, library preparation chemistry and throughput (Table 

1) (reviewed in refs 13–16). Most protocols require single-cell suspension, so the first critical 

consideration is optimizing tumour dissociation to generate a cell suspension that is fully 

representative of the intact tumour in terms of cell populations, their frequencies and 

expression programmes. Digestion of solid tumours eliminates spatial information and can 

obscure the true programme of individual cells17,18. Although there is no consensus for how 

to measure these profound effects, cellular diversity after dissociation can be analysed by 

flow cytometry for known cell types or markers for the specific tumour type. Populations are 

typically validated by follow-up analyses in situ, but this approach only confirms their 

existence and does not determine whether all cell populations in the tumour were accounted 

for after cell dissociation. Ultimately, identification of the same populations using different 

protocols would increase confidence in the results.
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Technologies for transcriptome analysis are the most advanced and have been used to profile 

CSCs, map differentiation trajectories, describe drug resistance programmes and define the 

immune infiltrate in tumours19–21. The first single-cell transcriptome technologies utilized 

microfluidics to capture cells followed by multiplex quantitative PCR (qPCR) for selected 

genes, but most recent studies favour single-cell RNA sequencing (scRNA-seq) to enable 

assessment of the entire transcriptome. Selection of the most appropriate scRNA-seq 

protocol depends on the sample size, the number of cells to be sequenced and whether 

transcript counting or full-length mRNA sequencing is desired (Table 1). When large cell 

numbers must be sequenced, high-throughput, semi-automated droplet-based approaches 

(for example, inDrop22 and Dropseq23) are optimal. However, these approaches typically 

achieve lower transcriptome coverage and detect fewer lowly expressed genes, and there is 

very limited transcript sequence coverage due to 3′ end counting, precluding single-

nucleotide variant (SNV) and splicing analyses17 (Table 1). Droplet-based protocols are also 

less amenable to studying small cell numbers, for instance, circulating tumour cells (CTCs), 

disseminated tumour cells or micrometastases. For such samples, cell isolation by flow 

cytometry or micromanipulation followed by manual library preparation in microwell plates 

is more tractable. These protocols typically amplify full-length mRNA by switching 

mechanism at 5′ end of RNA template (SMART) or alternative chemistries, which enable 

full-length mRNA sequencing for SNV, splicing and deeper transcriptome analyses24–27. For 

tissues that are preserved or cannot be readily dissociated, single-nucleus RNA-seq 

approaches, such as DroNc-seq28 or microwell-based single-nucleus RNA-seq29, may be 

optimal (Table 1).

Although less widely utilized, single-cell genome analysis has been used to track clonal 

dynamics, infer evolutionary trajectories and compare paired primary and metastatic 

tumours (as detailed below). A major challenge is that the DNA must be massively amplified 

with minimal error. Several alternative chemistries have been developed for whole-genome 

amplification, which are alternatively better suited for SNV or copy number variant (CNV) 

analyses (Table 1). Another major issue for single-cell genome studies is that, unlike whole-

transcriptome approaches in which lower sequencing depth can still provide robust 

information about cell identity, the genome has a fixed, large size and there is effectively no 

cheap way to sequence it. Many single-cell studies are beginning to opt for lower breadth 

and sequence either the whole exome or a targeted panel of genes (reviewed in ref. 15). 

Analysis of single-cell genomic data is also more challenging and less standardized owing to 

technical errors, such as uneven amplification and allelic dropout. Allelic dropout, in which 

a particular region of one chromosome is not amplified, is the main technical and analytic 

challenge and requires imputation of the missing data. Imputation of variants based on 

probability can be incorrect and confound conclusions. Experimental methods that increase 

chromosomal compliment, such as in vitro clonal amplification or selection of cells 

undergoing mitosis, may enable more accurate genotyping30,31. Comparison of whole-

genome amplification approaches and selected analytic methods can be found in refs 
15,32–36.

Protocols to measure other regulatory levels, such as the epigenome and proteome, are 

developing rapidly, as are multiscale approaches to analyse multiple regulatory levels in the 
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same cell (that is, multi-omics) and methods for spatial analysis in intact tissues. Selected 

methods are highlighted in Box 1.

Genetic heterogeneity and subclonal dynamics

Most tumours comprise subpopulations of cells with distinct genotypes called subclones. 

Next-generation sequencing data have revealed that a tumour possesses on average over 

10,000 somatic mutations: ~2–8 in ‘driver’ genes that confer a selective growth advantage, 

and ~30–60 protein-coding changes in ‘passenger’ genes that may alter other cellular 

functions37. Subclonal diversification arises through genomic instability and numerous 

mechanisms, including homologous recombination deficiency, chromosome instability, 

chromothripsis, misregulation of APOBEC enzyme activity and drug treatment6,38–46. 

Several models for subclonal diversification have been proposed based on next-generation 

sequencing data of bulk human tumour samples, the prevailing being linear, branching, 

neutral and punctuated models (reviewed in ref. 47). Most next-generation sequencing 

studies report branching evolution in human cancers, including leukaemia, breast and liver 

cancers, colorectal cancer, ovarian cancer, prostate cancer, kidney cancer, melanoma and 

brain cancer (reviewed in ref. 47).

Although sophisticated statistical and mathematical models have been developed to infer 

subclonal dynamics and tumour evolution from bulk data, they rely on major assumptions 

and cannot extrapolate single-cell genotypes because overlapping mutation frequencies 

cannot be assigned to the same or different cells, technical errors may yield imprecise 

mutation frequencies and detection limits preclude identification of rare subclones15 (Fig. 2). 

Single-cell genome analyses mitigate many of these limitations and, most importantly, can 

determine whether mutations are in the same or different cells. This can help to address 

important questions about subclonal dynamics, such as how specific subclones interact (for 

example, collaborate versus compete), which subclones can invade and metastasize, how 

subclonal composition affects clinical outcome and how drug resistance evolves (for 

example, from pre-existing clones versus the acquisition of new mutations).

Single-cell studies of subclonal heterogeneity have produced new details about subclonal 

frequencies and their evolution during tumour progression. Single-nucleus sequencing of 

breast tumours showed that copy number evolution occurred in short bursts early in tumour 

evolution, whereas point mutations evolved gradually over time to produce more extensive 

clonal diversity48. This provides support for a combined punctuated–branched model for 

tumour evolution in breast cancer. Genetically distinct clones with unique biological and 

clinical properties have been identified in acute lymphoblastic leukaemia, colon and breast 

tumours by single-cell genome analysis49,50. For example, targeted single-cell SNV analysis 

of patients with acute lymphoblastic leukaemia revealed codominant clones, and showed 

that KRAS mutations occurred late in disease development but were not sufficient for clonal 

dominance49. In a case study of colon cancer, the dominant clone possessed APC and TP53 
mutations typical of colon cancers, but a rare subclone with CDC27 and PABPC1 mutations 

was also identified50. These studies suggest that combinatorial therapies that target multiple 

subclones may produce better results against polyclonal disease.
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A study investigating clonal evolution during breast cancer invasion showed a direct lineage 

relationship between non-invasive ductal carcinoma in situ and adjacent invasive ductal 

carcinoma lesions in individual patients with breast cancer using topographical single-cell 

sequencing51. These results indicate that most mutations and CNVs evolved within the ducts 

prior to invasion, with multiple clones escaping from the ducts and co-migrating into the 

adjacent tissues to establish invasive carcinomas. These findings contrast with models for 

cancer cell invasion proposing that distinct clones give rise to in situ and invasive tumour 

cells52–54, and argue against the notion that extrinsic stimuli (that is, ‘field effects’) cause 

multifocal disease.

Single-cell genetic analysis has also provided new insights into the longstanding debate over 

whether drug resistance is caused by the selection of rare pre-existing clones or through 

acquired resistance by induction of new mutations. Single-cell DNA sequencing of 

longitudinal samples from patients with breast cancer before and after neoadjuvant 

chemotherapy showed that resistant genotypes are pre-existing and selected by 

chemotherapy55. Interestingly, scRNA-seq of the same samples showed that the 

transcriptome profiles of cells pre-treatment and post-treatment were entirely distinct. Cells 

with resistant programmes were undetectable before treatment, although subsets of cells 

expressing individual genes associated with chemoresistance could be identified. These data 

indicate that chemoresistance is conferred through both genetic selection and induction of 

new transcriptome programmes.

Single-cell analyses of CTCs have also revealed genetic mechanisms of drug resistance. 

Studies of CTCs from patients with breast cancer have shown heterogeneity for genes 

important for diagnosis and therapy response, such as ERBB2 and PIK3CA56,57. Analysis of 

CTCs from patients with small-cell lung cancer revealed distinct molecular mechanisms for 

resistance to chemotherapy58. CTCs from chemoresistant patients displayed different CNV 

profiles than CTCs from chemorefractory patients, suggesting a different genetic basis for 

immediate resistance (chemorefractory) versus delayed resistance (chemoresistant). A 

classifier was also developed to distinguish between the two types of patients, supporting the 

application of single-cell genomics for CTC-based diagnostics58.

There are still several limitations to single-cell genomic analyses that prevent their more 

general use in experimental and clinical practice. Technical limitations that hinder confident 

SNV calling due to allelic dropout are a major issue. Understanding of the biological 

function and clinical importance of specific genetic clones is also lacking. It will be critical 

to decipher how a single-cell genotype translates into cellular function, how individual 

clones affect tumour behaviour and how clones interact to promote tumour progression, 

metastasis and drug resistance. Innovative strategies are needed to address the lack of a 

universal approach for the isolation of specific genetic clones and experimental interrogation 

of their function.

Non-genetic heterogeneity and cellular differentiation

ScRNA-seq studies have shown that many normal tissues are maintained by a pool of adult 

stem cells that differentiate into multiple ‘cell types’ with distinct ‘cell states’ distinguished 

Lawson et al. Page 5

Nat Cell Biol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by more subtle differences in differentiation, activation, metabolic state or stage of the cell 

cycle59–65 (Fig. 2c). Similarly, tumours also contain CSCs, which behave like normal stem 

cells in their capacity to self-renew, differentiate and propagate the tumour upon transplant 

(reviewed in ref. 66). However, some tumours do not follow this model67,68. One outstanding 

question is to what degree CSCs and other tumour cell populations maintain the 

developmental programme of their normal cell counterparts, versus dedifferentiating or 

assuming an aberrant cell state (Fig. 2d). Single-cell technologies provide the opportunity to 

measure cell states in individual cells and map tumour cells onto the normal spectrum of 

allowable cell types and states of their tissue of origin.

One of the first single-cell studies in cancer used a single-cell multiplex qPCR approach to 

show that human colon cancers contain distinct cell populations that mirror the cellular 

lineages of the normal colon19. This transcriptional heterogeneity was not due to underlying 

genetic heterogeneity, as injection of single CSCs into immune-deficient mice gave rise to 

monoclonal tumours as heterogeneous as the parental one. A study of human 

oligodendroglioma using scRNA-seq20 showed that tumours were composed of astrocyte-

like and oligodendrocyte-like cells and a rare subpopulation of undifferentiated cells 

resembling neural stem cells. Similar to the colon cancer study, CNV and SNV analysis 

showed that each subclonal lineage displayed similar hierarchies. Both studies found 

differences in the tumour cells relative to their normal counterparts. In the 

oligodendroglioma study, the two glial lineages seemed to originate from the stem cell-like 

population, without the discrete differentiation intermediates observed in the normal tissue. 

Rather, a continuum of differentiation profiles was observed along each lineage, indicating 

that tumour cells may exist in more dynamic and less discrete differentiation states than 

normal cells20 (Fig. 2d). Another study of oligodendroglioma showed that progression to 

more advanced stages was associated with expansion of primitive cells, with tumours 

bearing less similarity to the cellular composition of normal tissues69. However, the lack of 

normal cell population profiling in these studies makes it difficult to discern how similar 

each population was to its healthy counterpart. Likewise, in the colon cancer study19, several 

cell subpopulations typical of the normal colon were absent in the tumours, suggesting that 

there was a skewing or block in normal differentiation19 (Fig. 2d).

Single-cell studies of acute myelogenous leukaemia (AML) have shown similar alterations 

in normal differentiation. A mouse model of AML was shown to contain two cell types: one 

resembling granulocyte/monocyte progenitors and the other macrophage and dendritic 

cells70. Normal and leukaemic counterparts showed significantly different gene network 

modules, suggesting an aberrant programme in leukaemic cells. Altered myeloid 

differentiation has also been observed in human paediatric AML by single-cell mass 

cytometry. In one report, two alternative approaches, PhenoGraph and statistical analysis of 

perturbation response (SARA), were used to compare signalling programmes in normal 

haematopoietic and leukaemic cells71. Although both primitive and mature monocytelike 

cells were identified in all patients, they displayed different degrees of aberrant myeloid 

differentiation, which did not correlate with the cell-surface marker phenotype. In AML, 

enumeration of primitive CD34+/CD45low blasts is often used for clinical diagnosis and 

classification of leukaemias72. This study showed that intrinsic signalling programmes were 

often decoupled from the cell-surface phenotype, challenging the standard diagnostic 
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approach. Many patients possessed CD34− leukaemic cells displaying primitive signalling 

programmes, and the percentage of primitive cells rather than cell-surface phenotype was 

more predictive of overall survival71.

These studies suggest that cancer cells often resemble normal cell types and states, but 

acquire aberrant programmes and display skewed differentiation towards more restricted 

lineages than their tissue of origin. Defining the aberrant programmes in single cells with 

relevance to stability and plasticity may reveal new mechanistic insight and therapeutic 

targeting strategies.

Heterogeneity in diagnostics and therapy response

Mechanisms of drug response have also been studied at the single-cell level. CTCs have 

been a major focus as they offer a non-invasive window into tumour response. One study 

reveals that the majority of patients with prostate cancer with varying stages of disease and 

resistance to androgen deprivation therapies harboured CTCs with at least one type of 

androgen receptor alteration73. Furthermore, patients on the second-line androgen receptor 

inhibitor enzalutamide (administered after the development of resistance to androgen 

deprivation therapy) often had CTCs with activated non-canonical Wnt signalling, 

showcasing how different mechanisms for generating non-genetic heterogeneity can produce 

drug resistance, and that tracking this through assaying CTCs is clinically feasible.

Single-cell mass cytometry has also been used to measure differential responses to 

chemotherapy in patients with AML. The percentage of proliferating stem and progenitor-

like leukaemic cells was shown to be significantly correlated with therapy response, in 

addition to signalling abnormalities in primitive AML cell populations74. Patients with 

clinically favourable subtypes of AML demonstrated a higher fraction of cells in S-phase 

than other subtypes. This suggests that the quiescent state facilitates cancer cell protection 

and survival during therapy. In another study, chemotherapy increased phenotypic diversity 

away from traditional stem cell phenotypes in patients with AML75. This finding contrasts 

with classic resistance models that suggest selection of a more primitive cell population 

during treatment results in outgrowth of a more uniform population.

ScRNA-seq has also shown how standard diagnostic bulk tumour profiling can mask 

clinically relevant heterogeneity. Glioblastomas can be stratified into four distinct subtypes 

based on their mRNA expression signature: proneural, neural, classical and mesenchymal76. 

Interestingly, scRNA-seq analysis showed that glioblastomas contain cells that resemble 

each of the four subtypes, even though this is not observed in bulk analyses. Increased 

intratumour heterogeneity was also associated with decreased survival, perhaps because of 

improper patient stratification and treatment assignment, or enhanced genomic instability, 

tumour evolution or resistance77.

Single-cell analyses may also eventually be valuable for predictive diagnostics. Single-cell 

analysis of targeted transcriptome (SCATTome), which predicts drug response for individual 

cells based on transcriptome signatures using an assortment of machine learning methods, 
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was able to predict response to proteasome inhibitor treatment in patients with multiple 

myeloma78.

Despite these new discoveries, several limitations of single-cell analyses are worth further 

consideration. As in single-cell genome studies, assigning function to cell populations is the 

biggest challenge for most non-genetic single-cell studies. Gene ontology and gene set 

enrichment analyses can provide clues for signalling pathways that are overrepresented in a 

cell population, but most of these tools are developed for bulk transcriptome analysis and 

handle missing data poorly (reviewed in refs 79,80). As most scRNA-seq protocols only 

detect 10–40% of the transcriptome, they are not optimal for studying lowly expressed 

genes, such as those encoding transcription factors, or for the investigation of specific 

signalling pathways. Dropout of signalling intermediates makes determining whether a 

pathway is activated challenging. It is also often difficult to determine what constitutes a true 

cell population, as slight changes in clustering parameters can produce different results. How 

to decide what represents a cell type versus a cell state continues to be a major debate in the 

field, particularly for rare cell populations, which may represent cells transiently switching 

from one state to another or true rare cell types. The only way to assign function to a cell 

population is through conventional experimentation, which most single-cell reports lack. It is 

also important to consider that tumour behaviour is probably more than just the sum of its 

individual cell parts, with different cell populations synergizing or collaborating to take on 

new macroscale functions and behaviours that are not observable using reductionist 

approaches. If so, new integrated informatic, experimental and modelling approaches for 

analysing single cells will be necessary to truly understand tumour behaviour.

Heterogeneity and metastasis

Metastasis remains the cause of most patient mortality and continues to be challenging to 

treat clinically and investigate experimentally. The general dogma is that metastasis is 

carried out by rare cells with unique cellular and molecular properties81. Single-cell 

investigations now enable the identification and characterization of such cells, including 

their localisation in primary tumours, and the effect of genetic versus non-genetic and 

intrinsic versus extrinsic factors on metastasis (Fig. 3).

Next-generation sequencing studies of bulk tumour samples indicate that metastasis is 

initiated by a subclone of the primary tumour. In one study, whole-genome sequencing 

identified numerous point mutations and small indels represented in higher frequencies in 

the brain metastatic tumour than in the paired primary breast tumour82. Similar disparities in 

mutation frequencies have been reported in paired tumours and metastases from patients 

with pancreatic and renal cancers, in which the metastasis founder subclones localized to a 

specific region in the primary tumours, supporting a subclonal model for metastasis 

initiation83,84. One confounding issue in these studies is that the metastases often possessed 

unique mutations that were not found in paired primary tumours83. This makes it 

challenging to infer the genotype of the original metastasis founder cells, because it is not 

clear whether the metastasis-exclusive mutations were present in the primary tumour below 

the limit of detection or whether they arose after metastatic seeding via parallel evolution 

(Fig. 2b).
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Single-cell genome studies of metastasis are beginning to resolve these challenges. Early 

single-cell studies of metastasis focused on disseminated tumour cells in the bone marrow of 

patients with breast cancer, and found that these cells disseminate early in tumour evolution 

by karyotype and subchromosomal variant analyses85,86. This is corroborated by reports 

showing that metastatic lesions similarly derive from early dissemination events87,88. Other 

single-cell genetic methods have generated contradictory findings. A single-cell CNV 

analysis of breast cancer metastasis showed that a single clonal expansion formed the patient 

primary tumour and seeded its metastasis89. Single-cell CNV and SNV analysis in patients 

with colon cancer showed monoclonal metastatic seeding in one patient and polyclonal in 

another90. The authors of that study also concluded that metastasis occurred late in primary 

tumour evolution in both patients, as the metastases harboured all of the trunk mutations that 

were present in the primary tumour cells85–88,91–93.

Single-cell genomic analyses also provide evidence for collective cell migration as a 

mechanism for cancer cell invasion. Topographical single-cell sequencing analysis showed 

that multiple clones co-migrated through the basement membrane of breast ducts and into 

adjacent tissues to establish invasive breast carcinomas51. This is consistent with previous 

work showing collective cell migration at the invasive front of tumours, as well as 

observations that CTC clusters in the bloodstream are more effective than single CTCs for 

seeding metastasis94–96.

Single-cell genome analyses of patient CTCs also provide insight into the genotype of 

potential metastasis-initiating cells. CTCs display substantial subclonal diversity, suggesting 

that cells of various genotypes are capable of entering the circulation97. This includes very 

rare subclones, as CTCs from patients with colon cancer were reported to carry SNVs that 

were only present in the paired primary tumours at very low frequencies98. Another study 

found that CTCs in patients with breast cancer often possess variants that are not found in 

the primary tumour, indicating that they either represent a rare subclone or occur after 

dissemination57. Importantly, the CTCs were heterogeneous for mutations in two common 

breast cancer drug targets, ERBB2 and PIK3CA, so identifying which CTCs subsequently 

produce metastases has direct clinical relevance.

As it is clear that metastatic propensity is not encoded exclusively at the genetic level 

(reviewed in ref. 99), it will be necessary to investigate other programmes (for example, 

transcriptomic and epigenetic) driving metastatic progression at single-cell resolution. 

Single-cell multiplex qPCR technology has shown that metastasis is initiated by cells with 

stem cell and epithelial–mesenchymal transition-like characteristics in patient-derived 

xenograft models of breast cancer100. This is consistent with results from the MMTV-PyMT 

breast cancer mouse model showing CSCs as the origin of metastasis101, as well as reports 

implicating stem cell and epithelial–mesenchymal transition programmes in other breast 

cancer models93,102. A recent scRNA-seq study of human head-and-neck cancers further 

implicated epithelial–mesenchymal transition in metastasis103. Future studies should utilize 

single-cell technologies as a new opportunity to investigate other major outstanding 

questions about metastatic progression, such as what drives metastatic latency and 

reawakening, how metastatic cells interact with their microenvironment and how they 

develop resistance to anti-tumour immunity.
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Heterogeneity in the microenvironment

The cellular composition of the tumour microenvironment is critical for disease progression 

and patient prognosis104 and changes dramatically during tumorigenesis due to increased 

angiogenesis, tumour-associated inflammation and fibrosis8. Emerging single-cell tools bear 

great potential to profile the individual cell types comprising the tumour ecosystem, to 

determine how they differ from normal homeostasis and to reconstruct feedback 

mechanisms mediating cell-to-cell communications between tumour and stromal cells (Fig. 

1).

A fundamental caveat in bulk cancer genomic analyses (for example, The Cancer Genome 

Atlas) is that the differences in transcriptomic signatures between tumours may arise due to 

differential infiltration of immune and other stromal cell types rather than differences in the 

tumour cells. This can be addressed with analyses at single-cell resolution. Indeed, scRNA-

seq analysis has revealed that the bulk transcriptome differences between oligodendroglioma 

and astrocytoma driven by mutant IDH are primarily due to alterations within stromal 

macrophage and microglial populations69. Another study matched the transcriptomes of 

non-malignant cells to cell-type-specific expression profiles and inferred the signalling 

dialogue between cancer cells and their microenvironment21. This revealed distinct patterns 

of exhaustion or activation of tumour-infiltrating T cells in some tumours, suggesting they 

may exhibit differential responses to immunotherapies21.

Breakthroughs in cancer immunotherapy have sparked intensive research into tumour–

immune cell interactions using genomic tools, and single-cell analysis pipelines will be 

instrumental in these approaches105. ScRNA-seq analysis of human metastatic melanoma 

revealed specific homeostatic modules in monocytes and dendritic cells within the tumour 

microenvironment106. A recent systems-level approach using single-cell mass cytometry 

demonstrated that engagement of systemic and peripheral immunity is critical for tumour 

rejection after immunotherapy107. Future approaches would need to dissect the specificity of 

anti-tumour immunity before and after checkpoint inhibition, for example, using single-cell 

V(D)J sequencing to identify the T cell and B cell clones associated with anti-tumour 

immunity108. Direct comparison of single-cell expression signatures from stromal cells in 

the tumour microenvironment to those in other physiologically similar conditions (for 

example, inflammation or wound healing) will also determine whether the tumour context 

induces changes within the normal spectrum of states that a cell may adopt under different 

conditions or whether cells assume an aberrant tumour microenvironment-specific 

programme that is not found in normal physiological contexts (Fig. 3c,d).

Future directions

Given its effect on tumour behaviour and clinical outcome, measurements of intratumour 

heterogeneity should be increasingly incorporated into standard clinical practice. Single-cell 

targeted DNA sequencing has been commercialized for cancer diagnostics in AML109. In 

addition, commercial scRNA-seq platforms are simple, automated and fast enough to be 

immediately amenable for diagnostic applications. The continuous release of higher-

throughput sequencers will also continue to drive cost down110. Thus, the main hurdles to 
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clinical implementation will probably be upstream and downstream of the single-cell 

technology itself. First, analysis of single-cell sequencing data requires computational skill, 

so pipelines for demultiplexing, alignment and cell population analysis should be packaged 

into software and integrated into instrumentation in a single workflow. Furthermore, we lack 

automated instrumentation or consensus protocols to generate single-cell suspensions from 

an excised tumour without human intervention. Typical laboratory workflows are manual, 

low-throughput and not sufficiently reproducible for clinical application. Third, sampling 

bias is a notable hindrance and it may be necessary to catalogue whole tumours for accurate 

assessment of heterogeneity. In many cases, only small biopsies are available or patients are 

pre-treated with neoadjuvant therapies before sample procurement, which may alter the 

cellular composition of the tumour. However, the main hurdle to clinical implementation 

will be data interpretation. To harness the power of single-cell assessment of intratumour 

heterogeneity beyond descriptive cataloguing, we need to first elucidate the biological and 

clinical functions of different cell populations and develop new ways to specifically target 

them.
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Box 1 ∣

Emerging technologies for single-cell analyses in cancer

Single-cell transcriptome and genome studies have emerged as vital tools for 

investigating mechanisms of cancer, and more technologies are being adapted to operate 

in single-cell resolution to explore the disease in ways that were previously unavailable. 

This is exemplified by several common protocols for epigenetic analysis that now can be 

performed at the single-cell level, including DNase-seq136 and ATAC-seq137,138 for 

defining regions of open chromatin, Hi-C for investigation of chromosomal contacts139, 

ChIP–seq for histone position mapping140, bisulfite sequencing (single-cell bisulfite-

seq)141 or bisulfite-free methods (single-cell CGI-seq)142 for measuring DNA 

methylation state, and CLEVER-seq143 and scAba-seq144 to measure active DNA 

demethylation by 5-fluorocytosine sequencing and 5-hydroxymethylcytosine sequencing, 

respectively. Multiscale analysis of multiple regulatory levels in the same cell is also an 

area of rapid development and provides the potential to comprehensively understand how 

and why malignant cells produce a particular phenotype, function or behaviour. 

Combinatorial methods currently exist for analysis of the genome and transcriptome 

(G&T-seq and DR-seq)145–147, epigenome and transcriptome (scMT-seq, scTrio-seq and 

scNMT-seq)148–150, and techniques for studying the proteome and transcriptome are in 

development151,152. Single-cell proteomics are another area of paramount interest as 

protein expression is the ultimate functional output of the cell. Although there are no 

commercial methods for whole-proteome level analysis, several technologies for high-

parameter protein analysis in single cells have been developed. Time of flight mass 

cytometry (CyTOF), which utilizes heavy metal-conjugated antibodies to quantify protein 

expression by time-of-flight inductively coupled plasma mass spectrometry, can 

theoretically multiplex up to 135 parameters in single cells153–155. The co-detection by 

indexing (CODEX) platform also enables high-parameter protein expression analysis 

using an in situ polymerization-based indexing procedure and fluorescently barcoded 

antibodies156. This provides the added advantage of spatial localization of cell 

populations within the native tissue context. Spatial genomics technologies for single-cell 

analysis, such as FISSEQ157, seqFISH158 or MERFISH126, are another area of rapid 

development, which reveal cellular neighbourhoods that are specific to the tumour 

microenvironment. Ultimately, spatial approaches will allow investigators to define 

changes in cell populations that associate with specific histological and pathological 

tissue phenotypes.
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Fig. 1 ∣. Common types of intratumour heterogeneity and its regulation by intrinsic and extrinsic 
factors.
Tumours comprise a heterogeneous population of cells, which is regulated by both intrinsic 

and extrinsic factors. Tumour cells vary in biomarker expression, epigenetic landscape, 

hypoxic state, metabolic state, stage of differentiation, invasive potential and genotype due 

to genomic instability. The tumour microenvironment can also be heterogeneous, in which 

different types of fibroblasts, pro-tumour and anti-tumour immune infiltrate, vascular and 

lymphatic vessel density and extracellular matrix (ECM) composition affect tumour cell 

heterogeneity and function.
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Fig. 2 ∣. Deciphering subclonal composition and cell types and states in single-cell omics data.
a, Inferring clonal trajectories and subclonal heterogeneity from bulk primary tumour 

genome sequencing data. In this example experiment, a tumour is sampled at a single time 

point (dotted lines). The table shows the frequency of each detected mutation. The panels 

show three (of many) possible clonal trajectories that can be inferred. The nodes represent 

points at which a mutation occurred, and overlapping coloured regions indicate that each of 

the mutations is present within any cell that is part of that population. b, Challenges 

associated with deciphering the genotype of a metastatic founder clone and subclonal 

trajectories from bulk genome sequencing of paired metastatic and primary tumours. The 
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table shows the observed mutation frequencies in an example experiment in which a 

metastatic tumour from the individual in a was sequenced. The panels show three possible 

explanations for the observed frequencies. c, Cell types and states found in normal tissues. 

Tissues comprise different mature ‘cell types’ (labelled 1–5), which carry out specified 

functions. Cells within a ‘type’ can exist in a spectrum of allowable ‘cell states’ depending 

on the physiological status of the tissue. Mature cell types are derived from stem cells 

through a series of discrete differentiation intermediates or progenitors. The circles represent 

single cells, and the colour clouds represent the spectrum of allowable states. The density of 

circles represents the probability of observing a cell with that phenotype in a scRNA-seq 

experiment. d, Tumour cell types and states differ from normal tissue. Single-cell studies 

have shown that tumours contain stem-like cells (CSCs) and that differentiation is often 

noisy, skewed towards specific cell lineages.
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Fig. 3 ∣. Genetic and phenotypic properties of metastasis-initiating cells at the single-cell level.
Metastasis is a rare event, in which most cancer cells cannot progress through major 

bottlenecks associated with invasion, intravasation, extravasation, seeding and colonization 

to produce a malignant macrometastatic tumour. In this model, cancer cells are 

heterogeneous in genotype (nuclei) and phenotype (cytoplasm), and metastasis-initiating 

cells possess a distinct combination of both. Dashed arrow indicates that cancer cells within 

micrometastases can die. Death rates within micrometastases can balance proliferation rates, 

and thereby prevent progression to macrometastasis by the failure to produce net positive 

growth.

Lawson et al. Page 22

Nat Cell Biol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lawson et al. Page 23

Ta
b

le
 1

 ∣

Te
ch

ni
ca

l c
ha

ra
ct

er
is

tic
s,

 a
dv

an
ta

ge
s 

an
d 

lim
ita

tio
ns

 o
f 

si
ng

le
-c

el
l t

ec
hn

ol
og

ie
s

T
ra

ns
cr

ip
to

m
e

P
ro

to
co

l
L

ib
ra

ry
 t

yp
e

T
hr

ou
gh

pu
t

A
dv

an
ta

ge
s

L
im

it
at

io
ns

R
ef

.

SM
A

R
T-

se
q

Fu
ll-

le
ng

th
 tr

an
sc

ri
pt

om
e

L
ow

•A
bi

lit
y 

to
 p

ro
fi

le
 r

ar
e 

ce
ll 

po
pu

la
tio

ns
 d

ir
ec

tly
•C

el
l c

ap
tu

re
 v

is
ua

liz
at

io
n

•S
pl

ic
in

g 
va

ri
an

t a
na

ly
si

s 
an

d 
SN

V
 p

ro
fi

le
s 

po
ss

ib
le

•L
im

ite
d 

sc
al

ab
ili

ty
•H

ig
he

r 
de

gr
ee

 o
f 

m
an

ua
l i

np
ut

s
•L

im
ite

d 
m

ul
tip

le
xi

ng
 p

os
si

bi
lit

ie
s

25
,6

9,
77

, 1
11

-1
13

R
am

D
A

-s
eq

Fu
ll-

le
ng

th
 tr

an
sc

ri
pt

om
e

L
ow

•A
bi

lit
y 

to
 p

ro
fi

le
 r

ar
e 

ce
ll 

po
pu

la
tio

ns
 d

ir
ec

tly
•S

pl
ic

in
g 

va
ri

an
t a

na
ly

si
s 

an
d 

SN
V

 p
ro

fi
le

s 
po

ss
ib

le
•A

bi
lit

y 
to

 c
ap

tu
re

 n
on

-p
ol

y(
A

) 
tr

an
sc

ri
pt

s

•L
im

ite
d 

sc
al

ab
ili

ty
•H

ig
he

r 
de

gr
ee

 o
f 

m
an

ua
l i

np
ut

s
•L

im
ite

d 
m

ul
tip

le
xi

ng
 p

os
si

bi
lit

ie
s

11
4

D
ro

pl
et

 b
as

ed
3′

 T
ra

ns
cr

ip
to

m
e

H
ig

h
•R

ed
uc

tio
n 

in
 P

C
R

 a
m

pl
if

ic
at

io
n 

bi
as

•H
ig

h 
ce

ll 
yi

el
d

•D
ec

re
as

ed
 g

en
e 

co
ve

ra
ge

 p
er

 c
el

l
•S

eq
ue

nc
in

g 
re

qu
ir

ed
 to

 e
st

im
at

e 
ce

ll 
ca

pt
ur

e
•N

o 
sp

lic
in

g 
or

 f
ul

l-
tr

an
sc

ri
pt

 S
N

V
 

in
fo

rm
at

io
n

•H
ig

h 
ce

ll 
in

pu
t v

ol
um

es
 a

re
 n

ot
 s

ui
ta

bl
e 

to
 

ra
re

r 
ce

ll 
po

pu
la

tio
ns

23
,1

10
,

11
5-

11
8

M
ic

ro
w

el
l b

as
ed

3′
 T

ra
ns

cr
ip

to
m

e
M

ed
iu

m
•C

el
l c

ap
tu

re
 v

is
ua

liz
at

io
n

•R
ed

uc
tio

n 
in

 P
C

R
 a

m
pl

if
ic

at
io

n 
bi

as
•P

ar
al

le
l p

ro
ce

ss
in

g 
of

 e
xp

er
im

en
ta

l c
on

di
tio

ns
 

on
 th

e 
sa

m
e 

ch
ip

•N
o 

sp
lic

in
g 

or
 f

ul
l-

tr
an

sc
ri

pt
 S

N
V

 
in

fo
rm

at
io

n
•H

ig
h 

ce
ll 

in
pu

t v
ol

um
es

 a
re

 n
ot

 s
ui

ta
bl

e 
to

 
ra

re
r 

ce
ll 

po
pu

la
tio

ns

11
9,

12
0

C
om

bi
na

to
ri

al
 in

de
xi

ng
3′

 T
ra

ns
cr

ip
to

m
e

H
ig

h
•H

ig
h 

ce
ll 

yi
el

d
•A

bi
lit

y 
to

 r
un

 m
ul

tip
le

 c
on

di
tio

ns
 o

r 
ce

ll 
ty

pe
s 

w
hi

le
 m

ai
nt

ai
ni

ng
 id

en
tit

y
•R

ed
uc

tio
n 

in
 P

C
R

 a
m

pl
if

ic
at

io
n 

bi
as

•D
ec

re
as

ed
 g

en
e 

co
ve

ra
ge

 p
er

 c
el

l
•N

o 
sp

lic
in

g 
or

 f
ul

l-
tr

an
sc

ri
pt

 S
N

V
 

in
fo

rm
at

io
n

12
1,

12
2

Si
ng

le
-c

el
l q

PC
R

Ta
rg

et
ed

 tr
an

sc
ri

pt
om

e
M

ed
iu

m
•A

na
ly

si
s 

of
 ‘

sm
al

l R
N

A
’ 

ta
rg

et
s 

(m
iR

N
A

, 
sn

oR
N

A
 a

nd
 p

iR
N

A
, a

m
on

g 
ot

he
rs

)
•H

ig
h 

se
ns

iti
vi

ty
 f

or
 lo

w
ly

 e
xp

re
ss

ed
 

tr
an

sc
ri

pt
s

•A
bi

lit
y 

to
 s

el
ec

tiv
el

y 
pr

ob
e 

fo
r 

ta
rg

et
s 

of
 

in
te

re
st

•L
im

ite
d 

ce
ll 

nu
m

be
rs

 p
er

 r
un

•L
im

ite
d 

ta
rg

et
 tr

an
sc

ri
pt

s 
pe

r 
ru

n
10

0,
12

3

FI
SS

E
Q

In
 s

itu
 s

eq
ue

nc
in

g
H

ig
h

•S
pa

tia
l l

oc
al

iz
at

io
n 

of
 tr

an
sc

ri
pt

s 
in

 ti
ss

ue
•H

ig
h 

im
ag

in
g 

sy
st

em
 c

os
ts

•E
xt

en
de

d 
pr

ot
oc

ol
 le

ng
th

 (
ow

in
g 

to
 im

ag
in

g 
re

qu
ir

em
en

ts
)

•N
o 

rR
N

A
 d

ep
le

tio
n

12
4

se
qF

IS
H

In
 s

itu
 h

yb
ri

di
za

tio
n

M
ed

iu
m

•S
pa

tia
l l

oc
al

iz
at

io
n 

of
 tr

an
sc

ri
pt

s 
in

 ti
ss

ue
•E

xa
ct

 tr
an

sc
ri

pt
 c

ou
nt

s 
pe

r 
ce

ll
•H

ig
h 

im
ag

in
g 

sy
st

em
 c

os
ts

•L
im

ite
d 

sc
al

ab
ili

ty
 o

f 
tr

an
sc

ri
pt

 ta
rg

et
s

12
5

M
E

R
FI

SH
In

 s
itu

 h
yb

ri
di

za
tio

n
M

ed
iu

m
•S

pa
tia

l l
oc

al
iz

at
io

n 
of

 tr
an

sc
ri

pt
s 

in
 ti

ss
ue

•R
ed

uc
ed

 m
is

id
en

tif
ic

at
io

n 
ra

te
 o

w
in

g 
to

 a
 

un
iq

ue
 e

nc
od

in
g 

sc
he

m
e

•H
ig

h 
im

ag
in

g 
sy

st
em

 c
os

ts
•P

ot
en

tia
lly

 h
ig

h 
im

ag
in

g 
tim

es
, r

es
ul

tin
g 

in
 

sa
m

pl
e 

de
gr

ad
at

io
n

12
6

Si
ng

le
 -

nu
cl

eu
s-

se
q

3′
 N

uc
le

ar
 tr

an
sc

ri
pt

om
e

H
ig

h
•F

ra
gi

le
 c

el
l o

r 
tis

su
e 

pr
oc

es
si

ng
•P

ot
en

tia
l b

ia
s 

of
 n

uc
le

ar
-r

et
ai

ne
d 

tr
an

sc
ri

pt
s 

ov
er

 e
xp

or
te

d 
tr

an
sc

ri
pt

s
28

,1
27

-1
29

Sm
al

l R
N

A
-s

eq
3’

 S
m

al
l R

N
A

 T
ra

ns
cr

ip
to

m
e

L
ow

•A
na

ly
si

s 
of

 ‘
sm

al
l R

N
A

’ 
ta

rg
et

s 
(m

iR
N

A
, 

sn
oR

N
A

 a
nd

 p
iR

N
A

, a
m

on
g 

ot
he

rs
)

•L
im

ite
d 

sc
al

ab
ili

ty
•P

ot
en

tia
l 3

′ 
en

d 
bi

as
13

0

Nat Cell Biol. Author manuscript; available in PMC 2019 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lawson et al. Page 24

T
ra

ns
cr

ip
to

m
e

P
ro

to
co

l
L

ib
ra

ry
 t

yp
e

T
hr

ou
gh

pu
t

A
dv

an
ta

ge
s

L
im

it
at

io
ns

R
ef

.

•R
ed

uc
tio

n 
in

 P
C

R
 a

m
pl

if
ic

at
io

n 
bi

as

G
en

om
e

A
m

pl
if

ic
at

io
n

pr
ot

oc
ol

L
ib

ra
ry

 t
yp

e
A

m
pl

if
ic

at
io

n
A

dv
an

ta
ge

s
L

im
it

at
io

ns
R

ef
.

A
m

pl
i1

 W
G

A
L

ig
at

io
n-

m
ed

ia
te

d 
PC

R
 f

ol
lo

w
in

g 
a 

si
te

-s
pe

ci
fi

c 
D

N
A

 d
ig

es
tio

n
E

xp
on

en
tia

l
•U

se
 o

f 
no

n-
ra

nd
om

 p
ri

m
er

s 
re

su
lts

 in
 a

 m
or

e 
ev

en
 c

ov
er

ag
e

•L
on

g 
an

d 
tim

e-
co

ns
um

in
g 

pr
ot

oc
ol

13
1

D
O

P-
PC

R
Pr

im
er

-b
as

ed
 a

m
pl

if
ic

at
io

n
E

xp
on

en
tia

l
•A

cc
ur

at
e 

de
te

ct
io

n 
of

 C
N

V
s

•T
he

 p
ol

ym
er

as
e 

us
ed

 h
as

 a
 h

ig
he

r 
er

ro
r 

ra
te

•D
if

fi
cu

lt 
to

 id
en

tif
y 

SN
V

s
89

M
D

A
Ph

i2
9 

lo
op

in
g 

am
pl

if
ic

at
io

n
E

xp
on

en
tia

l
•H

ig
h-

fi
de

lit
y 

po
ly

m
er

as
e

•S
ui

ta
bl

e 
fo

r 
SN

V
 a

na
ly

si
s

•U
ne

ve
n 

co
ve

ra
ge

 o
f 

th
e 

to
ta

l g
en

om
e

•D
if

fi
cu

lt 
to

 id
en

tif
y 

C
N

V
s

30
,1

32

M
A

L
B

A
C

C
om

bi
na

tio
n 

of
 lo

op
in

g 
an

d 
pr

im
er

 
ba

se
d

Q
ua

si
-l

in
ea

r
•A

cc
ur

at
e 

en
ou

gh
 f

or
 S

N
V

s 
an

d 
la

rg
e 

C
N

V
s

•M
os

t e
ve

n 
re

ad
 d

is
tr

ib
ut

io
n

•L
ow

er
 c

on
fi

de
nc

e 
SN

V
 id

en
tif

ic
at

io
n 

th
an

 
M

D
A

13
3

L
IA

N
T

I
L

in
ea

r 
am

pl
if

ic
at

io
n 

by
 tr

an
sp

os
on

 
in

se
rt

io
n

L
in

ea
r

H
ig

h 
ge

no
m

e 
co

ve
ra

ge
, r

ed
uc

ed
 a

m
pl

if
ic

at
io

n 
bi

as
 a

nd
 e

rr
or

s
•I

nc
re

as
ed

 a
cc

ur
ac

y 
fo

r 
SN

V
s 

an
d 

C
N

V
s

•D
et

ec
tio

n 
of

 m
ic

ro
 C

N
V

 a
t k

ilo
by

te
 r

es
ol

ut
io

n

•D
es

pi
te

 r
ed

uc
ed

 e
rr

or
s,

 th
e 

fa
ls

e-
po

si
tiv

e 
ra

te
 (

1.
7 

×
 1

0−
6 )

 s
til

l p
re

ve
nt

s 
ex

ac
t d

et
ec

tio
n 

of
 S

N
V

s

13
4

C
ap

tu
re

 m
et

ho
d

L
ib

ra
ry

 t
yp

e
C

os
t 

pe
r 

ce
ll

A
dv

an
ta

ge
s

L
im

it
at

io
ns

R
ef

.

W
ho

le
 g

en
om

e
C

ov
er

ag
e 

of
 th

e 
en

tir
e 

ge
no

m
e

$$
$

•U
nb

ia
se

d
•P

ow
er

fu
l f

or
 p

hy
lo

ge
ne

tic
 a

na
ly

si
s

•H
ig

hl
y 

di
m

en
si

on
al

 d
at

a
•E

xp
en

si
ve

•C
om

pu
ta

tio
na

lly
 in

te
ns

e

13
1,

13
5

W
ho

le
 e

xo
m

e
C

ov
er

ag
e 

of
 e

xo
ni

c 
an

d 
so

m
e 

re
gu

la
to

ry
 r

eg
io

ns
$$

•E
m

ph
as

is
 o

n 
ac

tio
na

bl
e 

m
ut

at
io

ns
 in

 p
ro

te
in

-
co

di
ng

 r
eg

io
ns

•P
ot

en
tia

l d
ro

po
ut

 o
f 

ex
on

ic
 r

eg
io

ns
 th

at
 a

re
 

re
le

va
nt

 o
w

in
g 

to
 in

ef
fi

ci
en

t c
ap

tu
re

13
2

Ta
rg

et
ed

C
ov

er
ag

e 
of

 s
pe

ci
fi

c 
ge

no
m

ic
 s

ite
s 

of
 in

te
re

st
$

•F
oc

us
ed

 a
na

ly
si

s 
on

 h
ig

hl
y 

re
le

va
nt

 r
eg

io
ns

•C
he

ap
er

•B
ia

se
d 

an
d 

po
te

nt
ia

lly
 r

es
tr

ic
tiv

e
•S

ac
ri

fi
ce

 o
f 

in
fo

rm
at

io
n

30

D
O

P-
PC

R
, d

eg
en

er
at

e 
ol

ig
on

uc
le

ot
id

e-
pr

im
ed

 P
C

R
; F

IS
SE

Q
, f

lu
or

es
ce

nt
 in

 s
itu

 s
eq

ue
nc

in
g;

 M
A

L
B

A
C

, m
ul

tip
le

 a
nn

ea
lin

g 
an

d 
lo

op
in

g-
ba

se
d 

am
pl

if
ic

at
io

n 
cy

cl
e;

 M
D

A
, m

ul
tip

le
 d

is
pl

ac
em

en
t 

am
pl

if
ic

at
io

n;
 M

E
R

FI
SH

, m
ul

tip
le

xe
d 

er
ro

r-
ro

bu
st

 f
lu

or
es

ce
nc

e 
in

 s
itu

 h
yb

ri
di

za
tio

n;
 m

iR
N

A
, m

ic
ro

R
N

A
; p

iR
N

A
, P

iw
i-

in
te

ra
ct

in
g 

R
N

A
; R

am
D

A
-s

eq
, r

an
do

m
 d

is
pl

ac
em

en
t a

m
pl

if
ic

at
io

n 
se

qu
en

ci
ng

; 
se

qF
IS

H
, s

eq
ue

nt
ia

l f
lu

or
es

ce
nc

e 
in

 s
itu

 h
yb

ri
di

za
tio

n;
 s

no
R

N
A

, s
m

al
l n

uc
le

ol
ar

 R
N

A
; W

G
A

, w
ho

le
-g

en
om

e 
am

pl
if

ic
at

io
n.

Nat Cell Biol. Author manuscript; available in PMC 2019 June 01.


	Abstract
	Technological considerations for single-cell studies of cancer
	Genetic heterogeneity and subclonal dynamics
	Non-genetic heterogeneity and cellular differentiation
	Heterogeneity in diagnostics and therapy response
	Heterogeneity and metastasis
	Heterogeneity in the microenvironment
	Future directions
	References
	Fig. 1 ∣
	Fig. 2 ∣
	Fig. 3 ∣
	Table 1 ∣

