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Abstract
Biologic treatment of type 1 diabetes (T1D) with agents including anti-CD3 (otelixizumab and teplizumab), anti-CD20
(rituximab), LFA3Ig (alafacept), and CTLA4Ig (abatacept) results in transient stabilization of insulin C-peptide, a surrogate
for endogenous insulin secretion. With the goal of inducing more robust immune tolerance, we used systems biology
approaches to elucidate mechanisms associated with C-peptide stabilization in clinical trial blood samples from new-onset
T1D subjects treated with the B cell-depleting drug, rituximab. RNA sequencing (RNA-seq) analysis of whole-blood
samples from this trial revealed a transient increase in heterogeneous T cell populations, which were associated with
decreased pharmacodynamic activity of rituximab, increased proliferative responses to islet antigens, and more rapid C-
peptide loss. Our findings illustrate complexity in hematopoietic remodeling that accompanies B cell depletion by rituximab,
which impacts and predicts therapeutic efficacy in T1D. Our data also suggest that a combination of rituximab with therapy
targeting CD4+ T cells may be beneficial for T1D subjects.

Introduction

The therapeutic goal for type 1 diabetes (T1D) is to preserve
β-cell function, which is commonly monitored by measur-
ing insulin connecting peptide (C-peptide) levels as a proxy
for islet function. Biologic therapies with distinct immu-
nologic mechanisms of action, including anti-CD3 (otelix-
izumab and teplizumab), anti-CD20 (rituximab), and T cell
co-stimulation blockade (abatacept), are partially effective
in individuals newly diagnosed with T1D [1–7]. Phase II
studies with these agents have demonstrated transient

stabilization of C-peptide levels in some individuals (non-
progressors), but not others (progressors). However, in all
cases, after a 6–12 month lag, both progressors and non-
progressors lose C-peptide at the same rate as the placebo or
control groups [2]. Importantly, many untreated newly
diagnosed individuals also show stabilization of C-peptide
levels during the natural history of the disease post clinical
diagnosis [8]. The molecular basis for lack of immune tol-
erance, and heterogeneity in response to therapy and/or
during natural progression is currently unknown.

To identify mechanisms involved in preservation of β
cell function, we have devised combined systems biology
and flow cytometry approaches with peripheral blood
samples from clinical studies of treatment with biologic
agents of newly diagnosed T1D subjects. In subjects treated
with the humanized OKT3 monoclonal antibody (teplizu-
mab) in the AbATE trial [4], we demonstrated accumulation
of partially exhausted CD8+ T cells in the subset of patients
showing the greatest stabilization of C-peptide levels [9].
To investigate the generality of T cell exhaustion as a
therapeutic mechanism in T1D, we applied the approaches
we used with the AbATE study to the analysis of banked
samples from a phase II trial of the anti-CD20 monoclonal
antibody rituximab in new-onset T1D patients [5, 10]. This
study demonstrated a significant, but, transient, delay in loss
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of C-peptide production in treated subjects, with extensive
heterogeneity in response [5, 10]. In the present study, we
have applied whole genome RNA-seq and flow cytometry
analyses to identify molecular and cellular mechanisms
associated with response of new-onset T1D subjects to
rituximab. Our goals were to identify unbiased signatures in
whole blood that characterize progression vs. non-
progression following rituximab treatment; to compare
and contrast these signatures with those seen in untreated
subjects and subjects treated with teplizumab; and to
determine how these signatures might suggest improved
treatment for T1D.

Results

Whole-blood RNA-seq analysis from T1D subjects
treated with rituximab

The rituximab trial was a randomized, double-blind study of
patients (N= 87) with newly diagnosed T1D assigned to
receive infusions of rituximab or placebo on days 1, 8, 15,
and 22 of the study. The primary outcome was the geo-
metric mean area under the curve (AUC) for the serum C-
peptide level during the first 2 h of a mixed-meal tolerance
test assessed after 1 year. We obtained RNA-seq data from a
subset of subjects in the original trial (N= 56 subjects
originally), sampled at different visits (0, 26, 52, 78, and
104 weeks) for a total of 205 samples (mean ~4 samples per
patient). To ensure against sample misidentification some-
times associated with large specimen collections [11], we
compared reported sex with expression of X and Y

chromosome genes (Methods). We also compared kinship
coefficients derived from pairwise combinations of single-
nucleotide polymorphisms (SNPs) in RNA-seq reads from
inter-and intra-subject libraries (Methods). Of 205 initial
samples, 195 yielded high-quality RNA-seq data consistent
with subject annotation, and were used in downstream
analyses. Details of the study population and samples and
how they compared with the original trial population are
shown in Table 1. RNA samples were not available for 31/
87 (~36%) of the subjects originally included in the trial.
The subjects not included tended to be the younger subjects,
where lower volumes are available. For example, the
youngest subject for which RNA was available at 26 weeks
was 13 years of age, whereas subjects as young as 8 years of
age were included in the original study. Although the subset
of subjects we analyzed by RNA-seq tended to be slightly
older overall and have slower rates of progression relative to
subjects in the full trial set, neither these or any other dif-
ferences examined reached significance (p-value > 0.05,
Table 1).

Rituximab treatment triggered transient decreases
in B cell genes and increases in T cell genes

To determine effects of rituximab treatment on gene
expression in peripheral blood, we compared profiles from
rituximab- and placebo-treated patients at different visits
using gene set enrichment analysis (GSEA) [12]. For these
analyses, we employed a modular or gene set approach
which focused on pre-defined groups (modules) of coordi-
nately expressed and annotated genes [9]. To construct
these modules, we created correlation matrices between

Table 1 Characteristics of the
study groups

Previous study [19] This study

Variable Rituximab Placebo Rituximab Placebo p-valued

No. of subjects 55 30 37 17 NS

No. of samples NA NA 135 60 NA

Gender

M 35 18 25 11 NS

F 20 12 12 6 NS

Agea 19.8+ 8.6 17.9+ 7.9 22.2+ 8.3 21+ 3+ 9.0 NS

Initial C-peptideb 0.75+ 0.39 0.74+ 0.37 0.80+ 0.43 0.89+ 0.40 NS

Rate of C-peptide lossc −0.46+ 0.45 −0.69+ 0.66 −0.38+ 0.33 −0.63+ 0.62 NS

Shown is a comparison of subject characteristics in the previously described in the rituximab trial [19] with
those analyzed in this study (i.e., those giving good quality RNA-seq libraries). Plus–minus values are
means ± SD

NA not applicable, NS not significant (p-value > 0.05)
aYears
bnmol/L/min
cLog(nmol/L/min)/year
dt-test for differences in this studt with previous study
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levels of selected marker genes and all other genes across a
collection of immune cell RNA-seq profiles and used the
top most correlated genes as immune molecular modules
[13].

When tested on rank ordered lists of genes expressed in
rituximab- vs. placebo-treated groups, none of these gene
modules differed significantly in expression at the week 0
(baseline) visit. This demonstrates that these treatment
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groups had broadly similar gene expression profiles prior to
the start of treatment (Fig. 1a). At the weeks 26 and 52
visits, a set of gene modules (N= 4) were expressed at
significantly lower levels in the rituximab-treated subjects.
By week 78, expression of genes in these modules had
returned to baseline levels (Fig. 1a) and remained at base-
line levels at week 104. In contrast, at the week 26 visit, a
separate set of gene modules (N= 21) was expressed at
significantly higher levels in rituximab-treated subjects.
Over-expression of genes in these modules also was tran-
sient, and their levels had returned to baseline by week 52
(Fig. 1a). Individual module enrichment plots for CD19.
mod (downregulated), and GZMK.mod, CD2.mod, and
CDH3.mod (upregulated) genes are shown in Fig. 1b.
CD19.mod was chosen because it is representative of the
four B cell modules; GZMK.mod, because it represented a
T cell-module that was not associated with disease pro-
gression; and CD2.mod, and CDH3.mod because they were
associated with disease progression (see below).

Closer examination of downregulated gene modules
revealed that they comprised highly overlapping B cell gene
sets (Figure S1A). Genes from either the union of these
gene sets (Fig. 1c, Figure S1B) or from a selected individual

module (Figure S2A) formed highly interconnected graphs
when projected onto a Protein-Protein Interaction (PPI)
network [14]. The network graphs were enriched for inter-
actions vs. random sets of genes and contained well-known
B cell genes (CD19, MS4A1 (CD20), etc.). Interconnected
genes also were significantly enriched for annotations with
the Gene Ontology (GO) [15] term for “B cell activation”
(Figure S1B, Figure S2A). These findings demonstrate
transient under-expression of B cell gene modules in whole
blood following rituximab treatment, consistent with the
depletion of B cells in peripheral blood seen clinically [5,
10].

We next examined the set of 21 upregulated gene mod-
ules, which comprised five clusters of overlapping gene sets
(clusters 1 and 3–6, Figure S1A). The union of genes from
these upregulated modules (Fig. 1c, Figure S1B), or from
selected individual modules (Figure S2A) also yielded
highly interconnected networks. Individual regulated genes
included (Fig. 1c, Figure S2A): T cell genes involved in a
variety T cell processes, including T cell receptor (CD3E,
CD3D, LCK), and co-stimulation (CD28, ICOS); as well as
markers for conventional (CD5), regulatory (Treg) (FOXP3,
CTLA-4, and IL2RA) and cytotoxic (GZMA, GZMH,
GZMK) T cells. Several of these T cell markers have
expression patterns that delineate different T cell popula-
tions (i.e., CD2 is highly expressed on effector T cell
lineages whereas CD3D and CD3E are expressed on all
T cells, etc.). Interconnected genes also were enriched with
the GO [15] or KEGG [16] terms, “T cell receptor signaling
pathway” (Figure S1B). Taken together, these findings
suggest a broad increase in T cells following rituximab
treatment. The increase in T cells was not a generalized
response to B cell depletion, as expression of most non-B,
non-T module gene sets (N= 86), including sets repre-
senting other cell types (e.g., monocytes and neutrophils),
were unaffected (Fig. 1a).

To further investigate the type(s) of T cells contributing
to the upregulated signature, we identified a broader spec-
trum of individual gene expression differences [17] between
0 and 26 weeks samples from rituximab-treated subjects
(Table S1). Genes downregulated after treatment included
many B cell genes (Table S1). To identify upregulated
genes sharing functional interconnections, we projected the
signature upregulated after rituximab treatment onto a PPI
network (Figure S2B). Consistent with the module analysis,
we detected multiple T cell genes in the upregulated sig-
nature (TRAT1, ITK, CD3G, CD6, LCP2, ITK, etc.). We
also detected in the upregulated signature: genes pre-
ferentially expressed in activated T cells (ICOS, SPN,
CD40LG); genes involved in adhesion and migration
(ITGA5, ITGA6, and LIMS1); and genes involved in DNA
and chromatin methylation/demethylation (KDM3A,
DNMT1, DNMT3) and chromatin remodeling (HDAC4,

Fig. 1 Rituximab treatment triggered transient changes in whole-blood
gene module expression. a, b GSEA [12] comparing rituximab- to
placebo-treated patients. a Under/over-representation of specific gene
sets in whole-blood signatures from rituximab-treated individuals over
the course of the study. Horizontal line indicates FDR of 0.20. Sta-
tistical tests were performed using the GSEA tool (http://software.broa
dinstitute.org/gsea/downloads.jsp). Blue, overexpressed in placebo-
treated subjects; red, over-expression in rituximab-treated subjects.
This analysis included 30, 28, 30, 27, and 20 rituximab-treated sub-
jects at the 0, 26, 52, 78, and 104 week visits, respectively; and 13, 10,
12, 15, and 8 placebo-treated subjects at the same visits. b Selected
gene sets (modules) significantly under/over-represented in rituximab-
treated individuals at week 26. X axis, enrichment score; Y axis, gene
rank in rituximab- vs. placebo-treated samples. Rug plots along the X-
axes show differential expression ranks of module genes relative to all
genes. c STRING network [14] of interactions among genes in the
leading edge of gene sets significantly upregulated in rituximab-treated
patients at week 26. Shown are network graphs representing the unions
of genes found in multiple downregulated or upregulated modules (>1
or >4, respectively). To minimize the size of the graph, vertices
(genes) were filtered to have degrees (number of adjacent connections
or edges) > 1 and to represent vertices not farther than 3 connections
from another fixed vertex (neighborhood). Vertices are colored as in
Fig. 1a. d Differential expression of genes between the placebo- and
rituximab-treated patients at the 78 week visit, performed using limma-
voom [17]. Horizontal dotted line represents FDR= 0.01, vertical
dotted lines represent fold change of ±1.5; center, expression of
module gene sets. e Expression of representative individual genes over
time in placebo-treated patients. Upper panels show genes persistently
downregulated with rituximab treatment, lower panels show B cell-
module genes (CD19.mod) and an established individual B cell marker
gene, MS4A1 (CD20). There were N= 13 placebo and N= 30-
rituximab-treated subjects tested at week 0, respectively; and N= 15
placebo and N= 27 rituximab-treated subjects at week 78. Values are
means across patients; error bars show ± 1 standard error of the mean
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CHD3, SETD1B). These findings suggest that the upregu-
lated T cell signature contains genes from T cells that are
activated and migratory, and are undergoing epigenetic
remodeling.

While module analysis suggested that expression of most
genes had returned to baseline by week 78, comparisons of
individual genes in samples from rituximab- vs. placebo-
treated subjects at later times revealed that expression of
some individual genes remained depressed and did not
return to baseline levels by week 104 (Fig. 1d, Table S1).
Most strongly downregulated among these chronically
downregulated genes was NETO1, which modifies activity
of kainate (glutamate) receptors [18] and regulates immu-
noglobulin production by human B cells [19]. These results
suggest that rituximab treatment may modify glutamine
metabolism in B cells and have persistent effects on B cell
gene expression and perhaps function up to 2 years fol-
lowing rituximab treatment.

Confirmation of changes in levels of cell subsets
following rituximab treatment using flow cytometry

To confirm dysregulation of cell subsets following ritux-
imab treatment, we compared modular gene expression
levels in rituximab-treated subjects with levels of B and T
cell subsets determined by flow cytometry [20] (Fig. 2 and
Figures S3 and S4). As expected, expression of genes in the
selected B cell-module, CD19.mod, showed strong positive
correlations with the percentages of CD19+ B cells in the
lymphocyte population (Fig. 2a, Figures S3 and S4). Gene
expression measurements for CD19.mod had a broader
dynamic range and extended below the limit of detection by
flow cytometry, where many samples had essentially no
detectable CD19+ cells (Figure S3, Figure S4). Expression
of genes in CD19.mod showed significant negative corre-
lations with the percentages of T cell subsets, especially
CD3+ and CD4+ T cells (Figure S3, Fig. 2a). In contrast,
expression of genes in GZMK.mod correlated positively
with the percentages of CD8+ T cells in the lymphocyte
population, and genes in CD2.mod and CHD3.mod corre-
lated positively with the percentages of CD3+ and CD4+
T cells (Figure S3, Fig. 2a).

Importantly, correlations of module gene expression
were stronger with lymphocyte populations calculated as
proportions than absolute levels, suggesting that cell ratios
altered by B cell depletion were important determinants of
gene expression in whole blood. To further examine the
cell differences detected using RNA-seq in Fig. 1, we
compared cell percentages of CD19+ B cells and CD3+,
CD4+, and CD8+ T cells determined by flow cytometry in
samples from both rituximab- and placebo-treated subjects
across the course of the trial (Fig. 2b). In this Figure, values
were z-score normalized so as to facilitate comparisons

between markers found at widely different levels. In
agreement with Fig. 1, the comparisons using flow cyto-
metry showed the expected transient down regulation of
CD19+ cells [5, 10], as well as significant transient upre-
gulation of CD3+ and CD4+, but not CD8+ T cells in
treated subjects (Fig. 2b, Figure S4). Taken together, these
findings indicate that differential module gene expression
after rituximab treatment was associated with decreased
levels of B cells and upregulation of CD3+ CD4+ T cells.
Upregulation of CD8 T cell genes was detected by RNA-
seq, but levels of bulk CD8+ cells detected by flow cyto-
metry did not differ between rituximab- and placebo-
treated subjects (compare Fig. 1 and Fig. 2). Thus, differ-
ences in gene expression for GZMK.mod measured by
RNA-seq were not reflected in bulk CD8+ cell levels
measured by flow cytometry.

Quantifying rate of change in C-peptide loss in T1D
patients

A key question raised by the changes in lymphocyte
populations described in the previous section is their rele-
vance to response to therapy. To quantitate C-peptide loss
throughout the course of the study, we constructed models
for the rate of C-peptide loss, modifying the approach
described by Pescovitz et. al. [10]. The rate of C-peptide
loss over time for both placebo- and rituximab-treated was
highly variable (Figure S5A). However, when examined in
log units, these curves were well-fit by linear models
(Figure S5B), using patient as a random effect for slope and
intercept, with a fixed slope effect by treatment group.
These models captured a large percentage of the variation in
C-peptide values both among patients and over time
(pseudo-R2= 0.94) (Figure S5C). Thus, loss of C-peptide is
well-captured by a linear rate in log units (or exponential
decay in absolute units), and resembles a first order decay
reaction. Alternative models with additional variables, such
as quadratic terms for change over time, did not sub-
stantially improve the fit.

The rate of change for rituximab-treated patients was
greater than for placebo-treated subjects, though the dif-
ference did not reach significance (Figure S5D; p= 0.066,
consistent with results previously reported for C-peptide at
the two-year visit [10]. We also tested a half-life model of
C-peptide loss, where the half-life is the time required for
the C-peptide concentration to decrease to one-half its initial
value (t1/2= 0.693/k, where k is the rate of C-peptide
decline in log units). We classified subjects as “progressors”
if the half-life of C-peptide decline was less than the study
period (104 weeks), and “non-progressors” if C-peptide
half-life was longer than the study period. Samples classi-
fied as progressors by C-peptide half-life were reciprocally
related to those designated previously as responders to
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treatment [20], with 13/17 non-responders vs. 7/26
responders classified as progressors (p-value= 0.0020,
Fisher’s test). We concluded that the half-lives of C-peptide
decline were suitable metrics with which to investigate the
effects of dysregulated T cell levels on T1D progression.

Differences in T cell gene module expression at
week 26 predict the rate of C-peptide decline in
rituximab-treated patients

Because T cell genes were significantly upregulated in the
rituximab-treated group after treatment, we hypothesized
that the magnitude of T cell gene expression changes in the
rituximab-treated patients may reflect underlying differ-
ences in the biological effects of treatment. To test this
hypothesis, we utilized a previously described strategy [13]
to test modular gene expression for the ability to predict
patient progression after rituximab treatment. We first
divided rituximab-treated subjects into two groups for each
module, based on level of expression of module genes. We
then compared progression to half-maximal levels of C-
peptide in the two sets of patients using Kaplan–Meier
(KM) analysis. To avoid extrapolation of the C-peptide data
beyond the actual data points, we capped the maximum
time to progression for each subject to the length of the
study.

To determine appropriate criteria for grouping subjects
based on module gene expression, we evaluated different
stratification cuts for comparing gene expression levels. We
found that comparing samples falling in the top quartile of
gene expression (module high) vs. those in the bottom three
quartiles (module low) produced results consistent with
observed progression status. As a test case for our methods,
we used expression of T cell modules CD2.mod and CHD3.
mod genes at 26 weeks to stratify rituximab-treated subjects
into module high (top quartile) vs. module low (bottom
three quartiles) subsets. In both cases, all 7 subjects from the
module high group were progressors, as compared with 7/
21 samples from the module low group (p-value= 0.0058,
Fisher’s test). These preliminary results suggested that high
expression of CD2.mod and CHD3.mod T cell genes at
26 weeks was associated with more rapid C-peptide decline
or progression, and poor response to rituximab therapy.

We then tested all differentially expressed immune
molecule modules (Fig. 1) for their ability to predict time to
half-maximal decline of C-peptide and ranked them by
multiple testing-corrected p-values (Table S2). Module high
and module low subsets for B cell gene modules expression
did not significantly differ in their time to half-maximal
decline (Table S2), nor did they show significant differences
using KM plots (Fig. 3a). Likewise, module high and
module low subsets for expression of most T cell gene

Fig. 2 Flow cytometry also demonstrates over-expression of T cell
genes in rituximab-vs. placebo-treated subjects. a Correlation of
modular gene expression with cell subset levels determined by flow
cytometry. Shown is a heatmap representation of the correlation
between modular gene expression measured by RNA-seq (Y axis) vs.
the percentages of cell subsets determined by flow cytometry (X axis).
Gene expression was calculated as median log2 expression values in
reads per million (RPM)+ 1 for all genes in the indicated module. Cell
subsets were determined by antibody staining and were expressed as
percentages of total lymphocytes [20]. The magnitude of Pearson’s
correlation coefficients (r) are represented by color intensity; Red,

positive correlation; Blue, negative correlation. This plot was derived
from 27 rituximab-treated subjects tested at week 26. b CD3+ and
CD4+, but not CD8+ T cell subsets were transiently overexpressed in
rituximab-treated subjects. Percentages of the indicated cell subsets for
all subjects at all visits were normalized by z-scores ((value-mean of
values)/SD of values). Shown are the z-score normalized mean per-
centages of the indicated cell subsets (±SD, Y axis) determined by flow
cytometry vs. time of visit (X axis). There were 30–35 rituximab- vs.
14–17 placebo-treated subjects tested at weeks 0–104 for each marker;
and 25, 4, and 2 rituximab- vs. 12, 2, and 1 placebo-treated subjects at
weeks 128–176
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modules, including the CD8+ T cell-associated module
GZMK.mod, did not significantly differ in their time to
half-maximal decline (Table S1), nor did they show

significant differences using KM plots (Fig. 3a). Similarly,
we showed that, module high and module low subsets
representing monocytes and neutrophils (CD14.mod and
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CXCR1.mod, respectively) also did not significantly differ
in their time to half-maximal decline (Table S2). In contrast,
module high and module low subsets for several T cell
modules showed significant differences even after multiple
testing correction (FDR < 0.1), including CHD3.mod, CD2.
mod, and CD28.mod (Table S2). For each of these T cell
modules, the module high subsets were associated with
more rapid loss of C-peptide, as shown for CD2.mod and
CHD3.mod stratification in Fig. 3a (FDR= 3e−3 for both).
Qualitatively similar results were obtained when using the
responder/non-responder designations used in the original
studies (data not shown, FDR= 0.067 for both CD2.mod
and CHD3.mod) [20]. Taken together, the statistical evi-
dence supports the conclusion that there was non-random
association of high expression of T cell genes at 26 weeks
with poor response (more rapid C-peptide loss) of some
patients after rituximab treatment.

We conducted additional tests of the relationship of T
cell-module gene expression vs. rate of progression of
rituximab-treated subjects. We compared module gene
expression in treated subjects at 26 weeks with C-peptide
AUC at other visits (Fig. 3b). There was no significant
difference in AUC values at any visit for comparisons of
module high and module low subsets from CD19.mod nor
GZMK.mod stratified subjects. In contrast, both CD2.mod
and CHD3.mod stratified subjects showed a trend towards
lower AUC values in module high subjects (evaluated at
26 weeks) in subsequent visits at 52, 78, and 104 weeks,
with the differences at 52 weeks reaching significance (p-
value < 0.05) (Fig. 3b). Importantly, previous studies
showed similar significance between group level compar-
isons of rituximab- and placebo-treated subjects at
26 weeks, which was lost at 104 weeks [10].

To gain additional insight into the significance of our
findings, we compared the predictive ability of T cell-
module gene expression with clinical parameters when
considering both rituximab- and placebo-treated subjects.
Stratification with both CD2.mod and CHD3.mod showed
less significant differences when considering all subjects
than when considering treated subjects only, likely because
highly elevated T cell gene expression was not observed in
placebo-treated subjects CHD3.mod expression (p-value=
0.047, Wilcoxon test, comparing expression in rituximab-
vs. placebo-treated subjects). Moreover, of the 21 subjects
classified as progressors, 9/15 rituximab-treated progressors
were also CHD3.mod module high, as compared with 0/6
placebo-treated progressors that were module high (p-value
= 0.019, Fisher’s test).

We tested CD2.mod and CHD3.mod gene expression at
26 weeks alone and in combination with other variables
using a Cox proportional hazards model. Although age [21]
and rituximab treatment [5, 10] are known predictors of the
rate of T1D progression, with this data set both variables
had less predictive ability at 26 weeks than the module high
and low subsets determined by CD2.mod or CHD3.mod
gene expression (p-values > 0.05 for age and treatment, vs.
p-values= 0.01 for the module sets). Considering all three
variables together did not greatly improve the predictive
ability of either module alone.

Relationship of T cell-module gene expression to
pharmacodynamic and mechanistic parameters
from the rituximab study

We hypothesized that differential pharmacodynamic activ-
ity of rituximab might correlate with T cell dysregulation at
26 weeks. To test this possibility, we took advantage of the
fact that some of the subjects in the rituximab trial were
immunized with bacteriophage phiX174 [22], a de novo
antigen which triggers a robust antibody (Ab) response.
Rituximab treatment potently blocked primary and sec-
ondary Ab responses to phiX174 given 3 and 9 weeks after
rituximab dosing [22], thereby demonstrating pharmaco-
dynamic activity of the therapeutic agent. One year after
rituximab dosing, tertiary and quaternary responses to
phiX174 returned to ranges seen with placebo-treated sub-
jects. When subjects immunized with phiX174 were strati-
fied by CHD3.mod gene expression at 26 weeks, the
module high subset showed a trend for increased Ab
responses following primary and secondary immunizations
shortly after rituximab treatment, but not following tertiary
and quaternary immunizations one year after treatment
(Figure S6, Fig. 4a). Differences between the module high
and module low groups were most pronounced during the
secondary immunization (Fig. 4a; repeated-measures mixed
effect ANOVA, p-value= 0.034). It is important to point

Fig. 3 Expression of CD4+ T cell-, but not CD8+ T cell or B cell-
module-associated genes at 26 weeks predicts C-peptide loss in
rituximab-treated patients. a Rituximab-treated subjects were split into
module high (top 25%) and module low (bottom 75%) groups based
on log2 median module gene counts+ 1 values from RNA-seq profiles
collected at week 26. Shown are Kaplan–Meier plots for progression,
measured as time to 50% of baseline C-peptide, vs. time. Survdiff [43]
p-values were calculated and adjusted for multiple testing [40].
Rituximab-treated subjects were stratified by median gene expression
in B cell-module, CD19.mod; CD8+ T cell-associated module,
GZMK.mod; and CD4+ T cell-associated modules CD2.mod and
CHD3.mod. Numbers at bottoms of panels are numbers of subjects at
risk. Numbers of subjects tested are indicated at the bottom of each
panel. b Expression of CD4+ T cell-, but not CD8+ or B cell-module-
associated genes at 26 weeks predicts C-peptide AUC levels at
52 weeks in rituximab-treated subjects. Shown are C-peptide AUC
levels (% of baseline), across all visits of rituximab-treated subjects.
Subjects were stratified into module high and nodule low subsets based
on the expression of the indicated module gene expression at week 26,
as described in Fig. 3. Asterisks indicate level of significance of
Wilcox on test p-values: *p-value < 0.05 and p-value ≥ 0.01. Numbers
of subjects tested were the same as in a
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out that the power of these comparisons was limited by
subject number, as only a fraction of the total subjects were
both immunized with phiX174 and available for RNA-seq
analysis [22] (only 26/37 (~70%) of rituximab-treated
subjects available for RNA-seq were immunized). These
increased Ab responses demonstrate reduced pharmacody-
namic activity of rituximab in the subset of subjects with
high CHD3.mod gene expression.

We also hypothesized that increased activity of islet
antigen-reactive T cells after rituximab treatment might
result from T cell dysregulation at 26 weeks, and provide a
potential mechanism for poor therapeutic activity. To test
this possibility, we used a previously described data set that

examined T cell proliferative responses to diabetes-
associated and other antigens in peripheral blood T cells
of subjects from the rituximab trial [20]. When stratified by
CHD3.mod gene expression at 26 weeks, the module high
subset showed increased proliferative responses to islet,
milk and neuronal antigens (Fig. 4b), with greatest differ-
ences at 72 weeks. These trends were assessed using a
repeated-measures mixed effect ANOVA model, which
indicated significant elevations of responses to islet, milk
and neuronal peptides in subjects with high CHD3.mod
gene expression (p-values, 1.1e−3, 2.7e−2, and 1.1e−2,
respectively, for module high vs. module low comparisons).
These findings support expansion of T cells with a broad
range of antigenic specificities, including islet antigens,
after rituximab treatment.

Discussion

Using modular gene expression approaches, we identified
transient signatures in rituximab-treated individuals, with
relative loss of B cells at 26 and 52 weeks. Although
expression of a few genes likely related to B cells was
persistently depressed, there were relatively minimal long-
lasting transcriptome alterations in whole blood resulting
from a single course of rituximab therapy. We also identi-
fied a relative increase of T cell genes at 26 weeks, which
was associated with CD3+, CD4+ and, to a lesser extent,
CD8+ populations and returned to baseline levels by weeks
78 and 104, and predicted more rapid progression of T1D.
While age also has been associated with variation in the rate
of disease progression in T1D [21], presumably reflecting
biological pathways that underlie disease heterogeneity, we
found that, in this cohort, module gene expression more

Fig. 4 Relationship of T cell-module gene expression to pharmaco-
dynamic and mechanistic parameters. We stratified subjects into
module high and module low subsets based on CHD3.mod gene
expression at week 26 and compared subsets for pharmacodynamic
and mechanistic markers. a Pharmacodynamic relationship of median
CHD3.mod gene expression to phiX174 antibody responses following
primary, secondary, tertiary and quaternary immunizations [22]. Thin
lines, individual responses; thick lines, mean responses. Asterisks
indicate level of significance for p-values calculated from repeated
measures ANOVA tests for module set as a fixed effect: *p-value <
0.05 and p-value ≥ 0.01. This plot represents 14 rituximab-treated
subjects (6 module high and 8 module low). b Relationship of median
CHD3.mod module gene expression to T cell proliferative responses to
different antigens. Responses to multiple individual antigenic peptides
were grouped thematically into islet, milk, and neuronal antigens [20]
and are presented as mean responses ± standard error (SE). There were
N= 6, 5, 6, 6, 6, 6, 4 module high and N= 12, 18, 19, 19, 17, 19, 7
module low subjects tested at the 0, 42, 84, 91, 126, 168, and
210 week visits, for N= 4, 5, and 4 islet, milk, and neuronal peptides,
respectively. Asterisks indicate level of significance for p-values cal-
culated from repeated measures ANOVA tests for module set as a
fixed effect: *p-value < 0.05 and **p-value < 0.01
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strongly predicted C-peptide loss than age. Furthermore,
adding age to the model did not improve prediction.

Conclusions from our studies were necessarily limited in
power by the size of the rituximab clinical study, and
require validation in larger independent studies. Despite
these caveats, our findings suggest that the increase in T cell
gene levels following rituximab treatment provides a bio-
marker(s) for the efficacy of therapy. Our data also suggest
a plausible mechanistic explanation for this finding: subjects
with high T cell gene expression after treatment have
increased relative numbers of islet antigen-reactive T cells
following B cell depletion, which have the potential to
trigger more autoimmune destruction of islets and more
rapid loss of C-peptide.

A primary goal of these studies was to identify molecular
and/or cellular signatures in whole blood of T1D subjects
that were associated with response to rituximab therapy, and
to determine whether these signatures are unique or
treatment-specific [9]. In a previous study, we saw a per-
sistently increased whole-blood signature of partially
exhausted CD8+ T cells in patients having a favorable
response to teplizumab [9]. In this present study, we saw
elevations in expression of T cell genes at week 26 (Fig. 1a,
b), but these elevations were associated with poor, not
favorable response. Moreover, genes associated with
response to therapy were better correlated with CD4+ than
CD8+T cells. Instead, the T cell responses we observed at
52 weeks therefore suggest a more generalized T cell
response than what we observed with teplizumab-treated
subjects. As different subjects were involved in the tepli-
zumab and rituximab trials, it is not known how progressor
and non-progressor subsets would have fared when treated
with the other agent.

Another goal of our studies was to determine how
treatment-specific signatures compared to signatures
occurring during natural progression of untreated indivi-
duals. In this study, placebo-treated subjects had lower
overall CHD3.mod expression. While numbers of subjects
were small, they suggest that placebo-treated progressors
did not have T cells elevated to the same extent as
rituximab-treated subjects. Future studies using larger data
sets will be required to provide additional insight into het-
erogeneity of mechanisms involved in progression of
untreated T1D subjects. Taken together, however, our
results from this study show that despite the similar clinical
responses following treatment with teplizumab and ritux-
imab [2], whole-blood signatures were treatment-specific.

The relative gain in T cells after rituximab therapy was
consistent with a previous study showing increased fre-
quencies of islet antigen-reactive and other populations of
antigen-specific T cells after rituximab therapy [20]. Using
the same data set, we showed that subjects stratified by
expression of genes comprising a T cell-module (CHD3.

mod) also show increased proliferative responses to several
distinct antigenic themes. Our results also show differences
in levels of bulk CD3+ and CD4+ T cell populations,
which are present at much higher frequency than rare
antigen-specific cells. Our gene expression results also
suggest an increase in CD8+ T cells, though this was not
verified by flow cytometry, suggesting that the gene
expression measurements may be more sensitive, or that
they detect a subpopulation of CD8+ cells not measured by
flow cytometry.

Taken together, our current results differ in several ways
from the earlier study [20]. Surprisingly, the previous study
showed that elevated proliferative responses to islet anti-
gens at 6–12 months, and which seemingly should be
associated with worse outcome, were associated with ben-
eficial short-term changes in the AUC of the C-peptide
response (baseline to 6 months) [20]. However, the rela-
tionship of these proliferative responses to AUC C-peptide
at 1 and 2 years was not previously examined. Indeed, our
data demonstrate that elevation of a broad-based spectrum
of T cell genes at 6 months predicted faster progression
(worse outcome) longer term. Moreover, we show that islet
and other antigen responses are linked to a much broader
based elevation of T cell levels and more rapid disease
progression, following rituximab therapy than previously
suspected.

An important question regarding the increase in T cell
signatures following B cell depletion is whether this
represents a specific process or whether it happens by
default as the T cell compartment comprises a larger pro-
portion of the cells isolated from peripheral blood. Although
conclusions on individual T cell types may be confounded
by blending of their profiles into bulk RNA-seq profiles,
several lines of evidence suggest that the T cell signatures
are specific. First, the set of gene modules tested contained
modules representing other cell types that were not detected
as changing (monocytes, neutrophils). In addition, not all
T cells were elevated by flow cytometry (e.g., CD8+ T cell
levels did not differ before and after treatment). We also
note that our modular signatures contained numerous genes
elevated on T cell activation (CTLA-4, FOXP3, IL7R,
KLRG1, etc.). Finally, individual gene signatures suggested
specificity in that the T cells that accumulated were asso-
ciated with genes involved in T cell activation, migration,
and epigenetic remodeling. Together with previous studies
on increased T cell proliferative responses [20], our data
suggest that recovery of the hematopoietic compartment
following B cell depletion with rituximab may lead to
undesired expansion and/or increased activity of T cells.

Confirmation of the cell types, pathways and genes
identified in our studies would require additional studies
subject to sample availability. Such studies might initially
involve single cell studies using expanded multi-parameter
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cytometry or single cell RNA-seq to better identify popu-
lations that accumulate after treatment. These single cell
studies could then be followed by bulk RNA-seq studies
with purified cell populations to compare accumulating cells
with cells present in untreated individuals.

Most of the regulated T cell gene modules we observed
were named for (i.e., associated with) [13] well-known T
cell genes, with the exception of CHD3.mod. Although this
module contained genes associated with T cell co-
stimulation (Fig. 1c), CHD3 itself is an autoantigen in
some subjects with the inflammatory disorder, dermato-
myositis [23], and functions as a chromatin-remodeling
protein [24]. CHD3-contining nucleosomal remodeling and
deacetylase (NuRD) complexes cooperate with the zinc
finger protein, Ikaros, to have important roles in T cell
development, including CD4 vs. CD8 fate decisions and
peripheral T cell responses [25]. Deletion of CHD3 (Mta2)
causes abnormal T cell activation and lupus-like auto-
immune disease in mice [25]. Our findings implicate CHD3,
and perhaps a role for chromatin remodeling, in T cells
following rituximab treatment.

There are several possible explanations for poor out-
comes of subjects having high T cell levels following
rituximab therapy. First, differences in T cell levels fol-
lowing therapy may correspond to age-related differences in
the role of B cells in disease. Rituximab’s beneficial effects
in autoimmune disease may be explained in part by its
interference with the ability of activated B cells to regulate
T cell function. In T1D, rituximab had better efficacy in
younger subjects [5], such that short-term efficacy would
have remained unnoticed if subjects only beyond 18 years
of age had been recruited [7]. As B cell levels are higher in
younger subjects [26], the increased benefit of rituximab
therapy in younger subjects may be related to elevated B
cell levels and stimulation of T cell activation early in
disease (i.e., in early epitope and antigen spreading and
formation of memory T cells, etc.). This mechanism did not
likely have a major impact in our study because we did not
analyze RNA samples from the younger subjects having the
greatest clinical benefit in the clinical study. Also arguing
against this possibility is our finding that, in contrast to
other cohorts, age was not a significant predictor of pro-
gression in the subjects we examined here. An alternative
explanation is that rituximab given later in disease (or in
older subjects) might have a converse impact by allowing
increased numbers of pre-existing memory T cells to fill the
immunological niche following B cell depletion. Whatever
mechanism is involved, our studies suggest that the accu-
mulating T cells were activated, migratory and actively
undergoing epigenetic changes. Future studies with more
balanced cohorts including younger subjects will be
required to better elucidate any potential relationship
between age, T cell levels and rate of progression in T1D.

Another possible explanation for poor outcomes with high
T cell levels comes from clinical trials with systemic lupus
erythematosus (SLE). In SLE, there have been suggestions of
a feedback loop between rituximab infusion and increased
levels of T follicular helper cells [27] that counteract efficacy
of rituximab therapy [28]. This mechanism has not been
demonstrated in new-onset T1D, but it parallels the associa-
tion of poor response with high T cell levels reported here.
Follow-on studies looking at levels of circulating Tfh cells
following rituximab treatment might prove informative about
whether this mechanism is operative in T1D.

Yet another possible explanation for the observed var-
iation in outcomes is non-uniform pharmacodynamic
activity of rituximab across different subjects. Rituximab
treatment suppressed de novo antibody production after
phiX174 immunization [22]. Here, we confirmed these
results and extended them by showing that subjects with
high CHD3.mod gene expression had higher antibody titers
than subjects with low CHD3.mod gene expression (Fig. 4a,
Figure S6). Thus, subjects with high T cells (high CHD3.
mod gene expression) were less suppressed, indicating
poorer pharmacodynamic activity of rituximab treatment in
these subjects. While de novo antibody responses do not
necessarily address immune mechanisms important for
autoreactivity in T1D (i.e., epitope and antigen spreading,
etc.), our results suggest that personalized dosing to max-
imize pharmacodynamic activity in individual subjects
might improve efficacy of rituximab in T1D.

While T1D progression in clinical studies is commonly
measured by C-peptide levels [29], there is no commonly
accepted method to relate C-peptide levels to gene expres-
sion measurements throughout the course of a study. Clin-
ical response to therapy (“Responders” vs. “non-
Responders”) is one possibility, but these designations have
not been not made in a consistent manner between studies
[4, 10, 22]. For example, with the rituximab study, the
Responder-non-Responder designation was based upon
change in C-peptide AUC between baseline and the
6 month visit [20], whereas results from a single visit were
used in the teplizumab study [4]. Using results from a single
visit or a difference between two visits, does not take
advantage of the contributions of other visits to the overall
patterns in the study and potentially introduces noise. The
exponential decay model we describe here can be used to
quantify the rate of C-peptide loss over time and in a con-
sistent manner between studies, with less sensitivity to
anomalous or missing values. Our new findings argue that
exponential decay models described here and elsewhere
[10] provide a new dimension to the study of disease pro-
gression and response to therapy.

Another potential translational implication of our find-
ings is their support for biologic combination therapy. A
single course of rituximab treatment in newly diagnosed
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T1D subjects leads to transient stabilization of β-cell func-
tion, as measured by C-peptide levels, followed by a decline
[5, 10]. Similar findings have been seen following mono-
therapy with several other biologic agents [2]. In organ
transplantation, combination of biologic agents that work
suboptimally as monotherapies resulted in long-term graft
acceptance (tolerance) [30]. The transient nature of ther-
apeutic effects in T1D suggests that combination therapies
may be required to achieve long-lasting clinical benefit. Our
studies show that an unintended consequence of B cell
depletion by rituximab is increased number and/or activity
of T cells that is associated with more rapid disease pro-
gression. This suggests that combination or sequential
therapies of rituximab with other agent(s) that block T cell
activity, such as teplizumab [4] or abatacept [3], might lead
to more durable clinical effects.

Methods

Patient and sample selection

All subjects were participants in the TrialNet phase II study
of the effects of the anti-CD20 monoclonal antibody
rituximab in new-onset T1D (TN-05) [5, 10]. Subjects from
the original trial were included in the current study if suf-
ficient whole-blood samples were available for RNA pre-
paration (Table 1). All available high-quality samples at
regularly scheduled visits were utilized for each analysis.
Numbers of subjects included in each analysis are indicated
in the figure legends. TrialNet also provided clinical and
flow cytometry data, collected as previously described [5,
10]; phiX174 immunization results [22]; T cell proliferation
data collected in response to antigenic peptides [20]; and 2-
h mixed-meal tolerance test (MMTT) results. C-peptide
levels were calculated from MMTT results using the R
package, flux, from the trapezoidal AUC with measure-
ments at 0, 15, 30, 60, 90, and 120 min.

Modeling rates of C-peptide change

To estimate patient-level rates of C-peptide change over
time, we estimated exponential decay using linear models fit
to log-transformed C-peptide AUC measurements. We
included patient-level random effects terms for the intercept
and slopes, with treatment as a fixed effect. This allowed
each patient to vary around a central value for each treat-
ment group. We then extracted the patient-level coefficients
from these models, and used the rate of change of log C-
peptide over time as a measure of rate of T1D progression.
This approach provided a single continuous measure of
progression per patient, and allowed inclusion of patients
even if data were missing from one or more visits. Finally,

we used these models of C-peptide change over time to
estimate each individual’s time to 50% of baseline C-pep-
tide, as the half-life of the exponential decay, for use in
downstream Kaplan–Meier survival analyses.

Whole-blood RNA-seq pipeline analysis

Samples of RNA purified from whole blood were obtained
from TrialNet (https://www.trialnet.org/). Whole blood was
collected in Tempus blood RNA tubes at the clinical site
according to manufacturer’s instructions (Applied Biosys-
tems, CA). RNA was isolated from whole-blood samples
using the Total RNA Isolation chemistry on an ABI Prism
6100 (Applied Biosystems, CA). Prior to sequencing,
samples were globin-reduced with the GLOBINclear kit
(Ambion, CA), and libraries were constructed from globin-
reduced RNA using the Illumina TruSeq RNA Sample
Preparation kit v2. Libraries were clustered on flow cells
using the TruSeq Single Read Cluster Kit v3, followed by
single-read sequencing for 50 cycles on a
HiSeq2500 sequencer (Illumina, CA).

Base-calling was performed automatically by Illumina
real time analysis software and demultiplexing was per-
formed on Illumina BaseSpace after sequencing to generate
FASTQ files; FASTQ reads were trimmed in a local Galaxy
server in two steps: (1) hard-trimming to remove 1 3′-end
base (FASTQ Trimmer tool, v.1.0.0); (2) quality trimming
from both ends until minimum base quality for each read ≥
30 (FASTQ Quality Trimmer tool, v.1.0.0) [31, 32]. Reads
were aligned in Galaxy using Bowtie and TopHat (TopHat
for Illumina tool, v.1.5.0) [33]. Read counts per Ensembl
gene ID were estimated in Galaxy using htseq-count [34].
Sequencing, alignment, and quantitation metrics were
obtained for FASTQ, BAM/SAM, and count files in Galaxy
using FastQC, Picard, TopHat, Samtools, and htseq-count.
Individuals conducting the RNA-seq laboratory and pipe-
line analyses were blinded to the sample descriptions. Data
were deposited in the GEO repository under accession
number GSE112594.

Code availability

Data files and R code are available from the GitHub
Repository (https://github.com/linsleyp/Linsley_Dufort_
rituximab_TN-05).

RNA-seq sample identity checks

We utilized two methods to ensure that proper sample
identification was associated with RNA-seq profiles. (1)
Prediction of sex from RNA-seq data. RNA-seq reads were
aligned to 2539 loci mapping to the X chromosome and 589
loci mapping to the Y chromosome. From this alignment
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three metrics were calculated: the ratio of counts on the Y
chromosome to counts on the X chromosome, the ratio of
genes detected from the Y chromosome to genes detected
from the X chromosome, and the ratio of squared counts on
the Y chromosome to the total number of counts. Histo-
grams of these three metrics were visually inspected to
establish threshold values for predicting subject sex from
each metric. The most frequent prediction from all three
metrics was taken as the final predicted sex and compared to
the reported sex of the subject. (2) SNP-based kinship
analysis of RNA-seq data. We used the mpileup utility [35]
to call genetic variants from RNA-seq data; PLINK2 [36] to
convert variant call files into the PLINK.bed format; and
KING [37] to compute a kinship coefficient for pairwise
combinations of RNA-seq libraries. Kinship coefficients
computed on pairwise combinations of intra-subject librar-
ies were then compared to the kinship coefficients for
pairwise combinations of intersubject libraries.

RNA-seq data analysis

We excluded samples with low quality RNA-seq data,
defined as having fewer than 4 million total reads, <80% of
reads aligned to the reference genome, or median coefficient
of variation of read coverage >1; 195 of 205 samples passed
these quality filters. We normalized counts using the trim-
med mean of M values (TMM) [38] as implemented in the
BioConductor package edgeR [39]. We included genes in
analyses if they had >1 count per million in at least two
libraries. Differential expression of individual genes was
determined with limma-voom [17]. In addition to variables
of interest, all models included patient sex as a covariate.
Including age at diagnosis or cell counts from CBC dif-
ferentials as covariates in the models did not significantly
alter the results. Raw p-values were corrected for multiple
testing using the Benjamini–Hochberg procedure [40].
Gene set analyses were run with GSEA [12] on log-trans-
formed, TMM-normalized counts. PPI interactions were
obtained from STRING [14] (http://string-db.org/) or Gen-
eMANIA [41] (http://genemania.org/.org/) and visualized
using Cytoscape [42] or the R package, igraph.

Statistical and graphical analyses

Statistical tests were performed using the R programming
language and software environment. Mixed-effects models
were fit using the R packages, lme4 and lmer. C-peptide
AUC values were modeled using the exponential decay
model, log (C-peptide AUC) ~day+ day:treatment+ (1|id)
+ (day-1|id). Unless otherwise noted, statistical tests were
two-sided. Variances were not assumed to be equivalent
between different groups. For tests using continuous, nor-
mally distributed variables, we used t tests; for non-

normally distributed variables, Wilcoxon tests; for catego-
rical variables, Fisher exact test; and for the probability of
success in stratifying subjects by time of progression, the
exact binomial tests. In all cases, we used well-established
statistical tests with default settings. When parametric tests
were used for plots, estimates of variation are provided. For
comparison of phiX174 Ab levels and T cell proliferation
over time, we utilized mixed effects repeated measures
ANOVA models in R, using subject ID as a random effect
(value~day*module+ Error(id)); the reported p-values
were for differences between module high and module low
groups. The specific test used to derive each p-value is listed
in the text. Kaplan–Meier survival analyses were performed
using the R package, survival, and visualized using ggplot2
and the ggkm function (https://github.com/sachsmc/ggkm).
Graphical visualizations were performed using R base
graphics or the ggplot2 package.
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