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Abstract
Decades of research show that genes play an vital role in the etiology of attention deficit hyperactivity disorder (ADHD) and
its comorbidity with other disorders. Family, twin, and adoption studies show that ADHD runs in families. ADHD’s high
heritability of 74% motivated the search for ADHD susceptibility genes. Genetic linkage studies show that the effects of
DNA risk variants on ADHD must, individually, be very small. Genome-wide association studies (GWAS) have implicated
several genetic loci at the genome-wide level of statistical significance. These studies also show that about a third of
ADHD’s heritability is due to a polygenic component comprising many common variants each having small effects. From
studies of copy number variants we have also learned that the rare insertions or deletions account for part of ADHD’s
heritability. These findings have implicated new biological pathways that may eventually have implications for treatment
development.

Attention deficit hyperactivity disorder (ADHD) is a
childhood-onset condition with impairing symptoms of
inattention, impulsivity, and hyperactivity. Decades of
research have documented and replicated key facts about
the disorder (for a review, see ref. [1]). It occurs in about
5% of children with little geographic or cross-cultural var-
iation in prevalence and often co-occurs with other condi-
tions, including mood, anxiety, conduct, learning, and
substance use disorders. Longitudinal studies show that
two-thirds of ADHD youth will continue to have impairing
symptoms of ADHD in adulthood. People with ADHD are
at risk for a wide range of functional impairments: school
failure, peer rejection, injuries due to accidents, criminal
behavior, occupational failure, divorce, suicide, and pre-
mature death. Although many details of ADHD’s patho-
physiology are unknown, neuropsychological and
neuroimaging studies implicate brain circuits regulating
executive functioning, reward processing, timing, and
temporal information processing.

This article reviews data about the role that genes play in
the etiology of ADHD from two perspectives. Family, twin,
and adoption studies provide a firm foundation for asserting
that genes are involved in the etiology of ADHD. The view
from molecular genetics provides a basis for understanding
mechanisms whereby genes affect biological pathways that
lead to ADHD.

Family, twin and adoption studies of ADHD

Evidence for heritability from family, adoption, and
twin studies

A study of 894 ADHD probands and 1135 of their siblings
aged 5–17 years old found a ninefold increased risk of
ADHD in siblings of ADHD probands compared with
siblings of controls [2]. Adoption studies suggest that the
familial factors of ADHD are attributable to genetic factors
rather than shared environmental factors [3, 4] with the
most recent one reporting rates of ADHD to be greater
among biological relatives of non-adopted ADHD children
than adoptive relatives of adopted ADHD children. The
adoptive relatives had a risk for ADHD like the risk in
relatives of control children [4].

Twin studies rely on the difference between the within-
pair similarities of monozygotic (MZ) twin pairs, who are
genetically identical, and dizygotic (DZ) twin pairs, who
share, on average, 50% of their segregating genes. The
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mean heritability across 37 twin studies of ADHD or
measures of inattentiveness and hyperactivity is 74%
(Fig. 1). A similar heritability estimate of around 80% was
seen in a study of MZ and DZ twins, full siblings, and
maternal and paternal half-siblings [5]. The heritability is
similar in males and females and for the inattentive and
hyperactive-impulsive components of ADHD [6–8].

Only a few of the twin studies in Fig. 1 used categorical
measures of ADHD [9–12]. Their heritability estimates
range from 77 to 88%, which is consistent with the larger
number of studies using symptom count measures of
ADHD. Twin studies have explored whether ADHD is best
viewed as a categorical disorder or as an extreme of a
continuous trait. A study of 16,366 Swedish twins found a
strong genetic link between the extreme and the sub-
threshold variation of DSM-IV ADHD symptoms [13]. This
study confirmed an early study of 583 same-sexed twin
pairs using ADHD-III-R symptoms [14]. Both studies
suggest that the diagnosis of ADHD is the extreme of a
continuous distribution of ADHD symptoms in the popu-
lation and that the etiologic factors involved in the disorder
also account for the full range of symptoms. These data are
consistent with clinical studies showing the clinical impli-
cations of subthreshold ADHD [15].

ADHD’s clinical features and course

Reporter effects

Parent and teacher ratings of ADHD symptoms result in
high heritability estimates (70–80%) [6]. In contrast, studies
using self-ratings in adolescence and adulthood show lower
heritabilities (<50%) [16–19]. Two twin studies examined
these rater effects [20, 21]. They showed that self-ratings, as
well as different-parent and different-teacher ratings within
twin pairs, were associated with lower heritability estimates

(~30–40%) compared with heritabilities based on same-
parent and same-teacher ratings (~70–80%) [20–22]. Low
reliability of self-reports may explain why heritability esti-
mates are lower in studies of self-rated ADHD symptoms.
Using different informants for ADHD symptom ratings of
each twin in a pair introduces rater effects (i.e., each rater
experiences and reports different ADHD symptoms) or rater
bias (i.e., a rater consistently over- or underestimates
ADHD symptoms or similarities between twins). These
effects could explain why heritability estimates are lower in
studies relying on different informants for each twin in a
pair compared with studies using the same raters [23].

Developmental effects

The first twin studies of ADHD in adults used self-reports
and estimated heritability at 30–40% (Fig. 2), (e.g. [24]),
which is substantially lower than the heritability among
children and adolescents. In contrast, one study estimated
heritability to be 80% after combining self and parent rat-
ings into a composite index of ADHD. Another study found
the heritability of clinically diagnosed ADHD in adults to
be 72% [25]. These findings (Fig. 2) suggest that the her-
itability of ADHD is stable during the transition from
childhood into adulthood. They explain previous reports of
low heritability for ADHD symptoms in adults as due to
measurement error from rater effects. The higher herit-
abilities for clinically diagnosed adult ADHD confirm
family studies suggesting that persistent ADHD is highly
familial [5, 26, 27].

Twin studies show that both stable and dynamic genetic
risk factors influence ADHD over the course of the devel-
opment from childhood to early adulthood [7, 28–30]. These
study findings explain the developmental structure of
genetic risk factors for ADHD with both stable and dynamic
processes. The stable component of the genetic risk sug-
gests that persistent ADHD and its pediatric form are
genetically linked. The dynamic component suggests that
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the set of genetic variants accounting for the onset of
ADHD differs from those accounting for the persistence and
remission of the disorder. For a review of the genetics of
adult ADHD, see Franke et al. [26].

Psychiatric comorbidity

Multivariate twin and sibling studies have found a general
genetic factor that influences ADHD and a broad spectrum
of neuropsychiatric conditions [31, 32]. These studies have
shown that a latent shared genetic factor accounts for up to
45% of co-variance across childhood externalizing, inter-
nalizing, and phobia symptoms [31, 33] and 31% of co-
variance in childhood neurodevelopmental symptoms [34].
Similar results have been reported for register-based clinical
diagnoses, with one study showing that a general genetic
factor explained 10–36% of disorder liability across several
psychiatric diagnoses [32]. Two studies have assessed the
contribution of measured genetic variants for a general
psychopathology dimension. One study estimated the SNP-
heritability as 18% for maternal ratings of total problems on
the Child Behavior Checklist, which measures internalizing,
externalizing, and attention problems [35]. Similarly,
another study estimated the SNP heritability as 38% for a
general psychopathology factor derived from childhood
psychopathology symptoms assessed by multiple raters
[36]. These studies also support spectrum-specific genetic
factors, such as genetic factors that load specifically on
externalizing disorders [31]. The finding of externalizing-
specific genetic factors for ADHD is consistent with a large
number of twin and family studies demonstrating genetic
overlaps of ADHD with oppositional-defiant disorder
symptoms [37], conduct disorder [38], antisocial behavior
[39], and substance use problems [40–42].

Twin studies have tested for genetic overlap between
ADHD and autism spectrum disorders (ASD) [43, 44],
which often co-occur [45]. Studies of community samples
of youth, from the United States of America [46], the
United Kingdom [47], and Sweden [11, 48] show that
genetic factors influence this comorbidity. Ronald et al.
[47]. found genetic correlations between ADHD and ASD
above 0.50. Similar results have been found in adult twin
studies [49]. A register-based study in Sweden found that
individuals with ASD and their relatives were at increased
risk of ADHD. The pattern of association across relatives
supported the existence of a genetic overlap between
clinically ascertained ASD and ADHD [50]. Some features
of ASD are differentially linked to either the inattentive or
the hyperactive-impulsive components of ADHD [51, 52].
For instance, Polderman et al. [51]. found that the symp-
toms reflecting the repetitive and restricted aspects of ASD
showed the strongest genetic association with ADHD and a
Swedish twin study found that the subcomponents of

ADHD and ASD are influenced by specific genetic factors
[48].

Fewer studies have explored how genetic factors con-
tribute to the co-occurrence between ADHD and inter-
nalizing disorders. A large family study found an increased
risk of attempted and completed suicide in first- and second-
degree relatives of ADHD probands [53]. The pattern of
familial risks across different levels of relatedness suggests
that shared genetic factors are important for these associa-
tions [53]. Family studies that studied the association
between ADHD and depression suggest that the co-
occurrence is influenced by shared familial factors [54,
55]. Twin studies of this issue suggest that shared genetic
factors explain the overlap of ADHD with depression,
anxiety, and internalizing symptoms [56–60]. For example,
Cole et al. [59]. found that shared genetic factors explained
most of the association between traits of ADHD and
depression. Similar results were found by Spatola et al.
[60]., who used a multivariate twin analysis to study the
overlap between different subscales of the Child Behavior
Check List (CBCL), such as affective problems, anxiety
problems, and attention-deficit/hyperactivity problems.

In contrast to the wealth of information about the familial
co-transmission of ADHD and many other disorders, very
little is known about ADHD’s familial links to intellectual
disability (ID). A meta-analysis reported that the intelli-
gence quotient (IQ) of youth with ADHD is nine points
lower than typically developing peers [61] and much evi-
dence suggests it is valid to diagnose ADHD in the context
of ID [62]. Faraone et al. [63] studied the genetic associa-
tion of ADHD and ID in Swedish medical registry data.
Individuals with ID were at increased risk for ADHD and
relatives of ID cases had an increased risk for ADHD
compared with relatives of those without ID. Model fitting
analyses attributed 91% of the correlation between the
liabilities of ADHD and ID to genetic factors. This work
attributes nearly all the comorbidity between ADHD and ID
to genetic factors. Only a few twin and family studies have
explored how genetic factors contribute to non-psychiatric
comorbidity. The literature suggests novel etiologic links
with asthma [64], obesity [65], and epilepsy [66].

The search for common genetic variants

Genetic linkage studies

Genetic linkage was the first genome-wide method applied
to ADHD. This method searches the genome for evidence
that a segment of DNA is transmitted with a disorder within
families. A review of the linkage literature found substantial
disagreement about which chromosomal regions are linked
to ADHD [67]. Although there is some overlap in
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“suggestive” findings, no finding met genome-wide sig-
nificance [68]. To make sense of these results, Zhou et al.
[69] applied Genome Scan Meta-Analysis. They found
genome-wide significant linkage for a region on chromo-
some 16 between 64Mb and 83Mb. Because the linkage
method only detects genetic variants that have large effects,
the paucity of significant findings for other loci suggests
that common DNA variants having a large effect on ADHD
are unlikely to exist. Nearly all ADHD linkage studies have
selected either sibling pairs or small families from outbred
populations. Another approach is to assess for linkage in
multigenerational population isolates. Arcos-Burgos et al.
[70] used this strategy to study 16 multi-generational
families from Colombia. In some of these families, they
found evidence supporting linkage to chromosomes 4q13.2,
5q33.3, 8q11.23, 11q22, and 17p11. one region implicated
LPHN3. For a review of supporting evidence, see ref. [71].

Candidate gene association studies

Early molecular genetic studies of ADHD sought to
associate ADHD with genes that had some a priori plausi-
bility as being involved in its etiology. Because the drugs
that treat ADHD target dopaminergic or noradrenergic
transmission, many studies examined “candidate genes” in
these pathways. Results were frequently contradictory [26,
67]. In the meta-analyses of Gizer et al. [72], eight candi-
date DNA variants showed a statistically significant asso-
ciation with ADHD across multiple studies. These variants
implicated six genes: the serotonin transporter gene (5HTT),
the dopamine transporter gene (DAT1), the D4 dopamine
receptor gene (DRD4), the D5 dopamine receptor gene
(DRD5), the serotonin 1B receptor gene (HTR1B) and a
gene coding for a synaptic vesicle regulating protein known
as SNAP25. A meta-analysis covering all genetic associa-
tion studies of adults with ADHD reported a significant
association between adult ADHD and BAIAP2 (brain-spe-
cific angiogenesis inhibitor 1-associated protein 2). BAIAP2
is involved in neuronal proliferation, survival, and matura-
tion and dendritic spine morphogenesis and may affect
neuronal growth-cone guidance. These findings were sig-
nificant even after Bonferroni correction [73]. For both the
child and adult meta-analyses, the strength of each asso-
ciation, as measured by the odds ratio, is small, less than
1.5.

Many studies examined the dopamine transporter gene
(SLC6A3), especially a 40-base pair variable number of
tandem repeats regulatory polymorphism located in the 3′-
untranslated region of the gene. This variant produces two
common alleles with 9- and 10-repeats (9R and 10R). In
humans, the 10R allele of this polymorphism has been
associated with ADHD in youth [67] while the 9R allele is
associated with ADHD in adults [74]. A meta-analysis

showed that the 9R allele is associated with increased DAT
activity in human adults as measured by positron emission
tomography [75].

Genome-wide significant common variants

Genome-wide association studies (GWAS) scan the entire
genome to detect common DNA variants having very small
etiologic effects. By “common” we mean greater than 1% of
the population. To do this, GWAS assay hundreds of
thousands or even millions of single nucleotide poly-
morphisms (SNPs). Doing so has a statistical cost: to assert
genome-wide statistical significance, an observed associa-
tion must have a p value less than 0.00000005. This strin-
gent p value needs very large samples.

The initial GWAS of ADHD [76–86] did not discover
any DNA variants that achieved genome-wide significance,
even when most of these samples were combined in meta-
analysis having a sample size of 2064 trios (two parents and
an ADHD child), 896 ADHD patients, and 2455 controls
[87]. That study did find statistical significance for a group
of candidate genes previously nominated by members of the
International Multisite ADHD Genetics (IMAGE) project
[88]. For a review of early GWAS studies, see Franke et al.
[89]. Examination of the “molecular landscape” derived
from the top findings from these initial GWAS studies along
with other data concluded that genes regulating directed
neurite outgrowth were strongly implicated in the etiology
of ADHD [90]. Pathway and gene set analyses of GWAS
data implicated pathways involved in the regulation of
neurotransmitter release, neurite outgrowth and axon gui-
dance as contributors to the etiology of ADHD [91–93].

A consortium of ADHD researchers completed a GWAS
meta-analysis of 12 studies comprising 20,183 people with
ADHD and 35,191 controls. For methodologic details about
the studies contributing data to this meta-analysis, see
Demontis et al. [94]. Twelve loci achieved genome-wide
significance. None of the genome-wide significant SNPs
showed significant heterogeneity between studies. Among
the implicated genes, FOXP2 is especially notable because
prior work had implicated it in adult ADHD (Ribases, 2012
#26445) and in speech and language disorders [95]. A
FOXP2 knockout mouse study found that the gene regulates
dopamine in ADHD-associated brain regions [96].

As described by Demontis et al. [94], other genes
implicated by the genome-wide significant loci have rele-
vant biological roles. DUSP6 regulates neurotransmitter
homeostasis by affecting dopamine levels in the synapses.
SEMA6D is expressed in the brain. It regulates neuronal
wiring during embryonic development. ST3GAL3 harbors
missense mutations associated with ID. LINC00461 is
expressed in brain and includes variants associated with
educational attainment. Another gene implicated at that
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locus is MEF2C, which has been associated with ID and
several psychiatric disorders.

The consortium conducted several gene set analyses
including three sets of genes regulated by FOXP2: (1) genes
enriched in wild-type versus control FOXP2 knockout
mouse brains; (2) genes showing differential expression in
wild-type versus FOXP2 knockout mouse brains; and (3)
genes enriched in basal ganglia or inferior frontal cortex
from human fetal brain samples. None of these sets were
associated with ADHD. Also, non-significant was a set of
candidate genes for ADHD previously proposed by a panel
of ADHD experts [88]. Among these, only SLC9A9 showed
a weak association with ADHD. No Gene Ontology gene
sets attained statistical significance but a set of genes
showing high intolerance to loss of function did associate
with ADHD.

Common variant ADHD as a polygenic disorder

The GWAS analyses also showed that much of ADHD’s
heritability is due to the polygenic effects of many common
variants each having very small effects. The SNP herit-
ability was 0.22, which is about one-third of ADHD’s
heritability computed from twin studies [97]. The polygenic
architecture for ADHD was confirmed by estimating poly-
genic risk scores in one subset of the sample and showing
that it predicted ADHD, in a dose-dependent manner, in a
validation subset. As seen for other psychiatric disorders
[98], the variance explained by these risk scores was low
(5.5%).

Further evidence for the validity of the ADHD’s poly-
genic background comes from analyses showing that the
relevant SNPs were enriched for annotations implicating
conserved regions of the genome (which are known to have
biological significance) and for regulatory elements specific
to the central nervous system. The discovery of a polygenic
susceptibility to ADHD does not show which DNA variants
comprise the susceptibility. It does, however, support the
idea that more genome-wide significant variants will be
discovered in larger samples.

Martin et al. [99] showed that ADHD’s polygenic lia-
bility derived from a clinical sample predicted ASD traits in
a population sample, which confirms twin study data [48,
51] and gene set analyses [100] showing genetic overlap
between ADHD and ASDs. The polygenic liability score
derived from Martin et al.’s ADHD case-control clinical
sample also predicted both inattention and hyperactivity in
the general population. This latter finding was replicated by
Groen-Blokhuis et al. [101] who found that ADHD poly-
genic risk scores significantly predicted both parent and
teacher ratings of attention in preschool- and school-aged
children in the population. Likewise, Stergiakouli et al.
[102] showed that the polygenic liability for ADHD traits in

a population sample predicted ADHD clinical diagnoses in
a case-control study. These results confirmed conclusions
from twin studies that the liability for clinically defined
ADHD is the extreme of a trait that varies continuously in
the population [13].

Other polygenic score studies are confirming cross-
disorder genetic associations previously predicted by family
and twin studies. We have long known that ADHD co-
occurs with conduct disorder. Both family and twin studies
have implicated shared genes in this association [38, 103–
105]. Consistent with this prior work, Hamshere et al. [106]
reported a high polygenic risk for ADHD among children
with comorbid conduct problems. In a large population
study, Larsson et al. [107] reported that the relatives of
ADHD individuals had an increased risk for schizophrenia
and bipolar disorder. Consistent with that report, the poly-
genic risk score derived from a large GWAS of schizo-
phrenia significantly discriminated ADHD cases from
controls [108]. This discrimination was strongest for alleles
that were risk alleles for both adult schizophrenia and adult
bipolar disorder, which confirms prior family and twin data
suggesting a genetic link between ADHD and bipolar dis-
order [109]. Moreover, a joint GWAS of ADHD and bipolar
disorder reported a significant correlation between the
polygenic scores of ADHD and bipolar disorder and also
identified genome-wide significant loci for the two disorders
[110]. Similarly, prior reports of familial co-transmission of
ADHD and depression [54] have been extended by showing
shared SNP heritability between the two disorders [98].
Using a novel drug challenge paradigm, Hart et al. [111]
found that the polygenic scores for both schizophrenia and
ADHD were associated with the euphoric response to
amphetamine, which suggests that the genetic association
between these disorders may be due to variants in the neural
systems regulating the euphoric response to amphetamine.

Using GWAS results from many studies, it is possible to
compute genetic correlations that indicate the degree to
which the polygenic architectures of two disorders or traits
overlap. When Demontis et al. [94] correlated ADHD’s
polygenic risk with 220 disorders and traits, many highly
significant correlations emerged. Figure 3 shows some of
the most significant of these correlations (each passing the
Bonferroni significance threshold). Some of these genetic
correlations fit with prior expectations (e.g., with neuroti-
cism, depression and the cross disorder GWAS). Others are
consistent with the clinical epidemiology of ADHD (e.g.,
with obesity, IQ, smoking and school achievement). In
some cases, these significant correlations offer new direc-
tions for understanding comorbidity. For example, some
have interpreted the comorbidity between ADHD and
obesity, which has been confirmed via meta-analysis [112],
as being caused by the impulsivity associated with ADHD.
The genetic correlation data suggest that shared genetic risk
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factors, and an underlying shared pathophysiology, account
for this comorbidity.

Some of the genetic correlations in Fig. 3 are entirely
novel. These include ADHD’s genetic correlations with
medical outcomes (lung cancer, coronary artery disease,
parents’ age at death) and with demographics (number of
children in the family, age first child born). There are,
however, some consistent findings in the prior literature,
which suggest that people with ADHD are more likely to
have larger families [113] and more likely to die prema-
turely [114].

The search for rare genetic variants

Initially, information about rare DNA variants (<1% of the
population) came from reports of syndromic chromosomal
anomalies associated with multiple medical and psychiatric
problems along with ADHD. Examples are velo-cardio
facial syndrome fragile-X syndrome, Turner syndrome,
tuberous sclerosis, neurofibromatosis, Klinefelter syndrome,
and Williams syndrome (Fig. 4). In a single family, a peri-
centric inversion of chromosome 3 co-segregating with
ADHD symptoms [115, 116] implicated SLC9A9. Muta-
tions of that gene lead to an animal model of ADHD [117,
118] and have been associated with both autism [119, 120]
and ADHD [121].

The common variant genotyping arrays used in GWAS
studies can detect large copy number variants (CNVs).
Because CNVs often delete or duplicate a large genomic
segment spanning part of a gene or even entire genes, they
often have clear implications for gene functioning. Studies

of CNVs in ADHD assessed ADHD youth and controls for
the presence of large (>500 kb), rare CNVs [77, 122–127].
Each study, except one, found an odds ratio greater than
one, indicating a greater burden of large, rare CNVs among
ADHD patients compared with controls. The discrepant
study used a different definition of burden [125]. Only three
studies found a statistically significant burden among
ADHD patients for large CNVs (for a summary, see Thapar
et al. [128]). As their review shows, deletions and dupli-
cations are equally over-represented in ADHD samples
although statistical significance emerged only for duplica-
tions. Thapar et al. also found enrichment for duplications
(but not deletions) previously implicated in schizophrenia
and, to a lesser extent, ASDs. The top biological pathways
implicated by these CNV studies were: respiratory electron
transport, organonitrogen compound catabolic process,
transmembrane transporter activity, carbohydrate derivative
catabolic process, ligand-gated ion channel activity,
methyltransferase activity, transmembrane transport and ion
gated channel activity.

A study of 489 ADHD patients and 1285 controls found
rare CNVs in the parkinson protein two gene (PARK2)
[123]. The result was significant after empirical correction
for genome-wide testing. PARK2 regulates the cell’s
ubiquitin-proteasome system which helps dispose damaged,
misshapen, and excess proteins. Two other genes involved
in this pathway (FBXO33 and RNF122) had been impli-
cated in other studies [84, 129]. A study of adult ADHD did
not find a significant effect for large CNVs, but did find a
significant effect for small CNVs [126].

The CNV studies have implicated several biological
pathways. Williams et al. [127] found that ADHD patients
harbored duplications in the alpha-7 nicotinic acetylcholine
receptor gene (CHRNA7) and showed that the finding
replicated in four independent cohorts from the United
Kingdom, the United States, and Canada. Another
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replication was reported in an Italian sample [130]. The
implication of the nicotinic system is particularly interesting
given that nicotinic neurons modulate dopaminergic neu-
rons, ADHD patients have a high rate of smoking [131] and
nicotine administration reduces ADHD symptoms [132]. In
a sample of 99 children and adolescents with severe ADHD.
Lesch et al. [124] found several CNVs, including a 3Mb
duplication on chromosome 7p15.2-15.3 harboring neuro-
peptide Y (NPY). Investigation of other family members
yielded an association of this duplication with increased
NPY plasma concentrations and functional magnetic ima-
ging assessed brain abnormalities.

Thapar et al. [128] reported biological pathway studies of
ADHD CNV data pooled from five studies. These CNV
data were enriched for genes previously implicated in
schizophrenia, Fragile X intellectual disability and, to a
lesser degree, autism. Several biological pathways were
significantly enriched in the ADHD CNV findings, most
notably ion channel pathways, which had been implicated
in cross-disorder analyses of ADHD, autism, schizophrenia,
bipolar disorder, and depression [133]. The CNV analyses
also pointed to pathways regulating immune functioning
and oxidative stress. These pathways had previously been
implicated in ADHD by non-genetic studies, (e.g. refs.
[134–136]).

Elia et al. [122] showed that CNVs impacting metabo-
tropic glutamate receptor genes were significantly enriched
across multiple cohorts of patients. Supporting evidence
came from Akutagava-Martins et al. [137] who reported
that CNVs in glutamatergic genes were associated with the
cognitive and clinical impairments of ADHD. In a phar-
macogenomics GWAS, an SNP in glutamate receptor gene
GRM7 was one of the most significant findings [138].
Glutamatergic defects have been observed in a rat model of
ADHD [139, 140] and magnetic resonance spectroscopy in
humans shows dysregulation of glutamate and glutamate/
glutamine concentrations in ADHD patients(e.g. ref. [141]).

An exome sequencing study of ADHD [121] reported
results for 123 adults with persistent ADHD and 82 healthy
controls. Significantly more cases than controls had a rare
missense or disruptive variant in a set of ADHD candidate
genes. In an exome sequencing study of ADHD patients
without a family history of ADHD, Kim et al. [142]
reported six de novo missense SNVs in brain-expressed
genes: TBC1D9, DAGLA, QARS, CSMD2, TRPM2, and
WDR83. They also sequenced 26 genes implicated in ID
and ASDs but found only one potentially deleterious var-
iant. In an exome chip study, Zayats et al. [143] assayed a
sample of 1846 cases and 7519 controls to search for rare
genetic variants. They detected four study-wide significant
loci that implicated four genes known to be expressed in the
brain during prenatal stages of development: NT5DC1,
SEC23IP, PSD, and ZCCHC4. Hawi et al. [144] found

novel rare variants in the BDNF gene by sequencing 117
genes in 152 youth with ADHD and 188 controls.

Pharmacogenetics of ADHD

Several studies have clarified the genetics of the metabolism
of ADHD patients. Some patients are slow metbolizers of
atomoxetine due to variants in the cytochrome P450 iso-
enzyme 2D6, which is regulated by the CYP2D6 gene. As a
result, the half-life of atomoxetine ranges from 5.2 h in
rapid metabolizers to 21.6 h in slow metabolizers [145].
Some work has looked into CES1 variants regarding the
regulation of methylphenidate metabolism and CYP2D6/
CYP3A4 variants and the metabolism of ADHD, but the
evidence base has not generated consistent results for either
children [146] or adults [73].

Myer et al. [147] used meta-analysis to evaluate phar-
macogenetic studies of the efficacy response to methylphe-
nidate for the treatment of ADHD. They found 36 studies
comprising 3647 ADHD youth treated with methylpheni-
date. Statistically significant effects were found for:
rs1800544 in ADRA2A (odds ratio (OR): 1.69; confidence
interval (CI): 1.12−2.55), rs4680 COMT (OR: 1.40;
CI: 1.04−1.87), rs5569 SLC6A2 (OR: 1.73; CI: 1.26−2.37),
and rs28386840 SLC6A2 (OR: 2.93; CI: 1.76−4.90), and,
repeat variants VNTR 4 DRD4 (OR: 1.66; CI: 1.16−2.37)
and VNTR 10 SLC6A3 (OR: 0.74; CI: 0.60−0.90). The
following variants did not reach statistical significance:
rs1947274 LPHN3 (OR: 0.95; CI: 0.71−1.26), rs5661665
LPHN3 (OR: 1.07; CI: 0.84−1.37) and VNTR 7 DRD4
(OR: 0.68; confidence interval: 0.47−1.00). The significant
findings were not due to publication biases. Although the
odds ratios are small, these findings suggest that a perso-
nalized medicine approach to ADHD is a reasonable goal of
future research.

Conclusions and future directions

There can be no doubt that DNA variants in genes or reg-
ulatory regions increase the risk for ADHD. In rare cases, a
single genetic defect may lead to ADHD in the absence of
other DNA variants. We do not know how many of these
rare variants exist or if such variants require environmental
triggers for ADHD to emerge. It is equally clear that no
common DNA variants are necessary and sufficient causes
of ADHD. Genome-wide association studies show that a
genetic susceptibility to ADHD comprised of many com-
mon DNA variants accounts for about one-third of the twin
study estimates of ADHD’s heritability. We do not know
yet which variants or how many of them make up the
polygenic component. The heritability that cannot be
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explained by main effects of rare or common variants is
likely due to gene−gene interactions, gene−environment
interactions or gene−environment correlations.

The convincing evidence for genes as risk factors for
ADHD does not exclude the environment as a source of
etiology. The fact that twin estimates of heritability are less
than 100% asserts quite strongly that environmental factors
must be involved. ADHD’s heritability is high, and that
estimate encompasses gene by environment interaction.
Thus, it is possible that such interactions will account for
much of ADHD’s etiology. Environmental risk factors
likely work through epigenetic mechanisms, which have
barely been studied in ADHD [148]. The importance of the
environment can also be seen in the fact that, as for other
complex genetic disorders, much of ADHD’s heritability is
explained by SNPs in regulatory regions rather than coding
regions [149].

Another hypothesis for future research to explore is the
possibility that ADHD is an omnigenic disorder. The
omnigenic model of Boyle et al. [150] posits the existence
of a small number of “core genes” having “biologically
interpretable roles in disease” along with a much greater
quantity of “peripheral genes” regulating the core genes.
Because there are many more peripheral genes, they
account for a greater proportion of the variability in herit-
ability than do the core genes. Because core genes are more
likely than peripheral genes to be relevant for developing
biomarkers and treatment targets, separating these two
classes from one another will require more research.

Gene discovery for ADHD has succeeded but has left us
with unexpected results. None of the genome-wide sig-
nificant findings had been predicted a priori and a set of
ADHD candidate genes, implicated primarily by the dis-
order’s neuropharmacology, did not reach statistical sig-
nificance. These findings challenge the idea that the core of
ADHD’s pathophysiology rests within the machinery of
catecholaminergic transmission. Instead, it is possible that
the catecholaminergic dysregulation believed to underlie
ADHD is a secondary compensation to ADHD’s primary
etiology (see discussion by Hess et al. [151]).

In the years to come, we can expect breakthroughs in the
genetics of ADHD to come from several fields of study. Our
knowledge of rare variants should increase dramatically as
we learn more about CNVs and as reports from exome, full
genome and targeted sequencing studies unfold. With the
discovery of genome-wide significant common variants, we
look forward to studies that discover the functional variants
responsible for these findings. With the discovery of these
functional variants, we will learn more about the mechan-
isms whereby genetic risk variants increase the risk for
ADHD.

Accumulating evidence from family, twin, and molecular
genetic studies suggests that the disorder we know as

ADHD is the extreme of a dimensional trait in the popu-
lation. The dimensional nature of ADHD has wide-ranging
implications. If we view ADHD as analogous to cholesterol
levels, then diagnostic approaches should focus on defining
the full continuum of “ADHD-traits” along with clinically
meaningful thresholds for defining who does and does not
need treatment and who has clinically subthreshold traits
that call for careful monitoring. The dimensional nature of
ADHD should also shift the debate about the increases in
ADHD’s prevalence in recent years. Instead of assuming
that misdiagnoses are the main explanation for the increased
prevalence, perhaps researchers should explore to what
extent the threshold for diagnosis has decreased over time
and whether changes in the threshold are clinically sensible
or not. A shift from categorical to dimensional constructs
harmonizes with the Research Domain Criteria (RDoC)
initiative of the National Institute of Mental Health [152].
RDoC seeks to define and validate dimensional constructs
mediating psychopathology along with the neurobiological
underpinnings of these constructs.

Unraveling the genetics of ADHD will be challenging.
Technological advances are moving at a rapid pace. The
next decade of work should give us more accurate measures
of brain structure and function along with much more
genomic, transcriptomic and epigenomic data. These
advances will set the stage for breakthroughs in our
understanding of the etiology of ADHD and in our ability to
diagnose and treat the disorder.
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