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Abstract

Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that 

do not involve changes in the genotype. Epigenetics is ofincreasing relevance to neuroscience, 

with epigenetic mechanisms being implicated in brain development and neuronal differentiation, 

as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple 

levels of gene expression; from direct modifications of the DNA and histone tails, regulating the 

level of transcription, to interactions with messenger RNAs, regulating the level of translation. 

Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging 

and agerelated neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, and 

Huntington’s disease, where it may mediate interactions between genetic and environmental risk 

factors, or directly interact with disease-specific pathological factors. We review current 

knowledge about the major epigenetic mechanisms, including DNA methylation and DNA 

demethylation, chromatin remodeling and noncoding RNAs, as well as the involvement of these 

mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative 

diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for 

these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable 

direction to counter disease pathology. Finally, methodological challenges of epigenetic 

investigations and future perspectives are discussed.
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1. Epigenetics

Conrad Hal Waddington coined the term “epigenetics” in 1942, an event commonly viewed 

as the birth of epigenetics as it developed from a phenomenon to an immensely studied 

branch of science (Choudhuri, 2011). A merger between the terms “genetics” and 

“epigenesist”, the concept of epigenetics in a way represents the association of two views on 

development that have been clashing at least since the time of Hippocrates and Aristotle 

(Muller and Olsson, 2003). Hippocrates proposed what became known as the 

preformationist view of development; all parts of a mature organism are already present at 

the embryonic stage, albeit in a miniature stage, and they simply grow during development. 

Aristotle argued against this preformationist view, providing an alternative explanation that 

lies at the foundation of the epigenesis concept: embryonic development involves the 

formation of new parts. After numerous scientific discoveries these views evolved over the 

centuries. A contemporary preformationist would hold that all that is needed to generate a 

mature organism is its genetic code, whereas a supporter of epigenesis would argue that the 

genome only holds the information of building blocks - but that how these are put together 

depends on environmental influences. The contemporary perspective of “epigenetics” is that 

of the field of science that studies how changes in gene expression occur without changes in 

the DNA sequence (Choudhuri, 2011). Such changes can be induced by environmental 

factors, while some are more programmed, as seen during cell differentiation. As such, these 

epigenetic alterations can be highly stable, such as those resulting from genetic imprinting, 

or dynamic such as the epigenetic changes associated with memory. Many Epigenetic 

modifications can be inherited through mitosis and some have even found to be 

transgenerational (Handel et al., 2010; Hsieh and Eisch, 2010; Hu et al., 2012; Ma et al., 

2010). Thus, whereas genetic alterations usually reflect permanent changes of the DNA 

sequence, epigenetic changes are mediated through processes that are in principle reversible 

(Henikoff and Matzke, 1997). While environmental influences can potentially alter the 

phenotype of an organism by interacting with and by acting on both the genome and 

epigenome (Liu et al., 2008), the reversible nature of epigenetic changes makes them more 

suitable as candidates for clinical interventions (Feinberg, 2008). Over the past decade there 

have been ample studies investigating the contributions of epigenetic modifications to aging 

and age-related neurodegenerative diseases, including Alzheimer’s disease (AD), 

Parkinson’s disease (PD) and Huntington’s disease (HD). The epigenetic machinery covers 

multiple levels of control, including DNA methylation and hydroxymethylation, chromatin 

remodeling, and non-coding RNA (ncRNA) regulation (Adwan and Zawia, 2013). See Fig. 1 

for a general overview of the epigenetic mechanisms discussed below.

1.1. DNA methylation

The best characterized epigenetic modification, DNA methyl-ation involves the addition of a 

methyl group at the 5 position on the pyrimidine ring of cytosines, creating 5-methylcytosine 
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(5-mC) (Razin and Riggs, 1980). These modifications primarily occur at cytosine-

phosphate-guanine (CpG) islands. Recently, however, non-CpG methylation has received 

increased attention (Guo et al., 2013). Apart from cytosines, there are also reports of guanine 

and adenine methylation, resulting in 7-methylguanine (7-mG) and 3- methyladenine, 

respectively (Thomas et al., 2013). In this review, however, DNA methylation refers 

exclusively to 5-mC, unless mentioned otherwise. Generally, DNA methylation is associated 

with transcriptional repression and is mostly found in heterochromatin (Miller and Sweatt, 

2007), while the euchromatin typically contains low amounts of methylated DNA. Some 

genes, however, are suspected to show enhanced expression when hypermethy-lated (Silva et 

al., 2008). Additionally, DNA methylation within gene bodies (the transcribed portion of a 

gene) has been implicated in alternative splicing (Flores et al., 2012; Lyko et al., 2010). How 

DNA methylation exactly affects gene transcription is highly dependent on the location in or 

around the gene (Ziller et al., 2013). In promoter regions, methylated DNA can directly 

disrupt the transcriptional process by interfering with the binding of transcription factors 

(Klose and Bird, 2006). Additional repression can be established through the attraction of 

methyl-CpG-binding domain proteins (MBDs) and subsequent activation of the histone tail 

modifying machinery, leading ultimately to chromatin compaction (Portela and Esteller, 

2010). How gene expression is enhanced through methylation of gene bodies remains 

unclear.

Although DNA methylation is the most stable epigenetic modification, the DNA methylation 

profile, or ‘methylome’, is highly dynamic (Bhattacharya et al., 1999; Levenson et al., 2006; 

Weaver et al., 2004). DNA methylation profiles are, at least partly, heritable, both after cell 

division, as well as in a transgenerational fashion (Bergman and Cedar, 2013; Guerrero-

Bosagna and Skinner, 2012). Heritable DNA methylation needs to be copied to the newly 

synthesized DNA strand, a process that is referred to as maintenance DNA methylation. The 

addition of completely new DNA methylation marks is called de novo DNA methylation. 

DNA methyltransferases (DNMT) are responsible for maintenance and de novo DNA 

methylation (Mastroeni et al., 2010). There are four known types of DNMTs; DNMT1, 

DNMT2, DNMT3a and DNMT3b, all of which use S-adenosylmethionine (SAM) as the 

methyl donor (Klose and Bird, 2006; Mastroeni et al., 2010). Note, however, that DNMT2 

was actually found to be a RNA methyltransferase (Jurkowski et al., 2008). Furthermore, 

there is another DNMT, DNMT3-like (DNMT3L), which exhibits no enzymatic activity, but 

detects unmethylated lysine 4 of histone H3 tails (H3K4) and recruits or activates DNMT3a 

(Ooi et al., 2007). Interestingly, the DNMT3B splice variants DNMT3B3 and DNMT3B4 

are also inactive and play a regulatory role in de novo DNA methylation (Gordon et al., 

2013). DNMT1 is the most common variant in somatic cells and primarily involved in 

maintenance DNA methylation, and DNMT3a and DNMT3b are responsible for de novo 
DNA methylation (Okano et al., 1999). DNMT3a and DNMT3b isoforms are expressed in a 

more cell-type-specific manner (Guo et al., 2013; Okano et al., 1999).

It is worth mentioning that the methyl donor of the DNMTs, SAM, is generated through a 

complex cycle and is the methyl donor of numerous additional transmethylation reactions 

(Mastroeni et al., 2011; Wang et al., 2013). This cycle starts with the conversion of 

tetrahydrofolate (THF) to 5,10-methylenetetrahydrofolate (MTHF) by vitamin B6-dependent 

serine hydroxymethyltransferase (SHMT), and the subsequent conversion of 5,10-MTHF to 
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5-MTHF by B2-dependent MTHF reductase (MTHFR). 5-MTHF acts as the methyl donor 

for the methylation of homocysteine (Hcy), producing methionine, by cobalamin-dependent 

methionine synthase (MetH). SAM is subsequently generated from methionine by 

methionine adenosyltransferase (MAT). During methyltransferase reactions SAM is 

converted to S-adenosylhomocysteine (SAH), which is further hydrolyzed to Hcy and 

adenosine by SAH hydrolase (SAHH). Folate serves as cardinal input for this cycle and the 

proper elimination of Hcy and adenosine is important to maintain homeostasis. For instance, 

global DNA hypomethylation could be induced through folate deficiency and high levels of 

Hcy (Mastroeni et al., 2011).

As DNA methylation can be relatively simple and robustly assessed using genomic DNA, it 

has been the primary focus of human epidemiological epigenetic research (Lunnon and Mill, 

2013). Early investigations into DNA methylation showed its cardinal importance in the 

proliferation and differentiation of neural stem cells (Mattson, 2003). More recently, it has 

been established that DNA methylation is pivotal for synaptic plasticity, neuronal repair, 

neuronal survival, and learning and memory (Fan et al., 2001; Feng et al., 2010; Iskandar et 

al., 2010). Such dynamic processes are more dependent on de novo methylation, although 

the importance of maintenance DNA methylation should not be underestimated, as a loss of 

DNMT1 was shown to result in increased histone acetylation, a disruption of the nuclear 

organization and eventually cell death (Chan et al., 2001; Espada et al., 2007; Fan et al., 

2001; Jackson et al., 2004; Milutinovic et al., 2004). Because these are factors disturbed in a 

neurodegenerative state, DNA methylation is a valid target when investigating 

neurodegeneration.

1.2. DNA demethylation

While DNA methylation is a well-established epigenetic mechanism, the existence of active 

DNA demethylation in animals has long been a point of controversy (Ooi and Bestor, 2008). 

Observations such as high levels of DNMTs in nondividing cells (Sharma et al., 2008) and a 

significant decrease in methylated DNA levels when DNA methylation is blocked (Levenson 

et al., 2006; Miller and Sweatt, 2007), despite the stability of the 5-mC mark, have led to an 

avid search for the players responsible for an active demethylation process. This search 

generated several mechanisms, including an RNA-dependent pathway by which the methyl 

group is removed from 5-mC, a pathway involving the nucleotide excision repair 

mechanism, and a base excision repair based pathway (Barreto et al., 2007; Bhattacharya et 

al., 1999; Gavin et al., 2013; Zhu et al., 2000a,b).

Although still a point of discussion, the base excision repair pathway is a prime candidate as 

the primary road to demethyla-tion in post-mitotic neurons (Gavin et al., 2013), which does 

not exclude the possibility of multiple overlapping demethylation pathways. DNA 

demethylation is thought to be initiated by the oxidation of 5-mC into 5-

hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) proteins (Guo et al., 

2011; Ito et al., 2011). There are 3 TET proteins, TET1, TET2 and TET3, which are 

differentially expressed and regulated throughout the body (Delatte and Fuks, 2013). 

Interestingly, in the last few years 5-hmC was shown to be an important epigenetic marker 

that is functionally different from 5-mC (van den Hove et al., 2012). While DNA 
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hydroxymethylation is generally associated with increased gene activity, work by Jin et al. 

(2011b) indicates that this correlation does not always hold and depends on the location of 

5-hmC in the gene and the CpG content. 5-hmC is present in most tissues and cell types, but 

is especially enriched in the brain (Globisch et al., 2010), with cerebellar Purkinje cells 

exhibiting some of the highest levels (Kriaucionis and Heintz, 2009). Furthermore, in the 

frontal cortex, 5-hmC is selectively enriched in promoter and intragenic regions (Jin et al., 

2011b). Interestingly, 5-hmC levels are particularly low in stem cell-rich areas (Globisch et 

al., 2010; Orr et al., 2012). In addition to the formation of 5-hmC, it has recently been 

discovered that TET enzymes can further oxidize 5-hmC to 5-formylcytosine (5-fC), and 5-

fC to 5- carboxylcytosine (5-caC) (Ito et al., 2011). Although it is generally accepted that 5-

hmC is a functional epigenetic marker, such a role remains to be established for 5-fC and 5-

caC (Raiber et al., 2012; Song et al., 2013). Apart from oxidation, 5-mC and 5-hmC can be 

deaminated instead, by either activation-induced cytidine deaminase (AICDA) or 

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like protein (APOBEC), 

resulting in thymidine or 5-hydroxymethyluracil (5-hmU) (Guo et al., 2011; Popp et al., 

2010). 5-caC, thymidine or 5-hmU present a mismatch in the base pairing of the DNA 

sequence (5-caC:G, T:G or 5-hmU:G, respectively). Such a mismatch can be detected and 

mended through the removal of the transformed bases by thymidine or uracil glycosylases 

(Cortellino et al., 2011; Guo et al., 2011; He et al., 2011; Matsubara et al., 2004). 

Alternatively, 5-fC and 5-caC can be changed back to cytosine by removal of formic acid or 

decarboxylation, respectively (Ito et al., 2011). In addition to the aforementioned enzymes, 

the growth arrest and DNA damage 45 (GADD45) proteins are crucially involved in 

directing the activity of these enzymes, thereby assisting in the localization of demethylation 

activity to specific gene promoters (Barreto et al., 2007; Ma et al., 2009; Rai et al., 2008; 

Schmitz et al., 2009). Clearly, the exact mechanisms underlying DNA demethylation remain 

to be elucidated.

1.3. Chromatin remodeling

Chromatin can be seen as a string ofnucleosomes, which mainly consist of DNA and the 

histones around which it is wrapped. There are five types of histone proteins; H2A, H2B, 

H3, and H4 forming the octameric core of the nucleosome, and H1 serving as a linker and 

stabilizer, binding to DNA among nucleosomes (Luger et al., 1997; Wang et al., 2013). The 

conformation of these histones largely determines the accessibility of the DNA for 

transcription, and can be adjusted through reversible modifications of their N-terminal tails. 

Such modifications include lysine (K), arginine (R) or histidine (H) methylation (Murray, 

1964), K acetylation (Gershey et al., 1968), serine (S), threonine (T) or tyrosine (Y) 

phosphorylation (Kleinsmith et al., 1966), ubiquitination (Hunt and Dayhoff, 1977), 

adenosine diphosphate (ADP)-ribosylation (Ueda et al., 1975), crotonylation (Tan et al., 

2011), hydroxylation (Houston et al., 2013), proline isomerization (Kouzarides, 2007) and K 

SUMOylation (Shiio and Eisenman, 2003), which together constitute the histone code. A 

specific state of the histone code may either lead to gene activation or silencing (Jenuwein 

and Allis, 2001). The endless possible combinations of the various modifications and target 

sites, allows the histone code for highly versatile fine tuning of gene expression, but is also 

critically involved in DNA repair and replication (Day and Sweatt, 2011). Owing to the 

attention that chromatin-modifying enzymes have received over the past years, many 
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enzymes that had been identified as modifying histones, were later found to have many 

additional substrates. In view of this, Allis et al. (2007) have proposed an updated 

nomenclature that better reflects the full spectrum of functions of these enzymes. For 

instance, histone (lysine) acetyltransferases (HATs) were renamed to lysine acetyltrans- 

ferases (KATs). As, however, this new nomenclature has only sporadically been adopted, 

both old and new names will be stated to avoid confusion.

Acetyl coenzyme A serves as donor of the acetyl group, which is transferred to lysines of 

histone tails by KATs (Marmorstein and Roth, 2001). There are a multitude of proteins with 

KAT activity, which can be divided into five main groups, comprising KAT2A (or general 

control of amino acid synthesis [GCN] 5), KAT2B (or P300/ CBP-associated factor 

[PCAF]), KAT6–8, cyclic adenosine monophosphate (cAMP) response element-binding 

protein binding protein (CREBBP or CBP) and adenovirus early region 1A (E1A)-binding 

protein P300 (EP300 or P300) (Huynh and Casaccia, 2013).

Currently, there are 18 known histone deacetylases (HDACs) in humans, generally 

subdivided into four classes; class I (HDACs 1,2, 3 and 8), class IIa (HDACs 4, 5, 7 and 9), 

class IIb (HDACs 6 and 10), class III (sirtuins [SIRTs] 1,2, 3, 4, 5, 6 and 7) and class IV 

(HDAC11) (Dokmanovic et al., 2007). Although their name suggests that histones are the 

primary targets of HDACs, phylogenetic analysis indicates that de evolutionary development 

of HDACs preceded that of histones (Gregoretti et al., 2004). Indeed, over 50 nonhistone 

targets of HDACs have been identified, including proteins important for proliferation, 

migration, and cell death (Marks and Breslow, 2007; Minucci and Pelicci, 2006; Rosato and 

Grant, 2005). Thus, as for HATs, it was suggested that HDACs should be more appropriately 

referred to as lysine deacetylases (Xu et al., 2007). The different HDACs fulfill many 

different roles, either by affecting gene expression or by directly regulating protein 

functioning. Class I HDACs for instance, are thought to play a general role in cell survival 

and proliferation, whereas class II HDACs have a more tissue-specific role (Chang et al., 

2006; Harms and Chen, 2007; Kim et al., 2007b; Laggeret al., 2002; Parra et al., 2007; Vega 

et al., 2004; Zhang et al., 2002). The SIRTs further differ from the others HDACs in that 

their activity is nicotine adenine dinucleotide (NAD+)-dependent, whereas the other classes 

require the presence of zinc. Not all SIRTs are even primarily deacetylases. This has led to 

the suggestion that SIRTs should be classified as deacylases, as opposed to deacetylases 

(Hirschey, 2011). Although class I and class IV HDACs are mainly nuclear, class Ila shuttles 

between the nucleus and cytoplasm and class llb is primarily cytoplasmic. The sirtuins of 

class lll are most varied in their localization, and can be either expressed in the nucleus 

(SIRTs 1, 2, 6 and 7), cytoplasm (SIRTs 1 and 2) or mitochondria (SIRTs 3, 4 and 5) 

(Michan and Sinclair, 2007). The expression of the different HDACs is also highly region- 

and cell-type-specific, for instance, while HDAC2 is expressed in most brain regions, it is 

predominantly active in mature neurons and weakly or not in progenitor and glial cells 

(Guan et al., 2009; MacDonald and Roskams, 2008).

Methylation of histone tails happens at K or R residues of H3 or H4, and is executed by 

histone lysine methyltransferases (HKMTs) and protein arginine methyltransferase (PRMT), 

respectively, whereas demethylation is performed by histone lysine demethy-lases (HKDMs) 

and histone arginine demethylases (HRDMs) (Chang et al., 2007; Habibi et al., 2011). The 
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other histone modifications are less well characterized. Phosphorylation and 

dephosphorylation of histones is executed by protein kinases, such as mitogen- and stress-

activated protein kinase (MSK)-1, and protein phosphatases, such as protein phosphatase 

(PPT) 1, respectively (Brami-Cherrier et al., 2009; Koshibu et al., 2009). Histone 

phosphorylation is dynamic in function; H3 phosphorylation, for instance, marks open 

chromatin during active gene expression, whereas during mitosis this marker associates with 

condensed chromatin (Sawicka and Seiser, 2012). Ubiquitination can either enhance or 

inhibit gene expression, whereas SUMOylation is primarily thought to suppress transcription 

(Habibi et al., 2011).

The actual effect and interplay between these modifications are complex, and depend on the 

type of histone protein and the specific amino acid that is modified, and a combination of 

certain modifications can even have a function that is different from that of these 

modifications in isolation (Bernstein et al., 2006; Greer and Shi, 2012; Hwang et al., 2013; 

Jenuwein and Allis, 2001; Sawicka and Seiser, 2012). For instance, acetylation of K 9 

(H3K9ac) and 14 (H3K14ac) of H3, or tri-methylation at K 4 of H3 (H3K4me3), H3K36me, 

H3K79me, H3R2me, H3R17me, H3R26me and H4R3me are associated with gene 

activation, whereas H3K9me2/3, H3K27me3, H3R8me, H4K20me3 and H4R3me are 

generally associated with gene repression (Habibi et al., 2011 ). Interestingly, in case of 

histone methylation, the number of attached methyl groups also matters, as the previously 

mentioned H3K9me3, H3K27me3 and H4K20me3 marks that are associated with gene 

repression, all have monomethylated counterparts that are associated with gene activation 

(Barski et al., 2007). Of note, recent studies mapping histone tail modifications to genomic 

regions found that many transposable elements (TEs) are enriched with certain histone 

marks (Kondo and Issa, 2003; Martens et al., 2005; Pauler et al., 2009) and it has therefore 

been suggested that TEs may attract certain histone marks to induce heterochromatic and 

euchromatic states, or serve as boundary elements that prevent the propagation of such states 

(Huda and Jordan, 2009).

In addition to histone modifications, chromatin remodeling also occurs through adenosine 

triphosphate (ATP)-dependent multiprotein chromatin remodeling complexes. Four distinct 

remodeling complex families have been identified, including the Brg1/hBrm associated 

factor (BAF; previously known as switching defective/sucrose nonfermenting [SWI/SNF]), 

imitation SWI (ISWI), chromodomain, helicase, DNA-binding (CHD) and inositol requiring 

80 (INO) families (Clapier and Cairns, 2009; Hargreaves and Crabtree, 2011; Vogel-Ciernia 

and Wood, 2014). These complexes, or remodelers, can bind nucleosomes, disrupt 

nucleosome-DNA binding, and then move, destabilize, eject or restructure them, using ATP 

hydrolysis as energy source. In doing this, remodelers can either induce transcriptional 

activation or repression, through the recruitment of coactivator or corepressor complexes. 

The different remodeling complexes are defined by their ATPase subunits, but variation in 

their remaining subunit composition, possibly altering the DNA and protein binding 

properties of the complex, allows for great diversity, leading to cell-type specific roles (Ho 

and Crabtree, 2010; Ronan et al., 2013). Furthermore, multiple functionally different 

versions of a complex may be present within one cell (Wang et al., 2004). The BAF 

complex, consisting of at least 15 subunits, is of particular interest, as it is the only 

chromatin remodeling complex with a neuron-specific subunit, BAF53b. The BAF complex 
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is thought to play an important role in neuronal development and functioning, with unique 

subunit compositions in embryonic stem cells, neuronal progenitors and mature neurons 

(Vogel-Ciernia and Wood, 2014). The BAF53b subunit was shown to be important for 

dentritic development in vitro and long term memory in mice (Vogel-Ciernia et al., 2013). 

See the excellent review by Hargreaves and Crabtree (Hargreaves and Crabtree, 2011) fora 

detailed discussion of the different chromatin remodeling complexes.

1.4. Non-coding RNAs

Until recently it was widely believed that most of the human genome consisted of so-called 

‘junk’, or nonfunctional DNA. It was later revealed that almost the whole genome is 

transcribed, but that only about 2% is actually translated into proteins (Amaral et al., 2008). 

Most of the ‘junk’ actually is functional and is primarily involved in the regulation of gene 

expression, usually in the form of ncRNAs. There are many types of ncRNAs, including 

microRNAs (miRNAs), small interfering RNAs (siRNAs), small nuclear RNAs (snRNAs), 

small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs (scaRNAs), piwi-

interacting RNAs (piRNAs), splice junction- associated RNAs (spliRNAs), small 

modulatory RNAs (smRNAs), repeat-associated small interfering RNAs (rasiRNAs), 

transcription initiation RNAs (tiRNAs), promoter-associated short RNAs (PASRs), 

transcription start site-associated RNAs (TSSa-RNAs), promoter upstream transcripts 

(PROMPTS), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and small double-stranded 

RNAs (dsRNAs) (Jady et al., 2004; Mattick, 2011; Preker et al., 2008; Schouten et al., 2012; 

Seila et al., 2008). These are small ncRNAs (sncRNAs), of <200 nucleotides, whereas there 

are also long ncRNAs (lncRNAs), which can exceed 100,000 nucleotides, often including 

TE-derived sequences that may confer specific protein or nucleic acid interacting properties 

(Johnson and Guigó, 2014). Examples of lncRNAs are intergenic ncRNAs (lincRNAs), 

natural antisense transcripts (NATs), ncRNA expansion repeats, promoter-associated RNAs 

(PARs), and enhancer RNAs (eRNAs) (Kapranov et al., 2007; Khalil et al., 2009; Kim et al., 

2010b; Nakamori and Thornton, 2010; Werner, 2005). The sncRNAs fulfill various 

functions, including infrastructural (rRNAs, tRNAs and snRNAs) and regulatory roles 

(miRNAs, siRNAs, snoRNAs, piRNAs and spliRNAs), whereas the lncRNAs are primarily 

regulatory. Interestingly, lncRNAs are expressed in a highly cell-specific manner, may 

undergo alternative splicing, and may even have protein-coding isoforms (Cabili et al., 2011; 

Chooniedass-Kothari et al., 2004; Djebali et al., 2012; Johnsson et al., 2013). Alternatively, 

some mRNAs may function as trans-acting regulatory RNAs (Ashe et al., 1997; Dinger et 

al., 2011; Mercer et al., 2011). In terms of epigenetics, ncRNAs are cardinally involved in 

gene expression control, in the silencing of TEs, X-chromosome inactivation, alternative 

splicing, and DNA imprinting (Jeon et al., 2012; Lisch, 2012; Morrissy et al., 2011). 

Additionally, some lncRNAs have been proposed to direct epigenetic enzymes to their target 

sites (Khalil etal.,2009; Koziol andRinn, 2010; Mercer and Mattick, 2013), while others are 

thought to bind and sequester other epigenetic players, such as DNMTs and miRNAs, 

thereby hampering their activity (Di Ruscio et al., 2013; Johnsson et al., 2013; Mercer and 

Mattick, 2013).

The best characterized of the ncRNAs are miRNAs. These begin their lives as primary 

miRNAs, after which they are cleaved by ribonuclease type III Drosha to form precursor 
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miRNAs (pre-miRNAs) (Han et al., 2009). These pre-miRNAs are then transported from the 

nucleus to the cytosol by Exportin-5, where Dicer makes the final adjustment to produce 

double-stranded mature miRNAs. Mature miRNAs span 21–25 nucleotides and regulate 

protein production through an RNA interference pathway, involving the association of one of 

the strands of the miRNA duplex with the RNA-induced silencing complex (RISC) 

(Ambros, 2004; Han et al., 2004). They interfere with gene expression through binding to 

messenger RNA (mRNA), usually to the 3’ untranslated region (UTR), which hampers the 

initiation of translation and affects mRNA stability. MiRNAs can potentially regulate the 

translation of multiple genes, whereas genes can also be regulated by several miRNAs, as 

the sequences of the miRNA and its target are not required to be a perfect match for 

interference to take effect (He and Hannon, 2004; Lim et al., 2005). While siRNAs are 

processed and function similarly, they require stricter matching with their target sequence 

when compared to miRNAs (Zeng et al., 2003). Apart from interacting with RISC, some 

miRNAs have been observed to promote mRNA translation and gene transcription, by 

binding to gene promoter regions (Eulalio et al., 2008; Fabian et al., 2010). There are 

numerous miRNAs, many of which are expressed according to strict spatial and temporal 

patterns. Currently, there are 1881 precursors and 2588 mature human miRNAs registered in 

the fast growing miRBase (The University of Manchester, 2014). While expressed 

throughout the whole human body, the brain is especially enriched in miRNAs, suggesting 

an important role for them in neuronal development, functioning, and aging (Gokey et al., 

2012; Hu et al., 2011a). Their biological role has been further characterized, and reviewed 

by Santosh, and colleagues, as well as Qu and Adelson (Qu and Adelson, 2012; Santosh et 

al., 2014). Both the reviews extend beyond the aforementioned functions, and present the 

key role of ncRNA in RNA splicing, transcriptional, post-transcriptional, and translational 

regulation by either binding directly to transcriptional factors or by generating siRNAs, that 

consequently interact with the translational machinery.

1.5. Additional epigenetic mechanisms

DNA methylation, chromatin remodeling, and ncRNAs represent the best-studied epigenetic 

mechanisms, especially in relation to aging and neurodegenerative diseases. Epigenetic 

regulation goes much deeper, however, and also includes the rising subfields of RNA 

editing, RNA methylation, and mitochondrial epigenetics, which will be briefly touched 

upon in this section, but will not be further discussed in relation to aging and 

neurodegeneration due to the as of yet extremely limited findings in this respect. Clearly, 

more studies on the role of these additional layers of epigenetic regulation in aging and 

neurodegeneration are waranted.

1.5.1. RNA editing—The observation of discrepancies in genomic and cDNA sequences 

led to the discovery of RNA editing (Bass, 2002). The finding that RNA can be edited, a 

process that seems particularly important in the brain, adds another layer to the 

transcriptional and post-transcriptional regulation of gene expression. It has even been 

proposed that a dramatically increased RNA editing capacity was crucial for the evolution of 

the mammalian brain as it may function as a mechanism driving phenotypic adaptability, 

which ultimately led to the superior cognitive abilities of humans (Mattick, 2010; Mattick 

and Mehler, 2008). In support of this, roughly 35 times more RNA editing is observed in 
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humans compared to mice. This surplus appears to be mainly directed to retrotransposed Alu 

elements that are primate-specific and constitute 10.5% of the human genome (Athanasiadis 

et al., 2004; Kim et al., 2004; Lander et al., 2001; Levanon et al., 2004; Umylny et al., 

2007).

In contrast to RNA and DNA modifications, RNA editing involves a change in RNA 

sequence by deamination of either adenosine (A) or cytosine (C), to inosine (I) (Bass, 2002; 

Valente and Nishikura, 2005) or uracil (U) (Conticello, 2008; Navaratnam and Sarwar, 

2006), respectively. A to I editing is performed by adenosine deaminases that act on RNA 

(ADARs), while C to U editing is carried out by APOBECs. APOBECs are related to 

AICDAs, which targets DNA and is pivotal in the generation of the immunoglobulin 

repertoire (Muramatsu et al., 1999). Although not much is known about the targeting, 

regulation and functional impact of ADARs and APOBECs, they are thought to be evolved 

from adenosine deaminases that act on tRNAs (ADATs) and thus bind doublestranded RNA 

regions, such as those seen in hairpin formations that are also present in tRNAs (Bass, 2002; 

Conticello, 2008).

ADAR1 and ADAR2 are ubiquitously expressed and they appear to be enriched in the brain, 

while the expression of ADAR3 seems to be restricted to the brain. A to I RNA editing has 

been observed in coding transcripts, for instance leading to changes in the amino acid 

sequence of glutamate and serotonin receptors. Most editing, however, happens to 

noncoding sequences, such as miRNAs (Blow et al., 2006; Kawahara et al., 2008; Nishikura, 

2006) and transposon-derived repetitive sequences (Morse et al., 2002), suggesting that 

RNA editing not only directly affects gene expression, but also indirectly by regulating other 

epigenetic players (Mattick, 2010). APOBECs, together with overall RNA editing, appear to 

have undergone a substantial expansion over the course of evolution, with APOBEC3 being 

especially favored in humans with eight orthologs, compared to one in mice (Conticello et 

al., 2005; Navaratnam and Sarwar, 2006; Sawyer et al., 2004). Although it has been 

suggested that these enzymes have evolved to combat retrotransposons and endogenous 

retroviruses (Aguiar and Peterlin, 2008; Schumann, 2007), there is also evidence indicating 

that these elements actually have been harnessed as epigenetic regulators involved in growth 

and differentiation, including the generation of neuronal diversity (Coufal et al., 2009; 

Dunlap et al., 2006; Faulkner et al., 2009).

Recently, the implication of RNA editing in the etiopathogenesis and progression of 

neurodegenerative disorders as well as normal aging processes has gained momentum and 

the few available studies begin to elucidate this connection. The majority of these studies are 

focusing on aging. Sebastiani et al. observed that 5 SNPs in the ADAR encoding genes 

Adarb1 and Adarb2 are associated with extreme longevity in 4 independent human studies. 

The observation of the critical role of ADARs in aging was also verified in a Caenorhabditis 
elegans (C. elegans) model with loss of function of adr1 and adr2 (Adarb1 and Adarb2 
orthologues), which had a 50% decrease in lifespan (Sebastiani et al., 2009). After this study 

a lot of RNA editing targets were discovered, such as gamma-aminobu-tyric acid receptor 

subunit alpha-2 (Gabra2), cytoplasmic FMR1-interacting protein 2 (Cyfip2), potassium 

channel gene (Kcnal), filamin a (Flna), bladder cancer associated protein (Blcap), golgi 

complex subunit 3 (Cog3), nuclear paraspeckle assembly transcript 1 and 2 (Neat1, Neat2), 
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metastasis associated lung adenocarcinoma transcript 1 (Malat1) and phosphatidylserine 

decarboxylase-pseudogene 1 (Pisd-ps1) that are differentially edited in the aging murine and 

human brain. Among them Cyfip2 and Pisd-psl have gained considerable attention (Holmes 

et al., 2013; Nicholas et al., 2010; Stilling et al., 2014). Nicholas et al. demonstrated that A 

to I editing declines with age in humans, in a gene-specific manner, resulting in 

downregulation of an ADAR2 target gene, Cyfip2, which is responsible for synaptic 

maintenance (Nicholas et al., 2010). In the hippocampal formation of aged mice Stilling et 

al. showed that the altered RNA editing levels of Pisd-ps1 results in higher editing frequency 

with age and thus upregulation of gene expression (Stilling et al., 2014).

In case of AD, Akbarian et al. observed a decrease in the RNA editing levels of glutamate 

receptor 2 (GluR2) in the prefrontal cortex of AD human brains (Akbarian et al., 1995). 

Rechavi’s team following the aforementioned research line, examined the GluR2 Q/R RNA 

editing levels in the hippocampus of AD brains, which they found to be decreased in 

comparison to controls. Additionally, they showed lower GluR2 Q/R RNA editing in the 

hippocampus of APOEε4 carriers. The mRNA expression of ADARs was also investigated 

in this specific study; unexpectedly no differences were found in the hippocampus but a 37% 

decrease of ADAR2 mRNA expression was noticed in the caudate (Gaisler-Salomon et al., 

2014). Finally, Akbarian et al. extended his study on HD where he also showed a decrease in 

GluR2 RNA editing levels in the striatum (Akbarian et al., 1995).

1.5.2. RNA methylation—Although the discovery of methylated RNA was done 

decades ago (Desrosiers et al., 1974; Rottman et al., 1974), over a hundred RNA nucleotide 

modifications have been identified across different organisms (Behm-Ansmant et al., 2011; 

Kellner et al., 2010). In eukaryotes the best-studied mRNA modifications are N6-methy-

ladenosine (m6A) and 5-mC, which mainly occur at 3’ UTRs and stop codon sites (Meyer et 

al., 2012). As in DNA, 5-hmC has also been observed in RNA (Fu et al., 2014). m6A is the 

most prevalent mRNA modification in mammals and has also been observed in tRNAs, 

rRNAs and snoRNAs(Bringmannand Luhrmann, 1987; Choi and Busch, 1978; Epstein et al., 

1980; Harada et al., 1980; Munns et al., 1977; Perry et al., 1975; Shimba et al., 1995; Tanaka 

and Weisblum, 1975). In humans the m6A modification shows high tissue specificity, with 

the highest levels occurring in the brain, in transcripts such as Bdnf, Dscam, Lis1 and Ube3a 
(Dominissini et al., 2012). In mice and humans m6A methyltransferase methyltrans- ferase-

like protein 3 (METTL3) (MT-70) is responsible for the post- transcriptional m6A RNA 

modification (Bujnicki et al., 2002). Additionally, METTL14 and Wilm’s tumor-associated 

protein (WTAP) have been shown to interact with METTL3 and are thought to be additional 

components involved in RNA methylation (Ping et al., 2014; Wang et al., 2014b). Just as 

DNA methylation, the identification of m6A demethylases fat mass and obesity-associated 

protein (FTO) and AlkB, alkylation repair homolog 5 (E. coli) (ALKBH5)(Jia et al., 2011; 

Zheng et al., 2013), indicates that RNA methylation is a dynamic regulatory mechanism. 

FTO, a dioxygenase, demethylates RNA via a similar oxidation procedure as is employed by 

the TET enzymes that are thought to be involved in DNA demethylation, namely through the 

generation of intermediates N6-hydroxymethyladenosine (hm6A) and N6-for-myladenosine 

(f6A), before being reversed to A (Fu et al., 2013). Although these intermediates remain 

stable for several hours, no separate regulatory roles for hm6A and f6A have been reported 
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yet. ALKBH5 is thought to remove m6A directly, without the generation of intermediates 

(Zheng et al., 2013). Although the exact regulatory functions of m6A RNA methylation 

remain to be elucidated, its main occurrence at 3’ UTRs and stop codons has been suggested 

to indicate a role in switching genes on or off (Chandola et al., 2014). Alternatively, the 

observation that players involved in m6A RNA methylation were located at splice sites 

suggests that the m6A RNA modification may modulate splicing (Meyer et al., 2012). More 

recent findings show a relation between the m6A modification and mRNA degradation, as 

m6A selectively binds human YTH domain family 2 (YTHDF2) proteins, which can bind 

and target mRNA to decay sites, such as processing bodies (P-bodies) (Wang et al., 2014a). 

Other members of the YTH domain family, YTHDF1 and YTHDF3 also selectively bind 

m6A modified RNA. Another study, however, indicated that m6A does not lead to RNA 

decay through the YTHDF2 pathway, but by interacting with miRNAs, and that the removal 

of m6A promotes human antigen R (HuR) binding, a protein that protects against RNA 

decay (Wang et al., 2014b). These studies suggest that the m6A mark may dynamically 

regulate mRNA lifetime.

An alternative pathway of RNA methylation involves the versatile regulatory ncRNAs 

snoRNAs, which can guide 2’-O-methylation and pseudo-uridylation of RNA transcripts, 

including mRNAs (Bachellerie et al., 2002). 2’-O-methylation is important for the 

functioning of certain rRNAs (Maxwell and Fournier, 1995), but also determines the guide 

strand and targeting specificity of siRNAs (Chen et al., 2008). Apart from their role in RNA 

modifications, snoRNAs can be further processed into snoRNA-derived small RNAs 

(sdRNAS), which are similar to miRNAs (Ender et al., 2008; Politz et al., 2009; Saraiya and 

Wang, 2008; Taft et al., 2009).

The pathway that most closely resembles DNA methylation involves DNMT2, which, 

despite its name, transfers methyl groups to cytosines in RNA (Jurkowski et al., 2008; 

Schaefer et al., 2009). Apart from tRNA, the exact substrates of DNMT2 still need to be 

identified. Nevertheless, DNMT2 has been implicated in brain development and 

retrotransposon silencing (Phalke et al., 2009; Rai et al., 2007). Other known RNA 

methylation modifications include Nl-methyladenosine (m1A) and Nl-methylguanine (mlG), 

which occur mainly in tRNAs and are thought to enhance tRNA stability, and mlG also 

decoding accuracy (Anderson et al., 2000; Bjork et al., 1989; Jackman et al., 2003; Saikia et 

al., 2010).

The only reported studies connecting RNA methylation to aging, as well as 

neurodegenerative disorders, were performed by Giordano et al. (2012) and Thomas et al. 

(2013), respectively. Bellizzi’s team studied the methylated cytosine residues in two 

mitochondrial genes, 12S and 16S rRNA and they showed that the methylation levels of 12S 

rRNA are decreased with age in males. Thomas et al., while attempting to develop a novel 

method for detecting trace amounts of 7-mG in biological samples, observed differential 

methylation patters in murine HD models and significantly increased levels of 7-mG in 

postmortem human HD brain samples.

1.5.3. Mitochondrial epigenetics—Apart from the nuclear genome, human cells can 

harbor thousands of copies of the mitochondrial genome. Both the nuclear and 
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mitochondrial genome consist of DNA, but there are some striking differences (Byun and 

Baccarelli, 2014). The mitochondrial genome is only 16 kb long, contains 37 genes without 

introns and is much more prone to mutations than the nuclear genome. With respect to 

epigenetics, its regulation seems to be less complex, as mitochondrial DNA (mtDNA) is 

thought not to be wrapped around histones and not to contain CpG islands; the 435 CpG 

sites in the mitochondrial genome are almost evenly dispersed.

Over 40 years ago, methylated mtDNA was discovered in loaches, and it was shown there is 

DNMT activity in mitochondria that is independent from DNMT activity outside 

mitochondria (Kudriashova et al., 1976; Nass, 1973). Later, mtDNA methylation was also 

observed in humans (Shmookler Reis and Goldstein, 1983), and a mitochondrial DNMT, 

(mtDNMT1) was discovered (Shock et al., 2011). Of note, however, more recent studies cast 

doubt on the general notion that DNA methylation is the prime epigenetic mechanism at 

work in mitochondria. For instance, Hong et al. (2013) were unable to detect CpG 

methylation in the genome of human mitochondria, whereas Choi et al. (2011) report on the 

possible existence of mitochondrial histones, and Barrey et al. (2011) found miRNAs in 

mitochondria. Nevertheless, there are also many recent reports supporting the presence of 

methylated mtDNA and even hydroxymethylated mtDNA (Chestnut et al., 2011; Dzitoyeva 

et al., 2012; Iacobazzi et al., 2013; Manev et al., 2012), showing that it is not always located 

at CpG sites (Bellizzi et al., 2013; Sun et al., 2013), and that mtDNA methylation plays a 

role in mitochondrial gene regulation (Feng et al., 2012; Pirola et al., 2012). Clearly, these 

rapid developments within the field of mitochondrial epigenetics warrant further attention. 

In the recent study of Dzitoyeva et al. not only the hydroxymethylation of mtDNA was 

reported but they also demonstrated that solely the levels of hydroxymethylated mtDNA 

reduce with age in the frontal cortex of mice (Dzitoyeva et al., 2012). This decrease in 5-

hmC is associated with an increase in complex I components (ND2, ND4, ND4L, ND5, 

ND6) in the same area. Furthermore, they observed region-specific differential expression of 

epigenetic players; the mRNA levels of TET2 and TET3, which are also responsible for the 

hydroxymethylation of mtDNA, are only increased in the cerebellum, whereas the mRNA 

levels of mtDNMT1 decrease solely in the frontal cortex.

1.6. Epigenetic processes are interdependent

The epigenetic processes of DNA (de)methylation, chromatin remodeling, and miRNAs do 

not act independently, but closely interact to form a complex, multilayered regulatory system 

that can dynamically fine-tune gene expression. DNA methylation stability in promoter 

regions, for instance, is enforced by methyl CpG binding protein (MeCP) 1, which also 

binds the nucleosome remodeling and histone deacetylase (NuRD) core and cyclin-

dependent kinase 2 associated protein (CDK2AP) 1, forming a protein complex not only 

able to stabilize DNA methylation, but also to modify the histone code (Grewal and Jia, 

2007; Zhang and Reinberg, 2001 ). MeCP1 is attracted to methylated DNA through its 

affinity for MBD2, which directly binds to DNA methylated at CpG sites. As such, DNA 

methylation and histone modifications act in concert to regulate gene expression, through 

interference with transcription factor binding and chromatin compaction (Klose and Bird, 

2006). Another interesting interplay, between DNMT3a-dependent DNA methylation and 

Polycomb-group (PcG)-depen- dent H3K27me3 marks was discovered by Wu et al. (2010). 
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They showed that DNMT3a activity at non-promoter regions correlated with increased 

expression of neurogenic genes, by interfering with PcG binding and H3K27me3-mediated 

gene repression. In contrast, DNMT3a activity at the promoter regions inhibited gene 

expression. Alternatively, MBD1 can antagonize H3K4me3, leading to chromatin 

compaction. DNA methylation can thus in a bottom-up fashion induce changes on the 

chromatin level (Liu et al., 2010a). The other way around is also possible, as exemplified by 

Detich et al. (2003). They showed that increases in H3 acetylation can induce DNA 

demethylation, and thereby gene expression in vitro. Conversely, HDAC activity is thought 

to inhibit gene expression through the induction of DNA methylation (Sun et al., 2007). 

There are additional complex interactions between miRNAs and other components of the 

epigenetic machinery. Where some miRNAs regulate the expression of proteins involved in 

epigenetic regulation, the expression of various miRNAs themselves is also subject to factors 

such as DNA methylation and histone modifications (Saito and Jones, 2006). For example, 

miRNA 184 (miR-184), involved in the regulation of proliferation and differentiation of 

neural stem cells, is surrounded by CpG islands, attracting MBD1, which can suppress its 

expression as described above (Liu et al., 2010a).

2. Aging

Before delving into the aberrant epigenetic processes associated with neurodegeneration, it 

is important to consider the epigenetic changes associated with normal aging and related 

hallmarks, such as oxidative stress, as these can already be quite dramatic. Bocklandt et al. 

(2011) for instance, devised a method to determine the age of an individual based on the 

methylation of specific sites in the ectodysplasin-A receptor-associated death domain 

(EDAR-ADD), target of myb1 (chicken)-like 1 (TOM1L1) and neuronal pentraxin II 

(NPTX2) genes. At these sites a linear correlation between methylation and age was 

observed, allowing for a prediction of age with an average accuracy of 5.2 years. Horvath 

later devised an even more accurate method to determine the ‘DNAm age’, based on the 

methylation status of 353 CpGs (Horvath, 2013). The DNAm age of Horvath has a 

chronological age correlation of about 0.96 and an error of 3.6 years and is applicable in 

many different tissue and cell types. Note, however, that epigenetic processes are not the 

only players involved in aging. According to the “free radical theory of ageing”, oxidative 

stress is thought to play an integral role in the aging process (Beckman and Ames, 1998). 

Oxidative stress refers to the generation of reactive oxygen species (ROS), which are 

damaging to proteins, nucleic acids and lipids and are known to also affect epigenetic 

players (Cencioni et al., 2013). Furthermore, as aging is the prime riskfactor of most 

neurodegenerative diseases, it is possible that age-related processes including epigenetic 

alterations and oxidative stress, facilitate the development of these illnesses.

2.1. DNA (de)methylation in aging

Early research established that DNA methylation plays a crucial role during development. 

Later studies identified aging to be a pivotal modulator of the epigenome. The DNAm age of 

Horvath offers some interesting insights in this respect (Horvath, 2013). Of the 353 CpG 

sites used to predict the DNAm age, 193 got hypermethylated and 160 got hypomethylated 

with age, and most are associated with genes involved in cell death and survival, cell growth 

Lardenoije et al. Page 14

Prog Neurobiol. Author manuscript; available in PMC 2019 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and proliferation, organismal and tissue development, and cancer. Additionally, DNAm age 

shows a logarithmic relationship with chronological age until adulthood, and a linear 

relationship later in life, indicating that the epigenetic clock ‘ticks’ faster during growth and 

development. While highly accurate in most tissues, Horvath found that the DNAm age was 

consistently lower in tissues which may be renewed through the presence of stem cells, such 

as skeletal and heart muscle. It was, however, also observed that DNAm age does not reflect 

cellular senescence, as it highly correlated with chronological age in short and long lived 

cells, as well as immortal cells. As could be expected, embryonic stem cells appeared to 

have a DNAm age close to zero. Interestingly, the DNAm age of induced pluripotent stem 

cells did not differ significantly from that of embryonic stem cells. While the clock CpGs 

used for Horvath’s DNAm age are enriched in cancer genes, there are some important 

differences between normally aging and cancerous tissue. In general, cancer tissue exhibits 

an accelerated DNAm age. Due to the heterogeneity of cancer types, however, general 

statements about its use should be interpreted with caution, as for example thyroid cancer 

progression negatively correlates with age acceleration. Additionally, Horvath observed that 

an increased DNAm age may promote genomic stability, as he found in several cancer types 

a negative relation between DNAm age acceleration and somatic mutations. He proposes 

that cancer triggers a hypothetical epigenetic maintenance system that promotes genetic 

stability, a process that is dependent on P53, as mutations in the TP53 gene are associated 

with a lower DNAm age acceleration. Interestingly, in glioblastoma multiforme TP53 

mutations appear to be associated with an increased DNAm age acceleration. While it thus 

seems that in general cancer is associated with an increased DNAm age profile and aging 

with global DNA hypermethylation, neurodegenerative diseases such as AD and PD are 

associated with global DNA hypomethylation (Mastroeni et al., 2010; Obeid et al., 2009). 

Note, however, that the DNAm age itself has not yet been assessed in neurodegenerative 

tissue. Nevertheless, despite having age as a common risk factor, cancer and age-related 

neurodegenerative diseases seem to involve (at least partly) different epigenetic 

dysregulation or compensatory mechanisms.

Taking a more specific approach, Siegmund et al. (2007) investigated the DNA methylation 

status of 50 CpG islands associated with genes involved in brain growth and development in 

subjects of various ages, and they observed a robust and progressive increase in DNA 

methylation of multiple genes with age (Table 1). They also confirmed that a rise in DNA 

methylation typically results in a decline of corresponding mRNA levels. In addition, it was 

observed that DNMT3a was expressed across all ages, supporting the notion that DNA 

methylation can be dynamically altered throughout the lifespan. Interestingly, in relation to 

AD, the promoter region of the amyloid β precursor protein (APP) gene becomes 

hypomethylated with age (Tohgi et al., 1999). Additionally, binding sites for granulocyte 

chemotactic factor (GCF), known to repress CG-rich promoters and interaction sites for 

specificity factor (SP) 1, which enhances gene expression in the tau promoter, became hypo- 

and hypermethylated, respectively, with age, decreasing its overall expression. This finding 

suggests that certain age-related epigenetic changes might facilitate the development of AD. 

Although expressed across all ages, levels of DNMT3a and 5-mC actually increase with age 

in the dentate gyrus (DG), cornu ammonis (CA) 1–2, and CA3 regions of the mouse 

hippocampus (Chouliaras et al., 2011a, 2011b), which is in line with previous reports 
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(Lopatina et al., 2002). An interesting study by Oliveira et al. (2012) showed that 

hippocampal levels of DNMT3a2, an isoform of DNMT3a, decrease with age and that this 

decrease correlated with age-related cognitive decline in mice. Importantly, experimental 

restoration of DNMT3a2 levels alleviated this age-related cognitive impairment. 

Additionally, Hernandez et al. (2011) investigated 27,000 CpG sites in brain samples of 

varying ages and detected a general positive correlation between age and methylation levels. 

In contrast, it was found that expression levels of DNMT1 decrease with aging in human 

fetal lung fibroblasts, which would be in support of reports of global DNA hypomethylation 

with aging and cell senescence, including non-coding regions and repetitive sequences in the 

blood (Bollati et al., 2009; Lopatina et al., 2002; Pan et al., 2013). Mazin (Mazin, 2009) put 

forward an interesting hypothesis, proposing a DNA methylation-dependent aging process. 

This model is based on the observation that methylation of cytosines may induce C>T 

mutations, which is suggested to result in age-related genome disintegration, and eventually 

cell apoptosis, organism aging and death. Due to the age-related increase in 5-mC>T 

transitions, this model predicts an age-related depletion of 5-mC.

Note, however, that DNA methylation profiles are not only known to be different between 

different tissues, regions and cell types, but that these also seem to be differentially affected 

by the aging process (Brown et al., 2008; Ladd-Acosta et al., 2007; Thompson et al., 2010). 

An interesting study by Fraga et al. (2005), investigating DNA methylation and histone 

acetylation during the lifetime of monozygotic twins, illustrates that the epigenome not only 

changes with age, but also that differences in the epigenome might explain phenotypic 

disparity in genotypically identical individuals.

In addition to the age-related increases of DNMT3a and 5-mC levels, a significant age-

related increase in 5-hmC levels was found in the DG, CA1–2, and CA3 regions of the 

mouse hippocampus (Chouliaras et al., 2012), which is in line with previous investigations 

into the spatial and temporal distribution of 5-hmC in the brain (Münzel et al., 2010; Song et 

al., 2011b). While some of the genes that exhibit age-related increases in 5-hmC levels are 

associated with age-related neurodegenerative diseases (Song et al., 2011b), further 

investigations are required to elucidate the functional consequences of these findings, taking 

into account the differential functions of the 5-mC and 5-hmC markers. Table 1 summarizes 

the age-related alterations regarding DNA (de)methylation.

2.2. Chromatin remodeling in aging

Apart from widespread changes in the neuronal DNA methyl-ation profile throughout the 

lifespan, the neuronal histone code also undergoes age-related alterations (Table 2). An 

example is the observation of lower levels of histone acetylation with aging in vitro (Ryan 

and Cristofalo, 1972), and an age-related progressive decline of H3 and H4 methylation 

(Thakur and Kanungo, 1981) and monoacetylated H4 levels, discovered in neurons from the 

rat cerebral cortex (Pina et al., 1988). Apart from detecting decreased levels of H3K9ac and 

increased levels of H3S10p (Kawakami et al., 2009), Nakamura et al. (2010) detected 

decreased acetylation of extranuclear proteins. In senescence-accelerated prone mouse 8 

(SAMP8) brains it was shown that many histone marks are alterated with age (Wang et al., 

2010a; Table 2). In rats, however, some of these markers were observed not to undergo 
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significant age-related changes (Sarg et al., 2002). These not always compatible findings 

between species illustrate the necessity of translating results regarding epigenetic changes to 

the human situation. Apart from changes in specific histone methylation marks, the HKMTs 

polycomb repressive complex member Bmi1 (PRC1) and polycomb repressive complex 

member enhancer of zeste homolog (EZH) 2 (Drosophila) (PRC2) have been observed to 

decrease with cell senescence, a common, but limited, in vitro model of aging, while the 

HKDM jumonji domain containing (JMJD) 3 increased (Agger et al., 2009; Jung et al., 

2010). The balance between PcG and JMJD3 gene expression is in turn thought to be 

regulated by HDAC activity.

The finding that HDAC2 expression increases with age in the mouse hippocampus is in line 

with findings of decreased acetylation levels (Chouliaras et al., 2013b). Age-associated 

reduction in acetylated H4 is thought to reduce chromatin structural plasticity and may result 

in a decreased accessibility of the DNA for repairing enzymes and other regulatory factors 

(Perry and Chalkley, 1982; Pina et al., 1988). Other studies are more specific, pointing 

towards a role of deregulated H4K12ac in age-related memory impairment (Peleg et al., 

2010), a negative influence of HDAC2 on synaptic plasticity and memory formation through 

the suppression of neuronal gene transcription (Fischer et al., 2007; Guan et al., 2009), and a 

dependence of histone acetylation on citrate levels (Wellen et al., 2009), which decline in the 

aging brain (Jiang et al., 2008). Furthermore, the KAT CREBBP is important for long-term 

memory formation and late-phase long-term potentiation in the hippocampus of mice 

(Alarcón et al., 2004; Korzus et al., 2004). Apart from histone acetylation, H3K4me3 (Gupta 

et al., 2010) and H3 phosphorylation (Chwang et al., 2006) are also involved in memory 

formation. The SIRT HDACs have also been implicated in aging. In contrast to HDAC2, 

SIRT1 levels were found to drop with age, a change not limited to the brain (Quintas et al., 

2012; Sommer et al., 2006) and also observed in senescent cells (Sasaki et al., 2006). 

Reduced levels of SIRT1 have been associated with increased levels of H4K16ac in vitro 
(Pruitt et al., 2006). SIRT1 can in addition directly deacetylate the HKMT suppressor of 

variegation 3–9 homologue (SUV39H) 1, which increases the activityofSUV39H1 

(Vaqueroetal., 2007).This HKMT is responsible for H3K9me3, which is important for the 

formation of facultative heterochromatin. Despite the association between senescence and 

decreased H3K9me3 levels, H3K9me3 is thought to accumulate in senescence-associated 

heterochromatin foci (SAHF), a form of facultative heterochromatin, which are thought to 

induce senescence through the repression of the pro-proliferation E2F transcription factor 

family (Narita et al., 2003; Ye et al., 2007). Alternatively, in C. elegans, it has been observed 

that sir-2.1, the ortholog of mammalian SIRTI, can extend lifespan through its product 

nicotinamide (Schmeisser et al., 2013). Nicotinamide can be methylated by nicotinamide-N-

methyltrans-ferase-1, producing 1-methylnicotinamide, and 1-methylnicotina-mide in turn is 

processed by aldehyde oxidase gastrulation defective 3 (GAD-3) to generate hydrogen 

peroxide. This hydrogen peroxide is thought to play a mitohormetic role, inducing longevity 

(Ristow and Zarse, 2010). Reinstating SIRT levels, for instance through caloric restriction, 

has in addition been reported to increase lifespan in yeast, invertebrates, and vertebrates 

(Guarente and Picard, 2005; Rutten et al., 2010), and has been argued to facilitate healthy 

aging in humans, thereby slowing the development of age-related neurodegenerative 

diseases such as AD (Baur et al., 2006; Haigis and Sinclair, 2010).

Lardenoije et al. Page 17

Prog Neurobiol. Author manuscript; available in PMC 2019 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. Non-coding RNAs in aging

One of the first ncRNAs reported to affect the aging process was miRNA lin-4, whose 

expression was observed to modulate lifespan in C. elegans (Lee et al., 1993). In neurons of 

C. elegans, miR-71 promotes longevity through the dauer 16/forkhead box O (DAF-16/ 

FOXO) pathway, increasing resistance towards heat shock and oxidative stress (Boulias and 

Horvitz, 2012). Other studies found increased levels of some miRNAs with age, but did not 

detect any significantly downregulated miRNAs in mice (Maes et al., 2008; Table 3). In 

human blood mononuclear cells, however, various miRNAs were significantly decreased in 

older participants (Noren Hooten et al., 2010; Table 3 ). Altered expression of various 

miRNAs, has been linked to age-related cardiovascular problems (Boon et al., 2011, 2013; 

Menghini et al., 2009; Olivieri et al., 2013; Vasa- Nicotera et al., 2011; Table 3). Moreover, 

various members of the miR-17–92 cluster were reported to be downregulated in humans 

(Hackl et al., 2010; Table 3). Another study in human endothelial cells detected additional 

miRNAs affected by age (Vasa-Nicotera et al., 2011; Table 3). Increased ROS levels in 

human endothelial cells were observed to induce miR-200c and concomitant initiation of 

apoptosis and senescence (Magenta et al., 2011 ). Several studies have recently shown the 

importance of certain miRNAs specific to the aging brain and their roles in the development 

of neurodegenerative diseases (Hebert and De Strooper, 2009; Somel et al., 2010). In the 

cortex and cerebellum of humans, chimpanzees, and macaque monkeys, miR-144 was 

observed to be upregulated (Persengiev et al., 2011). This miRNA targets the ataxin-1 gene, 

which is critically involved in the development of spinocerebellar ataxia type 1, and its age-

related dysregulation could thus facilitate the development of this disease. Li et al. (2011) 

forged a link between aberrant miRNA expression and age-related declines in mitochondrial 

respiration rates. They found 70 miRNAs to be upregulated in the aging mouse brain, 27 of 

which were implicated in the downregulation of mitochondrial complexes III, IV and F0F1-

ATPase that are all pivotal to the oxidative phosphorylation process. Interestingly, in the 

SAMP8, a mouse model of accelerated aging, miR-16 was found to be dysregulated. This 

miRNA modulates AD-related APP protein expression and with age APP levels were shown 

to drastically increase in the hippocampus of SAMP8 mice, leading to the suggestion that 

this model might serve as a model for AD (Liu et al., 2012b). Table 3 provides an overview 

of some of the ncRNAs that undergo age-related changes.

3. Neurodegeneration

Neurodegenerative diseases typically involve a progressive loss of neuronal integrity and 

function, followed by neuronal death. Depending on where in the brain the loss of integrity 

and neuronal loss occur, various functional disabilities may arise and which gradually 

worsen as the neurodegeneration spreads. The underlying cause and localization of the 

neurodegenerative processes, however, often vary between different neurodegenerative 

disorders. Some of the most common include AD, PD and HD, but also amyotrophic lateral 

sclerosis and prion diseases are well studied forms of neurodegeneration (Coppede et al., 

2006). Multiple sclerosis is more recently also being investigated as a neurodegenerative 

disease (Trapp and Nave, 2008). The exact etiology of most neurodegenerative diseases is 

far from clear, while in some cases, such as for HD (Bates et al., 2006), it is clear that the 

origin is largely genetic, for others, including sporadic AD and PD, the link between 
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genetics and disease development is much more complex, possibly involving gene-gene and 

gene-environment interactions (Chouliaras et al., 2010a,b; Migliore and Coppede, 2009). 

Numerous studies have, where genetics did not give simple answers, investigated other 

possible instigators, of which epigenetic mechanisms seem to be most promising. Although 

it remains to be elucidated whether dysfunctional epigenetic machinery plays a causal role, 

it has been critically implicated in various neurodegenerative processes. Additionally, 

environmental factors enjoy much attention as either direct modulators of disease 

development, or indirect via genetic or epigenetic pathways (Babenko et al., 2012; 

Chouliaras et al., 2010a,b; Jaenisch and Bird, 2003).

3.1. Alzheimer’s disease

The most ubiquitous neurodegenerative disorder and form of dementia is AD, with an 

estimated worldwide prevalence of over 35 million cases (Selkoe, 2012). Mainly 

characterized by cognitive decline, late-stage AD concomitantly involves progressive motor 

aberrancies, mood instabilities and other behavioral and physical abnormalities (Bediou et 

al., 2009; Budson and Solomon, 2012). Although most of these symptoms arise as a result of 

cortical degeneration, others are due to degeneration of subcortical or autonomic function-

related areas. It should be noted, however, that AD pathology does not equally affect the 

whole brain, as certain brain areas and cell types are specifically vulnerable to AD pathology 

(Hardy, 2006). Among the areas mainly affected by degeneration in AD are the frontal 

cortex, temporal and parietal lobes, including the hippocampus and entorhinal cortex (EC), 

and the cingulate gyrus, whereas the cerebellum is largely spared (Wenk, 2003). 

Interestingly, there is some evidence indicating that, while the cerebellum is mostly spared, 

the Purkinje cells are specifically targeted by AD pathology (Fukutani et al., 1996). Despite 

numerous pre-clinical and clinical trials for AD treatments, only basic symptom 

management therapies are currently Food and Drug Administration-approved (some 

acetylcholinesterase inhibitors and an N-methyl-D-aspartic acid [NMDA] receptor 

antagonist), which cannot halt, or slow down the progressive neurodegeneration and the 

associated decline of memory, cognitive and executive functions. Apart from being a scourge 

among the elderly and the relatives of patients, dementia also incurs a tremendous 

socioeconomic burden; amounting to an estimated $200 billion in 2013 in the United States 

of America alone (Alzheimer’s Association, 2013).

AD is a complex, multifaceted disorder, involving dysregulated homeostasis on various 

fronts, including energy metabolism, inflammation, and cell cycle control (Mastroeni et al., 

2010), likely resulting from a complex interplay between genetic, epigenetic and 

environmental factors (Coppede et al., 2006; Mastroeni et al., 2011). Despite much research 

into the pathophysiology of AD, including amyloid β (Aβ) and phosphorylated tau proteins 

(Tiraboschi et al., 2004), its exact etiology remains to be elucidated (Mill, 2011). Aβ, which 

exists in monomeric, oligomeric, and aggregated forms (senile plaques), is the product of 

APP cleavage by the β- and γ-secretases (Citron et al., 1995; Shoji et al., 1992). APP 

cleavage by γ-secretases can result in either Aβ40 or Aβ42, of which Aβ42 is thought to be 

especially neurotoxic. APP can also be cleaved by α-secretases such as a disintegrin and 

metalloproteases domain 10 (ADAM10) and tumor necrosis factor alpha (TNF-α) 

converting enzyme (TACE), but that this cleavage does not result in Aβ, but generates APPs-
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α, which is thought to be neuroprotective (Groen, 2010). One of the most prominent theories 

of AD pathology is the amyloid hypothesis, which states that Aβ is responsible for initiating 

the pathogenic pathway that leads to neurodegeneration and dementia in AD. Generally, this 

theory proposes that neurodegeneration is the result of impaired Aβ homeostasis, which 

leads to aberrant calcium homeostasis, triggering - and sensitizing cells to -damaging 

processes, including excitotoxicity and the formation of neurofibrillary tangles (NFTs) 

(Hardy and Higgins, 1992; Mattson etal., 1992; Selkoe, 1993). This hypothesis is applicable 

especially to early onset familial types of AD (fAD), which have a much more evident 

genetic component than the far more common late onset sporadic AD (sAD) (Tanzi, 2012). 

Mutations in the APP gene and the presenilin (PS) genes PS1 and PS2, have been observed 

in fAD cases (Czechetal.,2000; DeStrooperetal., 1998; Goateetal., 1991; Hardy and Higgins, 

1992; Migliore and Coppede, 2009; Sherrington et al., 1995; Tanzi et al., 1996). PS1 and 

PS2 are γ-secretase-associated proteins involved in the generation of Aβ from APP, and PS 

mutations are able to bias this process towards Aβ42 production, the 42 amino acid-long Ab 

isoform that is more prone to aggregate then the shorter Aβ40 isoform, by either increasing 

Aβ42 production, or lowering Aβ40 production (Lemere et al., 1996). This relation has been 

corroborated by the detection of elevated Aβ42 levels in the blood and brains of fAD cases 

with PS mutations (Czech et al., 2000). Their major impact on disease development has led 

to the widespread use of mutant forms of the APP and PS genes to generate animal models 

of AD (see (Brasnjevic et al., 2013)). Although some mutations in the PS and APP genes 

seem to play a large role in disease development in fAD cases, most of the sAD 

susceptibility genes, including the risk factor with the highest population-attributable risk, 

the ε4 allele of the apolipoprotein E (APOE) gene and those identified through genome-

wide association studies (ATP-binding cassette, sub-family A [ABC1], member 7 [ABCA7], 

clusterin [CLU], complement component receptor 1 [CR1], cluster of differentiation 33 

[CD33], phosphatidylinositol-binding clathrin assembly protein [PICALM], membrane-

spanning 4-domains, subfamily A, member 6A [MS4A6A], membrane-spanning 4-domains, 

subfamily A, member 4E [MS4A4E], cluster of differentiation 2-associated protein 

[CD2AP]) have a relatively minor influence on AD progression when altered (Cacabelos, 

2005, 2007; Slooter et al., 1998). Moreover, despite the robust association with sAD of some 

of these common sequence variants, it remains largely unknown how they influence the 

development and course of sAD (Harold et al., 2009; Hollingworth et al., 2011; Naj et al., 

2011; Sleegers et al., 2010). The same applies to the rare mutations recently discovered in 

the triggering receptor expressed on myeloid cells 2 (TREM2) gene, although they confer a 

much larger increase in risk to develop sAD than the common sequence variants (Guerreiro 

et al., 2013; Jonsson et al., 2013; Neumann and Daly, 2013). Although these genetic risk 

factors may be informative in screening for populations at risk to develop sAD, it has not yet 

been discovered how they exactly affect AD development (Slooter et al., 1998). Most is 

known about the involvement of the major risk factor APOEε4. For instance, increased 

levels of brain APOEε4 mRNA in AD cases, compared to controls with the same allele, 

were detected (Yamagata et al., 2001). Interestingly, the APOEε3 allele is thought to protect 

against Ab neurotoxicity (Caesar and Gandy, 2012). Additionally, a study with a transgenic 

mouse model of AD expressing human APOE isoforms indicated that different APOE 
alleles might influence clearing soluble Ab from the brain (Castellano et al., 2011). This is 

in line with evidence indicating that sAD is characterized by an inability to clear Aβ from 
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the brain and not an increase Aβ production (Mawuenyega et al., 2010). A similar effect is 

suggested for the CLU gene, another important risk gene associated with sAD, implicating it 

in the aggregation and clearance of Ab, thereby mainly influencing age of onset and 

progression (Yu and Tan, 2012). Apart from the gene, CLU levels were shown to be elevated 

in the cerebrospinal fluid and brains of AD patients and CLU plasma levels were associated 

with several AD hallmarks (Schrijvers et al., 2011; Thambisetty et al., 2010).

Besides an abnormal Aβ homeostasis, dysfunctional tau has also been pointed out as a 

pivotal player in AD pathology. Tau, a microtubule-associated protein that promotes 

microtubule assembly (Weingarten et al., 1975), becomes hyperphosphorylated in AD. This 

causes it to dissociate from microtubules and aggregate, which induces cytoskeletal 

disorganization, neuronal dysfunction and cell death (Lee et al., 2001; Lovestone and 

Reynolds, 1997). This pathological process of aggregation is thought to play a part in the 

neurodegeneration and memory deficits as seen in AD (Alonso et al., 1997; Iqbal et al., 

2009). Interestingly, while a similar process occurs in other tauopathies, diseases involving 

pathological tau aggregation, these generally involve mutations of the tau encoding 

microtubule-associated protein tau (MAPT) gene, whereas such mutations are usually not 

found in AD cases (Klafki et al., 2006; Lee et al., 2001). Mitochondrial abnormalities have 

also been investigated as contributors to AD pathogenesis, mainly in relation to energy 

imbalances and increased reactive oxygen species (Khairallah and Kassem, 2011).

Aβ and tau have long been the direct focus of treatment strategies, involving potential 

aggregation inhibitors, immunotherapy, and enzyme modulators (Hardy and Selkoe, 2002). 

More recently, however, while the epigenetic involvement in neurodegeneration is being 

explored, the epigenetic machinery has become an attractive target for novel intervention 

strategies. That minor aberrancies in the epigenetic machinery can have widespread 

consequences on gene expression, combined with the sporadic and complex nature of AD, 

has led to a recent interest in the role of epigenetic factors in the etiology of AD (Lahiri et 

al., 2009; Mastroeni et al., 2011).

3.2. Parkinson’s disease

PD is the second most common progressive neurodegenerative disorder, affecting the 

dopaminergic neurons of the midbrain substantia nigra. Because the dopaminergic 

projections from the substantia nigra are crucially involved in the initiation of motor events, 

PD is mainly known for symptoms such as tremor, rigidity, bradykinesia, and gait 

disturbances (Jankovic, 2008). These motor disturbances are, however, complemented by 

psychiatric symptoms, autonomic impairments, sleep disturbances, and cognitive 

dysfunctions, including dementia, that are intrinsic to the disease pathology and may even 

precede the motor symptoms (Aarsland et al., 1999; Naimark et al., 1996; Riedel et al., 

2008). These nonmotor symptoms are related to imbalances in other neurotransmitter 

systems, including serotonergic, noradrenergic, and cholinergic malfunctions (Francis and 

Perry, 2007). Furthermore, cognitive impairments in PD are generally accompanied by the 

occurrence of Lewy bodies in brain areas including the midbrain and cortex (van de Berg et 

al., 2012). Lewy bodies are cytoplasmic protein aggregates, consisting mainly of α-

synuclein, parkin, and ubiquitin (Jellinger, 2009). Exactly what part Lewy bodies play in PD 
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pathophysiology warrants additional investigation. As with AD, PD exists as a familial 

(fPD) and a sporadic (sPD) variant, of which the former is again much rarer. Synuclein alpha 

(SNCA), the gene encoding the presynaptic protein α-synuclein, is one of the cardinal risk 

genes for PD; increased expression of only this gene (through point mutations and 

multiplications) can already induce familial Parkinsonian syndromes (Singleton et al., 2003; 

Thomas and Beal, 2011). In addition to SNCA, MAPT, Parkinson disease 16 (PARK16) and 

leucine-rich repeat kinase 2 (LRRK2) are also indicated as risk genes, with SNCA and 

MAPT SNPs conferring the highest risk (Edwards et al., 2010; Simon-Sanchez et al., 2009). 

Although genetic predisposition remains a high risk factor for sPD, age and environmental 

variations are also thought to be highly influential (Ammal Kaidery et al., 2013; Houlden 

and Singleton, 2012; Veldman et al., 1998), with factors such as a rural environment 

increasing the risk to develop PD, while smoking and the consumption of coffee decrease 

the risk (de Lau and Breteler, 2006). Additionally, the development of sPD has often been 

linked with exposure to environmental toxins, of which 1- methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) has the most prominent link to developing PD, leading to its 

widespread use to induce PD-like symptoms in animal models (Fukuda, 2001; Kopin, 1987). 

A causal role in the development of PD of most other toxins, however, remains a point of 

controversy (Franco et al., 2010). Nevertheless, evidence is accumulating pointing towards a 

cardinal role of the epigenetic machinery in mediating the effect of chronic environmental 

exposures on alterations in gene expression that can lead to the development of late-onset 

neurodegenerative diseases (Kanthasamy et al., 2012). At least for some genes a mechanism 

of DNA methylation-induced allelic skewing is proposed as the underlying mechanism of 

how an epigenetic process can modulate the interaction between genotype and environment. 

DNA methylation-induced allelic skewing is the process by which the paternal and maternal 

alleles are differentially methylated, leading to the preferential expression of either one.

3.3. Huntington’s disease

In contrast to AD and PD, HD is primarily a genetic, autosomal dominant neurologic 

disorder, with the sporadic variant being rarer. When symptoms start to occur progress can 

be fast and will result in death, with no treatment options currently available to change this 

devastating process (Ryu et al., 2005). The most characteristic symptom of HD is chorea, 

but other prominent symptoms include cognitive deterioration and psychiatric disturbances. 

It is known that HD pathology is ignited by an expansion of a cytosine-adenine-guanine 

(CAG) repeat section, coding for glutamine, in the coding region of the Huntingtin (HTT) 

gene on chromosome 4p16.3 (MacDonald et al., 1993). Note that the familial and sporadic 

variants thus have the same genetic origin. A CAG repeat number of 36 units leads to the 

development of HD and sporadic cases are caused by de novo mutations that increase the 

repeat number to above the critical number, with high repeat numbers leading to a younger 

age of onset (Kremer et al., 1994; Myers et al., 1993). The primary risk factor for developing 

HD is thus having family members with HD, or members with a high CAG repeat number. 

The expansion results in a dysfunctional HTT protein, which has been shown to disrupt 

transcription via multiple pathways (Okazawa, 2003; Sugars and Rubinsztein, 2003). It 

remains, however, unclear exactly how the production of mutant HTT leads to the lethal 

neurodegeneration associated with HD (Thomas, 2006). Curiously, HD neurodegeneration is 

very region and cell-type specific, mainly affecting the medium-sized spiny neurons of the 
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neostriatal nuclei, caudate nucleus and putamen, explaining the grave motor symptoms 

(Ferrante et al., 1985,1986,1987,1991; Graveland etal., 1985; Kowall etal., 1987; Lee et al., 

2013a; Vonsattel et al., 1985). Despite the specificity of neurodegeneration in HD, the HTT 

protein can be found in neurons throughout the whole brain (Ross, 1997). Wildtype HTT is 

mainly situated in the cytoplasm, its exact function, however, remains elusive, with proposed 

roles in intracellular transport, autophagy, transcription, mitochondrial functioning and 

signal transduction (Cattaneo, 2003; Mangiarini et al., 1996; Nucifora et al., 2001; Ross and 

Poirier, 2004). Nevertheless, HTT is critical for survival, as complete deletion of the HTT 
gene results on nonviable offspring (Zhang et al., 2003). Mutant HTT was shown to impair 

fast axonal transport, destabilize microtubules, and through its interactions with a multitude 

of proteins it disrupts important cellular pathways leading to hampered proteolysis, 

mitochondrial dysfunction, oxidative damage, inflammatory reactions, excitotoxicity and 

induction of apoptosis (Beal and Ferrante, 2004; Szebenyi et al., 2003; Trushina et al., 

2004). Additionally, evidence indicates that mutant HTT has a widespread impact on gene 

expression, through interactions with specific transcription factors (Li et al., 2002), 

interference with the core transcriptional machinery and posttranscriptional modifications of 

histones, skewing the chromatin towards a more condensed state (Thomas et al., 2008).

4. DNA (de)methylation in neurodegeneration

4.1. DNA (de)methylation in Alzheimer’s disease

Early epigenetic investigations related to AD by West et al. (1995) focused on DNA 

methylation, reporting an AD-specific hypomethylation of the APP gene promoter region in 

a single patient. This was confirmed by another study and linked to elevated Ab levels 

(Tohgi et al., 1999). A later study with a larger sample was, however, unable to replicate this 

finding, nor find any other significant AD-related abnormalities in MAPT, APP and PS1 
methylation (Barrachina and Ferrer, 2009). Others also did not find significant AD-related 

methylation changes in the APP promoter Barrachina et al. did report the presence of low 

and high methylated CpG sites in and close to the APP promoter region, as did Fuso et al. 

for the APP, PS and BASE genes (Fuso et al., 2005). Conversely, Brohede et al. (2010) 

observed no methylation at the investigated CpG site of the APP gene in a small sample of 

fAD patients, in all brain areas investigated, including the frontal cortex, parietal cortex, 

temporal cortex and cerebellum, concluding that APP is not transcriptionally regulated by 

methylation. All in all, these studies provide inconclusive evidence of whether APP 
methylation is involved in AD, raising the need for studies clearly separating between sAD 

and fAD, investigating multiple CpG sites and ideally also differentiate between cell types 

instead of using homogenates of whole regions. Wang et al. (2008b) observed a high 

interindividual variance in promoter methylation of the PS1, APOE, MTHFR, and DNMT1 
genes, and a particularly marked epigenetic drift in AD cases.

A finding relevant not only to global DNA methylation, but also for many other biochemical 

pathways, is a severe AD-associated reduction of SAM (up to 85%) and its demethylated 

metabolite SAH (up to 79%) in several neocortical areas, the hippocampus and putamen 

(Morrison et al., 1996). Additionally, cerebrospinal fluid levels of folate and SAM, and 

levels of SAM in the frontal cortex, occipital cortex, temporal cortex, putamen and 
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hippocampus, were found to be decreased in AD cases (Bottiglieri etal., 1990; Morrison et 

al., 1996; Serot et al., 2001), concomitant with an increase in brain SAH levels (Kennedy et 

al., 2004). Accordingly, lower serum folate levels and increased plasma Hcy levels were 

observed in sAD patients versus controls (Coppede et al., 2012). Cell culture work has 

indicated that increased Hcy levels can be linked to enhanced tau hyperphosphorylation and 

subsequent NFT formation (Sontag et al., 2007), which may be the result of the inhibitory 

effect of Hcy on methyltransferases, thereby preventing the methylation of protein 

phosphatase 2A (PP2A), which is required for its proper activation. PP2A can 

dephosphorylate phosphorylated tau and its decreased activity thus promotes the 

hyperphosphorylation of tau. In both mouse Neuro-2a (N2a) cells expressing human mutant 

APP and transgenic mice expressing human mutant PS1 and APP, PP2A was also found to 

be hypomethylated, resulting in elevated tau phosphorylation (Zhou et al., 2008). 

Furthermore, antagonizing folate with methotrexate in rat primary neuron cultures 

heightened phosphorylated tau, APP and BACE levels (Yoon et al., 2007). Interestingly, 

hypomethylated PP2A, but not normally methylated PP2A colocalized with 

hyperphosphorylated tau in the hippocampus of rats and AD cases (Zhang et al., 2008).

The apparent importance of folate and vitamins B12 and B6 in maintaining SAM levels has 

stimulated investigations into the potentially protective effects of supplementing these 

vitamins to counteract cognitive decline and possibly the onset of dementia (Cacciapuoti, 

2013). In vitro folate deprivation was able to induce global DNA hypomethylation, leading 

to an increased expression of BACE and PS1, but unaltered TACE, ADAM10 and APP 

expression (Fuso et al., 2005). SAM supplementation successfully restored the folate 

deficiency-induced abnormalities. In a follow-up study, mutant human APP transgenic mice 

deprived of folate, vitamin B12 and vitamin B6 (Fuso et al., 2008), showed increased SAH to 

SAM ratios and increased PS1 and BACE levels, thus corroborating the in vitro findings. 

These increases in PS1 and BACE expression were paired with elevated Aβ aggregation, 

early appearance of intraneuronal Ab and mild spatial learning and memory impairments. In 

a similar study, it was later shown that SAM supplementation was also able to remedy the 

vitamin B deficiency-induced detrimental effects in mice, resulting in a reduction in PS1 and 

BACE1 expression, amyloid production, tau phosphorylation, and subsequent enhanced 

spatial memory (Fuso et al., 2012). Vitamin B deficiency induced hypomethylation of CpG 

sites near the PS1 promoter, indicating that PS1 expression is indeed regulated by 

methylation (Fuso et al., 2011). Another group also found benefical effects of dietary SAM 

supplementation in the 3xTg-AD mouse model (Lee et al., 2012). Additionally, a vitamin/

nutriceutical formulation including folate and vitamin B was shown to delay the progression 

of dementia in a small sample of early stage (Chan et al., 2008), and moderate to late stage 

AD (Remington et al., 2009).

Observations of an overall reduction in DNA methylation in AD patients are in line with 

these findings and further stress the importance of DNA methylation in AD (Mastroeni et 

al., 2010, 2011; Wang et al., 2008b). Interestingly, despite this AD-associated global DNA 

hypomethylation, specific loci of the MTHFR gene, which is crucial for SAM synthesis, 

were found to be hypermethy-lated, in both postmortem prefrontal cortex and peripheral 

lymphocyte samples of AD patients (Wang et al., 2008b).
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Studies focusing on the hippocampus, one of the brain areas early affected by AD and aging, 

have observed that levels of 5-mC (Chouliaras et al., 2011b) and DNMT3a (Chouliaras et 

al., 2011a) increase with age in mice, whereas these levels are significantly decreased in the 

hippocampus of AD patients (Chouliaras et al., 2013a).

Siegmund et al. (2007) found an increase in the methylation of sorbin and v-src avian 

sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog homology 3 domain containing 3 

(SORBS3) and a decrease in the methylation of S100 calcium-binding protein A2 (S100A2) 

in AD subjects, compared to controls of 60 years and older. Interestingly, although a 

progressive increase in SORBS3 and decrease in S100A2 methylation is normal with aging, 

this process is accelerated in AD. SORBS3 encodes a cell adhesion molecule and the 

product of S100A2 is observed in corpora amylacea, which are a hallmark frequently found 

in human brain aging and, in greater numbers, of neurodegenerative diseases (Hoyaux et al., 

2000). A decline in SORBS3 expression might have a hand in the synaptic abnormalities 

associated with AD (Urdinguio et al., 2009). Intriguingly, recent epigenome-wide 

association studies identified another gene that encodes an adaptor protein and its 

methylation signature is highly associated with AD pathology. More specifically, a 

differential cortex-specific hypermethylated region of ankyrin 1(ANK1) was found to be 

associated with the early stages as well as the progression of AD neuropathology (De Jager 

et al., 2014; Lunnon et al., 2014).

Remarkably, Aβ has also been implicated as a trigger of epigenetic changes. Chen et al. 

(2009) found that Aβ induces global DNA hypomethylation, while promoting 

hypermethylation of NEP, a gene that encodes neprilysin. Neprilysin is one of the enzymes 

involved in Aβ degradation and its expression is known to decrease with aging and AD. This 

finding indicates that Aβ is able to induce a vicious cycle that depends on epigenetic 

processes and favors Aβ deposition. Other regulatory players may further enforce this cycle, 

for instance TNF-α and cysteine-dependent aspartate-directed protease (caspase)-3 were 

found to increase Aβ production, and they are increasingly expressed in response to 

hypomethylation (Muerkoster et al., 2008; Sommer et al., 2009; Wilson, 2008; Xiong et al., 

2008).

Tau gene expression is also subject to complex epigenetic regulation, involving differentially 

methylated binding sites for transcription factors. It was found that with age, the activator- 

binding site for transcription factor SP1 became hypermethylated in the tau gene promoter 

region, whereas the repressor-binding site for GCF was hypomethylated in the human 

cerebral cortex (Tohgi et al., 1999), which might be relevant to AD and other age-related 

tauopathies. This points toward an age-related decrease in tau expression, which has indeed 

been detected in the human frontal cortex and hippocampus, but this did not correlated with 

NFT pathology (Mukaetova-Ladinska et al., 1996).

The APOE gene promoter has a low CpG count and generally exhibits low levels of DNA 

methylation. There is, however, a CpG island located at the 3’ end that is usually heavily 

methylated, and which contains the sequence of the APOE ε4-haplotype, the prime genetic 

risk factor for sAD (Wang et al., 2008b). It has been suggested that the £4 allele might 

disturb the epigenetic regulation of the APOE gene, as this allele is associated with a C>T 
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transition, preventing this site from being methylated (Wang et al., 2008b). The CLUgene is 

more clearly regulated by epigenetic mechanisms, as its promoter regions contain a CpG 

island, the demethylation of which after 5- aza-2’-deoxycytidine (decitabine; DAC) 

treatment was shown to enhance CLU expression in cancer cell lines (Rauhala et al., 2008). 

A similar demethylating treatment in addition to the administration of HDAC inhibitors 

(HDACIs) has also been observed to increase CLU expression and secretion in human 

neurons and retinal pigment epithelial cells (Nuutinen et al., 2005; Suuronen et al., 2007).

There is increasing evidence of disturbed cell-cycle control and subsequent induction of 

apoptosis in degenerating AD neurons and, although not directly investigated, many of the 

proteins involved in these processes that have been shown to be upregulated in these neurons 

and are also known to be regulated through DNA methylation (Jee et al., 2005; Moreira et 

al., 2009; Muerkoster et al., 2008; Robertson and Jones, 1998; Tschöp and Engeland, 2007). 

In addition to genes involved in cell-cycle control, the promoter regions of cyclooxygenase-2 

(COX-2) and nuclear transcription factor kappa B (NF-κB) were found to be hypo-

methylated, while the promoter regions of brain-derived neuro-trophic factor (BDNF) and 

cAMP response element-binding protein (CREB) were hypermethylated in the frontal cortex 

of AD patients (Rao et al., 2012).

Bollati et al. (2011) specifically investigated blood for the methylation status of repetitive 

elements, including Arthrobacter luteus elements (Alu), long interspersed element 1 

(LINE-1) and satellite-α (SAT-α), which comprise a large portion of the human genome and 

are known to contain large numbers of CpG sites. Interestingly, they found that LINE-1 

methylation was increased in AD patients and that within the AD group enhanced LINE-1 

methylation was associated with a better cognitive performance.

Although not as well studied in relation to AD as DNA methylation, the DNA demethylation 

process is receiving increased attention. As for 5-mC, 5-hmC levels were also found to be 

greatly decreased in the hippocampus of AD patients (Chouliaras et al., 2013a). This is in 

line with previous findings indicating a global DNA hypomethylation in EC NFT-bearing 

neurons of AD patients (Mastroeni et al., 2010). Additionally, it was found that global 5- 

hmC levels were decreased in the EC and cerebellum of AD subjects, while no significant 

disease-related changes in 5-mC, 5-fC and 5-caC were detected (Condliffe et al., 2014). In 

contrast, levels of 5-mC and 5-hmC were immunohistochemically found to be increased in 

the mid frontal gyrus and mid temporal gyrus of AD patients and positively correlated with 

Aβ, NFT, and ubiquitin load (Coppieters et al., 2014). This study included a cell-type 

specific analysis and found that 5-hmC and 5-mC were mainly present in Neuronal Nuclei 

(NeuN; a neuronal marker)-positive cells, with glial fibrillary acidic protein (GFAP; an 

astrocyte marker)-positive cells and ionized calcium-binding adapter molecule 1 (1BA1; a 

microglial/ macrophage maker)-positive cells only presenting with weak or no 

immunoreactivity. This latter study is in line with findings from Bradley-Whitman and 

Lovell (Bradley-Whitman and Lovell, 2013), who observed increased levels of TET1, 5-mC 

and 5-hmC in the hippocampus and parahippocampal gyrus in subjects with preclinical and 

late-stage AD. In addition, it was found that 5-fC and 5-caC levels were significantly 

decreased. Another study detected global hypermethylation in the frontal cortex of AD 

patients (Rao et al., 2012). Whether global 5-mC and 5-hmC levels are thus decreased or 
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increased in AD remains to be conclusively determined. Possible factors contributing to the 

discordant findings have been suggested and include differences in the brain regions studied, 

tissue processing, and detection methods and protocols (Coppieters et al., 2014). An 

additional factor that could influence readings is whether a cell type-specific analysis is 

conducted, or different cell types are grouped together. Considering the uncertainty 

regarding global 5-mC and 5-hmC changes in relation to AD it might be a bit too early to 

speculate about the consequences of such changes. Nevertheless, Coppieters et al. (2014), 

who detected a global DNA hypermethylation and hyperhydroxymethy-lation argue that 

these changes may facilitate cell death, as the methylation of cytosines is thought to enhance 

the mutation rate of these cytosines and this increased mutation rate could facilitate the loss 

of neurons in AD. There are, however, also studies indicating that DNA hypomethylation 

leads to neuronal degeneration (Fan et al., 2001; Hutnick et al., 2009), suggesting that no 

simple conclusions can be made from observations of globally increased or decreased DNA 

methylation levels.

Münzel et al. (2010) observed an age-related increase in 5-hmC levels, which seemed to be 

especially prominent in genes associated with neurodegeneration. Another finding indicating 

DNA demethylation to play a role in the development of AD is a single nucleotide 

polymorphism (SNP) in the TET1 gene that was associated with sAD (Morgan et al., 2008). 

See Table 4 for an overview of the aberrant DNA (de)methylation in AD.

4.2. DNA (de)methylation in Parkinson’s disease

Obeid et al. (2009) explored the relation between the methylation potential, represented by 

the SAM/SAH ratio, and cognitive performance in PD patients, and found that a higher 

methylation potential correlated with better cognitive capabilities. In addition, it was found 

that α-synuclein can associate with DNMT1, sequestering it in the cytoplasm, resulting in 

global DNA hypomethylation. This property of α-synuclein was not only found in PD cases, 

but also in dementia with Lewy bodies and a transgenic mouse model expressing human a-

synuclein (Desplats et al., 2011). Because α-synuclein can also be observed in AD 

(Trojanowski et al., 1998), this mechanism might also contribute to the global DNA 

hypomethylation observed there. In vitro overexpression of DNMT1, as well as in transgenic 

mice, was able to normalize the nuclear localization of DNMT1.Jowaed et al. (2010) 

specifically investigated methylation of human SNCA and showed that expression of this 

gene is regulated through methylation of the first intron. Interestingly, a negative correlation 

between SNCA intron 1 methylation and SNCA expression has also been identified, and that 

SNCA methylation is decreased in the substantia nigra, putamen, and cortex of sPD patients 

(Jowaed et al., 2010; Matsumoto et al., 2010). Another study, investigating the high-

resolution methylome of Lewy body disease cases, including PD, found, however, no overall 

differences in SNCA intron 1 methylation (de Boni et al., 2011). Although this study 

reported some differences at the single CpG level, it signifies that the extent of erroneous 

DNA methylation in PD warrants additional research efforts. Apart from SNCA, however, 

additional genes, including PARK16, glycoprotein (transmembrane) nmb (GPNMB) and 

syntaxin 1B (STX1B) have also reported to be differentially methylated in PD (Plagnol et 

al., 2011). A very recent EWAS in blood from PD patients, using a discovery and replication 

cohort, identified additional differentially methylated genes, with the most reliable 
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differentially methylated CpGs being located in the Fanconi anemia, complementation group 

C (FANCC) and tankyrase, telomeric repeat binding factor 1 (TRF1)-interacting ankyrin-

related ADP-ribose polymerase 2 (TNKS2) genes (Moore et al., 2014). How this aberrant 

DNA methylation exactly affects gene expression and ultimately influences PD pathology 

remains to be unveiled.

Interestingly, although a mutation in parkin has been associated with a juvenile form of PD, 

deviant methylation patterns in the promoter of this gene have been observed in 

myelogenous leukemia and acute lymphoblastic leukemia, but not PD (Agirre et al., 2006; 

Cai et al., 2011). Similar observations were made for deubiquitinating enzyme ubiquitin 

carboxy-terminal hydrolase L1 (UCHL1), a gene associated with PD, and ATPase type 13A2 

(ATP13A2,) which causes a recessive form of Parkinsonism, failing to establish a relation 

between abnormal promoter methylation and PD, although the promoter of UCHL1 was 

found to be hypermethylated in cancer (Barrachina and Ferrer, 2009; Coppede, 2012; 

Thomas and Beal, 2011). Table 5 summarizes the findings regarding dysregulated DNA 

(de)methylation in PD.

4.3. DNA (de)methylation in Huntington’s disease

DNA methylation states have been investigated in transgenic models, and to a lesser extend 

in HD patients (Ng et al., 2013; Villar-Menendez et al., 2013; Wood, 2013; Table 6). 

Promoter regions of genes important for neurogenesis were found to be hypermethylated in 

the presence of mutant HTT (Ng et al., 2013; Table 6). Although these findings need to be 

replicated in HD patients, reduced hippocampal neurogenesis might partially underlie the 

cognitive impairments seen in HD (Lee et al., 2013a). Decreased expression of the 

adenosine A2a receptor in HD patients is also epigenetically regulated. In both HD patients 

and transgenic mice adenosine A2a receptor expression was observed to be downregulated 

(Wood, 2013). However, in patients this was associated with increased 5’ UTR DNA 

methylation, whereas in the mouse model with decreased 5’ UTR DNA hydroxymethylation 

of the adenosine A2a receptor gene (ADORA2A). This finding indicates that epigenetic 

regulation might differ between species and illustrates the importance of replicating findings 

in human cases. The widely neglected 7-mG form of DNA methylation, which also occurs in 

RNA, was found to be disturbed in HD mouse models and patients, in both the nucleus and 

cytoplasm, the latter primarily reflecting methylated RNA (Thomas et al., 2013).

5. Chromatin remodeling in neurodegeneration

5.1. Chromatin remodeling in Alzheimer’s disease

Going from the DNA to the chromatin level, additional epigenetic dysregulation can be 

observed in AD (Table 7). Histone acetylation was found to be drastically decreased in the 

temporal lobe of AD patients when compared to aged controls (Zhang et al., 2012), but also 

in animal models of AD (Graff et al., 2011). The importance of gene-specific investigations 

apart from global changes in epigenetic markers is exemplified by the observation of 

increased H3 acetylation at the promoter region of the BACE1 gene in AD patients 

(Marques et al., 2012). The increase in H3 acetylation enhanced promoter accessibility and 

subsequent gene expression. Importantly, it was found that indirectly enhancing histone 
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acetylation through chronic treatment with HDACIs was able to reverse cognitive deficits in 

double transgenic mice overexpressing human APP isoform 695 with the double 

KM670/671NL Swedish mutation (APPswe) and the human PS1 deleted in exon 9 mutation 

(PS1ΔE9) (APPswe/PS1ΔE9 mice) (Kilgore et al., 2009). The mechanism of action of 

HDACI treatment might be related to the finding that dysregulation of H4K12ac is 

implicated in mediating cognitive impairment exhibited seen in aged mice, impairments 

which were alleviated through HDACI administration (Peleg et al., 2010). Another study 

using transgenic APP/PS1 mice observed diminished acetylation of H4 and linked this to 

memory impairments, which could be alleviated through trichostatin A (TSA), an HDACI, 

administration (Francis et al., 2009). Decreased histone acetylation is in line with the 

discovery of elevated nuclear translocation of EP300 interacting inhibitor of differentiation 1 

(EID1) in cortical neurons of AD subjects (Liu etal., 2012a). EID1 inhibits EP300 and 

CREBBP, important KATs, and the overexpression of EID1 in mice resulted in learning and 

memory impairments thought to be the result of this inhibition. In the triple transgenic 

mouse model of AD (3xTg-AD mice) CREBBP expression was also decreased, while 

overexpression of CREBBP elevated BDNF levels and restored memory function in this AD 

model (Caccamo et al., 2010). Additionally, expression of a truncated inhibitory form of 

EP300 impaired memory in transgenic mice (Oliveira et al., 2011; Oliveira et al., 2007). 

Curiously, while knockout of KAT2B resulted in memory impairments in mice (Maurice et 

al., 2008), such mice are resistant to the neurotoxic effects of Ab injected into the lateral 

ventricles in another study (Duclot et al.,2010).

Conversely, cultured neurons from 3xTg-AD mice and non-transgenic controls, harvested at 

different ages, revealed an increased H3 and H4 acetylation levels from an age of 4 months, 

which is before the onset of memory impairments in this model of AD (Walker et al., 2013). 

With normal aging, H3 acetylation levels seem to remain unchanged, whereas H4 

acetylation levels decreased, but administration of Aβ to the non-transgenic neurons 

increased acetylation levels. The repressive H3K9 mark in these same neurons increased 

with age in both the transgenic and non-transgenic neurons, but was more prominent in the 

transgenic cells. This later finding has been corroborated in humans; comparing two 

monozygotic twins discordant for AD it was found that the one with AD exhibited higher 

levels of H3K9me3 in the temporal cortex and hippocampus (Ryu et al., 2008). Using 

transgenic mice overexpressing APPswe (Tg2576 mice), increased H3 acetylation levels 

were found in the prefrontal cortex, as well as increased H4 acetylation levels in the CA1 

region of the hippocampus (Lithner et al., 2009). Additionally, they also reported elevated 

levels of H3 phosphorylation and methylation in the prefrontal cortex, but decreased H3 

methylation in the striatum.

While the use of non-selective HDACIs is a promising strategy for the treatment of cognitive 

problems, it might be even better to target the specific HDACs that induce the memory 

problems. Currently, HDAC2 is a prime suspect (Graff et al., 2012; Guan et al., 2009). 

Especially the group of Graff and Tsai has contributed significantly in this respect, starting 

with their detection of increased levels of HDAC2 in the hippocampus and prefrontal cortex 

of a mouse model of AD, while levels of the related HDAC1 and HDAC3 were not affected. 

Note, however, that recently it was reported that MS-275 treatment, an HDACI that favors 

HDAC1, was able to partially alleviate behavioral deficits, neuroinflammation and plaque 
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load in transgenic mice overexpressing APPswe and human PS1 with the L166P mutation, 

line 21 (APP/PS1–21 mice) (Zhang and Schluesener, 2013), and that HDAC3 inhibition 

enhanced long-term memory formation in the C57 black 6 inbred mouse strain (C57BL/6 

mice) (McQuown et al., 2011). To study the effects of this HDAC2 dysregulation at the gene 

level, Graff et al. (2012) focused on genes involved in learning, memory and synaptic 

plasticity that were previously shown to be down-regulated in the AD brain and found that 

HDAC2 was significantly enriched at the promoter and coding regions of these genes, in 

their mouse model. In addition, they found several acetylation marks, associated with 

neuroplasticity, to be hypoacetylated (Table 7). Subsequently, it was shown that increased 

localization of HDAC2 to the investigated genes and hypoacetylation negatively correlated 

with RNA polymerase II (RNAPII) binding and mRNA expression. Interestingly, knock-

down of HDAC2 ameliorated the cognitive problems and aberrant synaptic plasticity. It was 

then investigated how HDAC2 could be induced in AD, by testing in vitro the effect of the 

AD associated neurotoxic stimuli hydrogen peroxide and Aβ in primary hippocampal 

neurons. Both stimuli were found to enhance HDAC2 mRNA level through activation of 

glucocorticoid receptor 1 (GR1). Importantly, HDAC2 was also investigated in human 

postmortem brain samples from AD patients revealing that in actual AD cases HDAC2 was 

markedly increased in the hippocampus and EC. Already at Braak stages I and II HDAC2 

levels were found to be significantly elevated in hippocampal CA1 field and the EC, 

indicating that increased HDAC2 activity might be involved in the early stages of AD. In 

addition to HDAC2, HDAC6 levels were found to be significantly higher in the 

hippocampus of AD cases when compared to controls (Ding et al., 2008). Interestingly, 

HDAC6 is thought to interact with tau, affecting its phosphorylation and aggregation 

(Simões-Pires et al., 2013). HDAC6 has been suggested to make tau vulnerable to 

phosphorylation through deacetylation, a finding relevant to tauopathies in general (Cook et 

al., 2014). HDAC6 also indirectly affects tau clearance through deacetylation of chaperone 

protein heat shock protein 90 (HSP90), which affects its drive towards refolding or 

degradation (Cook et al., 2012). It has been reported that tau can actually act as a HDAC6 

inhibitor (Perez et al., 2009). Accordingly, in a mouse model for AD, reduction of HDAC6 

levels mitigated learning and memory problems (Govindarajan et al., 2013). Studies on 

HDAC6 suggest that the role of HDACs in neurodegeneration might not solely depend on 

the deacetylation of histones, but also on the deacetylation of other targets, such as a-tubulin 

in the case of HDAC6 (Govindarajan et al., 2013; Simoes-Pires et al., 2013; Xiong et al., 

2013). The same holds true for KATs, as the KAT human immunodeficiency virus type 1 

transactivating protein interactive protein (TIP60/KAT5), the proposed counterpart of 

HDAC6 (Fischer, 2014) that has been associated with microtubule acetylation (Sarthi and 

Elefant, 2011), has been shown to guard against Aβ toxicity (Pirooznia et al., 2012). KAT5 

in addition regulates the expression of genes involved in apoptosis (Pirooznia et al., 2012), 

axonal transport (Johnson et al., 2013) and DNA damage control (Kaidi and Jackson, 2013), 

and was found to interact with the amyloid precursor protein intracellular domain (Muller et 

al., 2013).

Not all HDACs have a detrimental effect on learning and memory, as inhibition of the class 

IIa HDACs HDAC4 and HDAC5 impair these processes (Agis-Balboa et al., 2013; Kim et 

al., 2012). Moreover, SIRT1, also an HDAC, was found to be decreased in the parietal cortex 

Lardenoije et al. Page 30

Prog Neurobiol. Author manuscript; available in PMC 2019 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of AD patients (Julien et al., 2009). SIRT1 has been linked to neurogenesis, DNA repair, 

apoptosis, cell stress responses, and various other vital signaling pathways (Morris, 2013). 

SIRT1 expression is suggested to be beneficial in case of AD (Kim et al., 2007a), as it 

induces ADAM10 expression, an α-secretase that can cleave APP without producing Aβ 
(Donmez et al., 2010). Additionally, SIRT1 is able to deacetylate tau and its deficiency in 

AD is thus thought to enhance tau expression and pathology (Julien et al., 2009; Min et al., 

2010). Note that this is in conflict with more recent findings regarding HDAC6, which is 

thought to increase tau pathology through deacetylation of tau, as stated above (Cook et al., 

2014), although the SIRT1 study investigated global tau acetylation, whereas the HDAC6 

study specifically investigated the acetylation of KXGS motifs. Nevertheless, enhancing 

SIRT1 expression attenuated axonal neurodegeneration and microglia-dependent Aβ toxicity 

(Araki et al., 2004; Chen et al., 2005; Kim et al., 2007a). Interestingly, SIRT1 was found to 

be upregulated in AD mouse models, but which might by a defense mechanism (Kim et al., 

2007a; Morris, 2013), although it was found to be decreased in AD patients (Julien et al., 

2009). Histone modification abnormalities in AD also include histone phosphorylation, as 

H3 phosphorylation was found to be increased in the frontal cortex of AD patients (Rao et 

al., 2012). Phosphorylation of histone protein H2A member X (H2AX) at S139, a marker of 

DNA damage, was shown to be increased in the AD hippocampus, but specifically in 

astrocytes (Myung et al., 2008).

Accumulating evidence indicates that dysfunctional protein localization might be a chief 

player in the incapacitation of the epigenetic machinery in AD, and possibly in 

neurodegeneration in general. Ogawa et al. (2003) made some fundamental observations in 

this respect. As some neurons in AD erroneously exhibit signs of cell cycle activation, they 

investigated H3S10 phosphorylation, a histone modification critical for chromosome 

compaction during cell division. Strikingly, it was not only found that H3 phosphorylation 

was increased in hippocampal AD neurons, but also that this epigenetic marker was 

abnormally restricted to the cytoplasm in these neurons. In addition, it has also been shown 

that the mitogen-activated protein kinase (MAPK) pathway involved in the phosphorylation 

of H3 is upregulated in degeneration vulnerable neurons in AD (Hyman et al., 1994; Perry et 

al., 1999; Zhu et al., 2001 ). Furthermore, the presence of high levels of histones in the 

cytoplasm of neurons in the HD brain (Iqbal et al., 1974) suggests that incapacitated nuclear 

transport might be a common denominator for neurodegenerative processes. In support of 

this, Mastroeni et al. (2013) found that Aβ could reduce rat sarcoma (Ras)-related nuclear 

protein (RAN) expression, a pivotal player in nucleocytoplasmic transport. As an apparent 

result, they observed DNMT1 and RNAPII to be erroneously sequestered in the cytoplasm 

of neurons from AD patients.

Histone 1 ADP-ribosylation has not been directly investigated in relation to AD, but the 

observations that a loss of poly[ADP]-ribose polymerase 1 (PARP-1) induces memory 

problems in mice (Fontan-Lozano et al., 2010) and that a dysregulation of PARP-1 is 

associated with amyloid pathology and sAD (Abeti et al., 2011; Liu et al., 2010b; 

Strosznajder et al., 2012) suggests that ADP-ribosylation might be a relevant target for 

future studies. Although various histone methylation marks and histone methylation and 

demethylation enzymes have been linked to cognitive functioning in mice and humans 

(shortly reviewed in Fischer, 2014), no links with AD have been firmly identified yet.
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5.2. Chromatin remodeling in Parkinson’s disease

α-Synuclein normally localizes to the nucleus and presynaptic nerve terminals, but increased 

nuclear targeting is neurotoxic, possibly contributing to PD-related neurodegeneration 

(Kontopou-los et al., 2006). This nuclear toxicity of α-synuclein is supported by the finding 

that fPD a-synuclein mutations A30P and A53T result in an increased nuclear targeting of 

α-synuclein. Kontopoulos et al. (2006) found that nuclear toxicity of α-synuclein might be 

the result of direct binding of α-synuclein to histones, reducing the levels of acetylated 

histone H3 and acetylation in general in cultured cells through interactions with S1RT2. In 

cell cultures and transgenic flies, it was further shown that a rescue of α-synuclein toxicity 

could be achieved through HDACIs (Outeiro et al., 2007; St Laurent et al., 2013). Similar 

findings were found after exposure to oxidative stress, which induces the relocation of α-

synuclein to the nucleus, where it subsequently binds to the peroxisome proliferator receptor 

gamma coactivator-1 alpha (PGC1-α) promoter element (Siddiqui et al., 2012). This binding 

of α-synuclein causes histone deacetylation, lowering PGC1-α expression, which is 

deleterious for mitochondrial functioning. Interestingly, levels of PGC1-α were significantly 

reduced in post-mortem substantia nigra neurons of PD patients (Zheng et al., 2010).

Curiously, not only does α-synuclein interact with the epigenetic machinery, but the KAT 

EP300 interacts with protein aggregation in Lewy bodies. A specific domain of EP300, 

reminiscent of prion-like domains, was found to serve as a potential interaction site for 

misfolded proteins, such as α-synuclein found in Lewy bodies, and enhance their 

aggregation (Kirilyuk et al., 2012). Conversely, α-synuclein was found to have 

neuroprotective actions via its interactions with EP300 and NF-κB, downregulating the 

proapoptotic protein kinase Cδ (PKCδ) (Jin et al., 2011a).

In PD patients, most of the aforementioned findings regarding the involvement of histone 

modifications still need to be replicated, but there is a report of an fPD case with a 

heterozygous A53 T SNCA mutation, in which the affected allele was epigeneti-cally 

silenced through histone modifications and the normal allele displayed expression levels 

exceeding those of two normal alleles in controls (Voutsinas et al., 2010).

Previously, the mechanism of DNA methylation-induced allelic skewing was described as a 

mediator between the genotype and environment. Histone modifications, however, are the 

most common epigenetic modality affected by environmental toxins such as pesticides, 

herbicides and industrial agents (Ammal Kaidery et al., 2013). MPTP, for instance, has been 

shown to lower H3K4me3 levels in the striatum of mice and non-human primates (Nicholas 

et al., 2008). Interestingly, H3K4me3 levels could be restored through chronic L-3,4-

dihydroxy-phenylalanine (L-DOPA) treatment. Additionally, the herbicide paraquat and the 

insecticide dieldrin, which have both been associated with the development of PD, were 

found to affect histone acetylation, with exposure to paraquat increasing H3 acetylation and 

hampering overall HDAC activity, and exposure to dieldrin increasing H3 and H4 

acetylation, in N27 dopaminergic cells (Song et al., 2010, 2011a). Dieldrin induces 

apoptosis in neurons and is thought to enhance histone acetylation through its inhibitory 

interaction with the proteasome system, leading to the build-up of CREBBP, an important 

KAT. Administration of the KAT inhibitor anacardic acid in a mouse model exposed to 

dieldrin, decreased histone acetylation and apoptosis, suggesting that the neurotoxic effect of 
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dieldrin leading to apoptosis might be the result of detrimental histone acetylation (Song et 

al., 2010). See Table 8 for an overview of the aberrant chromatin remodeling seen in PD.

5.3. Chromatin remodeling in Huntington’s disease

In general, HD is associated with hypoacetylated and hyper-methylated histones (Ferrante et 

al., 2004; Jenuwein and Allis, 2001; Suzuki and Bird, 2008; Table 9). The mechanism 

underlying histone hypoacetylation has been fairly well characterized and is thought to 

center around the deleterious interaction between CREBBP and mutant HTT (Alarcón et al., 

2004; Korzus et al., 2004). The polyglutamine section of mutant HTT is thought to 

physically interact and sequester CREBBP, hampering its KAT activity (Lee et al., 2013a). 

Besides its KAT activity, CREBBP has additional integral functions in the regulation of 

transcription, interacting with various transcription factors and the RNAPII complex. 

Sequestration of CREBBP by mutant HTT thus disrupts transcription at multiple levels 

(Ferrante et al., 2004; Gardian et al., 2005; McFarland et al., 2012; Ryu et al., 2006; Sadri-

Vakili et al., 2007). Interestingly, a study using transgenic mice expressing a form of 

CREBBP without KAT activity found that this modification specifically affected the 

consolidation of short-term memory into long-term memory, leaving short-term memory 

unaffected (Korzus et al., 2004). A similar study with inactive EP300, a homolog of 

CREBBP, found long-term recognition and contextual fear memory to be impaired (Oliveira 

et al., 2007).

It has been proposed that disruption of CREBBP functioning by mutant HTT is also 

indirectly responsible for the induction of histone hypermethylation and the subsequent 

formation of large abnormal heterochromatin domains (Lee et al., 2008). CREBBP is 

normally thought to repress the expression of Drosophila Su(var)3–9 and enhancer of zeste 

proteins (SET) domain, bifurcated 1 (SETDB1), a gene encoding the HKMT SETDB1 that 

methylates H3K9. Due to the shutdown of CREBBP by mutant HTT, the repression of 

SETDB1 is released and SETDB1 levels increase, subsequently resulting in H3K9 

hypermethylation. This mechanism is corroborated by observations of increased levels of 

SETDB1 and H3K9me3 in striatal neurons of both transgenic HD mice and HD cases (Ryu 

et al., 2006). Additionally, H3K9me3 induced chromatin remodeling has been directly 

associated with altered gene expression profiles in HD (Lee et al., 2008, 2013b; Stack et al., 

2007). Among the genes thought to be affected by this aberrant chromatin condensation is 

cholinergic receptor, muscarinic 1 (CHRM1) (Lee et al., 2013b). Decreased expression of 

CHRM1 has been proposed to induce synaptic dysfunction and CHRM1 levels are indeed 

lowered in the HD striatum (Calabresi et al., 2000; Cha et al., 1998). Deregulation of striatal 

cholinergic signaling has been identified as a pivotal factor in the pathophysiology of HD, 

especially affecting medium spiny neurons (Wang et al., 2006).

6. Non-coding RNAs in neurodegeneration

6.1. Non-coding RNAs and Alzheimer’s disease

In addition to DNA methylation and chromatin remodeling, ncRNAs, and especially 

miRNAs, have more recently been identified as possible contributors to AD pathology 

(Sonntag, 2010; Table 10). Interestingly, miRNA profiling studies have found several 
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miRNAs to be upregulated in peripheral blood mononuclear cells of AD patients (Schipper 

et al., 2007). Apart from the blood, many brain region-specific imbalances in miRNA 

expression have been identified in relation to AD (for review see van den Hove et al., 2014), 

including those with candidate binding sites in the 3’ UTRs of BACE, PS1 and APP. More 

specifically, miR-16, −17, −20a, - 101, −106a, −106b, −107, −124, −137, −147, −153, −195, 

−323–3p, - 520c, −644, −655 and let-7 are thought to regulate APP metabolism and Ab 

production (Bicchiet al., 2013; Delay et al., 2011; Fanet al., 2010; Hebert et al., 2009; Liang 

et al., 2012; Liu et al., 2012b; Long and Lahiri, 2011; Niwa et al., 2008; Patel et al., 2008). 

MiR-16 overexpression was found to reduce APP levels in SAMP8 mice (Liu et al., 2012b). 

In human neurons, miR-106a, −153 and −520c were found to target APP mRNA, 

downregulating APP and Ab levels (Long et al., 2012; Patel et al., 2008). Others, however, 

could not corroborate the involvement of miR-106a and miR-520c in the regulation of APP 

expression (Delay et al., 2011; Hebert et al., 2009). Inhibiting miR-101 in hippocampal 

neurons proved to decrease APP expression and Aβ load, indicating a possible detrimental 

role of the miRNA in AD (Long and Lahiri, 2011). Conversely, miR-124, a miRNA involved 

in adult neuronal differentiation (Cheng et al., 2009), is reported to be down-regulated in 

some AD patients (Smith et al., 2011a). MiR-124 is thought to, together with 

polypyrimidine tract binding protein 1 (PTBP1), modulate the alternative splicing of APP 

exons 7 and 8. Additionally, miR-124, but also miR-9, −29a/b-1, −29c, −107, - 195, −298, 

−328 and −485–5p, affect Aβ indirectly by modulating BACE1 translation (Fang et al., 

2012; Hebert and De Strooper, 2009; Hebert et al., 2008; Zhu et al., 2012). In addition, in 

SAMP8 mice miR-195 expression was found to be decreased, whereas BACE1 levels were 

heightened (Zhu et al., 2012). The involvement of all these miRNAs in AD might, however, 

not be a general phenomenon. For instance, the miR-29a/b-1 cluster was found to be 

lowered in the anterior temporal cortex of sAD patients, coupled with high BACE1 protein 

levels, but only in approximately 30% of the examined cases (Hebert et al., 2008). In a 

transgenic AD mouse model miR-29c was observed to be highly expressed and was found to 

hamper BACE1 expression (Zong et al., 2011). Levels of miR-107 were found to be lowered 

in the temporal cortex of AD cases, which was suggested to facilitate AD progression as a 

result of diminished BACE1 repression (Wang et al., 2008c, 2011, 2010c). MiR-195, −298, 

and −328 also reduce Ab production by inhibiting BACE1 translation (Boissonneault et al., 

2009; Zhu et al., 2012). Interestingly, while most of the miRNAs affecting BACE1 

expression repress translation by binding to the 3’ UTR of its mRNA, miR-485–5p represses 

BACE1 by binding to the open reading frame in exon 6 (Faghihi et al., 2010). The 

involvement of post-transcriptional regulation of BACE1 is further supported by the 

observation that in AD brains BACE1 protein levels are increased, whereas mRNA levels 

remain unchanged (Hebert and De Strooper, 2009). Serine palmitoyltransferase (SPT) is an 

enzyme crucial for ceramide synthesis, which is thought to facilitate Aβ production. MiR-9, 

−29a/b-1, −137 and −181c negatively modulate SPT production and their levels were 

lowered in the frontal cortex of AD patients (Geekiyanage and Chan, 2011). MiR-137 is 

known to additionally promote proliferation of neural stem cells through the inhibition of 

differentiation and dendrite formation (Smrt et al., 2010; Szulwach et al., 2010).

MiRNAs can thus affect Aβ production, but Aβ can also affect the expression of some 

miRNAs in vitro, for example inducing miR- 106b expression (Wang et al., 2010b) but 
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repressing miR-9 and miR-181c (Schonrock et al., 2012). Curiously, Hebert et al. (2009) 

found miR-106b to be downregulated in the anterior temporal cortex of AD brains. 

Furthermore, miR-106 was reported to not only directly bind to and inhibit the translation of 

APP, but also affect APP trafficking and Aβ clearance. Additionally, by regulating the ATP-

binding cassette, sub-family A (ABC1), member 1 (ABCA1), which transports cholesterol, 

it is thought to influence BACE and γ-secretase functioning. ABCA1 expression in the 

hippocampus has been positively correlated with cognitive impairments in AD (Akram et al., 

2010). Normally, miR-106b is thought to promote neurogenesis through its regulation of the 

insulin-like growth factor 1 (IGF1) pathway (Brett et al., 2011). MiR-9 has been reported to 

be a pivotal player in the differentiation and migration of neural stem cells (Delaloy et al., 

2010; Zhao et al., 2009).

Furthermore, while there are generally no AD-associated mutations in tau, miR-15, −16, 

−132, and −497 are thought to regulate tau expression and might play a role in AD. In 

example, a decrease in miR-132 is suggested to mediate the alternative splicing of tau exon 

10, through a lowered repression of polypyrimidine tract-binding protein 2 (PTBP2), which 

hampers physiological phosphorylation of tau (Hebert et al., 2012; Smith et al., 2011b). 

Alternative splicing of tau influences whether it contains 3 or 4 microtubule-binding repeats 

(3R-tau and 4R-tau, respectively) (Liu and Gong, 2008). Furthermore, changes in the 3R:4R 

tau ratio are thought to be related to neurodegeneration (Caffrey et al., 2006). Apart from 

miR-132, miR-9, −124 and −137 have also been reported to affect the 3R:4R tau ratio. 

MiR-212 and miR-454 have also been implicated in NFT pathology in AD (Cogswell et al., 

2008; Wang et al., 2011). Note that dysregulated miRNA expression in relation to tau is 

probably not unique for AD and likely also occurs in other tauopathies. For instance, 

miR-132 was found to be downregulated in progressive supranuclear palsy and 

frontotemporal lobar degeneration (Hebert et al., 2013; Smith et al., 2011b).

Phosphorylation of tau is performed by extracellular signal-regulated kinase 1 (ERK1), 

which in turn is regulated by members of the miR-16 family (miR-15, −16, −195 and −495), 

of which miR- 15 was found to be downregulated in AD (Hebert et al., 2012). Tau can also 

be phosphorylated by glycogen synthase kinase 3 beta (GSK-3β), which has been 

implication in Aβ and NFT formation, and has been reported to be negatively regulated by 

miR-26a, a miRNA that is dysregulated in AD (Cogswell et al., 2008; Mohamed et al., 

2010). As stated above, SIRTI negatively regulates tau expression, while miR-9, −34c and 

−181c, however, have been shown to (in their turn) inhibit S1RT1 production, thereby 

enhancing tau production in AD (Schonrock et al., 2012; Zovoilis et al., 2011). MiR-128 has 

been suggested to affect tau clearance, through its regulation of cochaperone B-cell chronic 

lymphocytic leukemia (CLL)/lymphoma 2 (BCL2)-associated athanogene 2 (BAG2), and 

has been reported to be altered in AD (Carrettiero et al., 2009; Lukiw, 2007). There is 

additional indirect evidence for the involvement of miRNAs in the regulation of tau 

metabolism, as studies knocking out Dicer, which is crucial for miRNA processing, 

observed increased hyperphosphorylation of tau, alternate splicing of tau and 

neurodegeneration (Bilen et al., 2006; Hebert et al., 2010).

Next to miRNAs impacting on Aβ and tau metabolism, various miRNAs that were found to 

be dysregulated in AD also affect other pathological hallmarks of AD. MiR-146a, is for 
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instance a regulator of inflammatory processes through its interaction with interleukin-1 

receptor-associated kinase 1 (1RAK1) that is upregulated in AD brains (Cui et al., 2010; 

Taganov et al., 2006). In addition to 1RAK1, miR-146a was reported to bind to the 3’ UTR 

of complement factor H, a suppressor of inflammation which is downregulated in AD 

(Lukiw et al., 2008). Another regulator of inflammation is miR- 101, which normally 

inhibits COX-2, but its levels were shown to be lowered in AD, whereas levels of COX-2 

were increased (Long and Lahiri, 2011). MiR-132 and miR-125b have been linked to 

synaptic plasticity, and miR-132 was lower in the hippocampus, cerebellum and medial 

frontal gyrus of AD patients, whereas miR- 125b levels were higher in these areas (Sethi and 

Lukiw, 2009). Brain cytoplasmic RNA 200 (BC200) was initially reported to be decreased in 

the temporal neocortex of AD cases (Lukiw et al., 1992), but later studies reported increased 

BC200 levels in the hippocampus and superior frontal gyrus, but erroneously located in the 

neuronal soma (Mus et al., 2007). BC200 is thought to enhance long-term synaptic plasticity 

by interacting with protein synthesis in postsynaptic microdomains. In transgenic mice 

overexpressing a combination of APPswe and human APP with the V717F Indiana mutation 

(APPind; Tg19959 mice) miR-103 and miR-107 were found to be decreased, which was 

linked to increased cofilin expression (Yao et al., 2010). Cofilin is a pivotal player in 

cytoskeletal integrity and is thought to influence microtubule stability, neuronal transport 

and synaptic functioning (Minamide et al., 2000).

Compared to miRNAs, evidence for the involvement of other ncRNAs in AD pathology is 

sparse. RNA polymerase 111 (RNAP111)-dependent ncRNA neuroblastoma differentiation 

marker 29 (NDM29) was found to facilitate the production and secretion of Ab by 

influencing APP processing (Massone et al., 2012), whereas the lncRNA BACE1-antisense 

(BACE1-AS) positively affects BACE1 expression (Hebert and De Strooper, 2009). BACE1-

AS has a length of about 2 kb and is transcribed from the DNA strand complementary to the 

BACE1 gene (Faghihi et al., 2008). 1t is thought to enhance the stability of BACE1 mRNA, 

facilitating BACE1 protein production. Interestingly, BACE1-AS transcription is enhanced 

in response to Ab exposure, initiating a vicious cycle, as its positive effects on BACE1 

expression in turn enhances Ab production. In both AD patients and Tg19959 mice, 

BACE1-AS was indeed found to be overexpressed. Although only confirmed for the 

nonconventional miR-485–5p, evidence suggests that the binding of BACE1-AS to BACE1 

mRNA enhances mRNA stability by competing with miRNA binding (Faghihi et al., 2010). 

The ncRNA 17a has been observed to promote Ab secretion and accumulation and is 

elevated in the cerebral cortex of AD cases, which is thought to be the result of 

inflammatory factors (Massone et al., 2011).

6.2. Non-coding RNAs and Parkinson’s disease

Apart from epigenetic transcriptional regulation of SNCA, some miRNAs have been 

identified that regulate its function on a translational level. One of these is miR-7, which 

negatively regulates α-synuclein expression through binding to the 3’ UTR of α-synuclein 

mRNA and is mainly expressed in neurons (Junn et al., 2009). Through its suppression of α-

synuclein, including cytotoxic mutant forms, it is thought to have a neuroprotective role in 

PD. Interestingly, miR-7 levels were shown to be decreased in vitro and in animal models 

after exposure to the toxic metabolite of MPTP, 1-methyl-4-phenyl-pyridinium ion (MPP+), 
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increasing α-synuclein expression. Downregulation of miR-7 might thus, at least in part, 

explain how MPTP induces PD-like pathology.

Another miRNA, miR-153, represses α-synuclein production both at a mRNA and protein 

level (Doxakis, 2010). Indirectly, miR-433 has also been implicated in SNCA expression, 

via its regulation of the fibroblast growth factor 20 (FGF20). FGF20 expression has been 

positively correlated with α-synuclein expression, and a 3’ UTR SNP (rs1270208) has been 

linked to an increased risk to develop PD. This SNP interferes with miR-433 binding, 

increasing FGF20 expression (Wang et al., 2008a). Conversely, α-synuclein has been shown 

to affect the expression levels of certain miRNAs in in vivo models were α-synuclein was 

overexpressed. Levels of various miRNAs were affected in a transgenic mouse model 

overexpressing human A30P α-synuclein (Gillardon et al., 2008; Table 11). In a transgenic 

C. elegans model expressing human α- synuclein, alterations in levels of 12 miRNAs were 

found (Asikainen et al., 2010). The significance for the human situation, however, remains 

to be elucidated as the human orthologs of these miRNA remain to be identified.

In addition to SNCA, the expression of LRRK2, a gene implicated in both fPD and sPD, is 

also regulated by miRNAs. MiR-205 targets the 3’ UTR of LRRK2 mRNA and was found to 

be downregulated in sPD cases in which LRRK2 protein levels were increased, whereas 

miR- 205 was able to mitigate the aberrant neurite growth induced by LRRK2 mutation 

R1411G in vitro (Cho et al., 2013). Conversely, mutant LRRK2 (I1915T or G2019S) was 

observed to inhibit the actions of let-7 and miR-184*. These miRNAs regulate E2F 

transcription factor 1 (E2F1) and differentiation regulated transcription factor protein (DP) 

levels, transcription factors associated with cell cycle regulation and cell survival. LRRK2 

thus induces E2F1 and DP expression, which is associated with reduced dopaminergic 

neuron numbers and locomotor activity in Drosophila, effects that have also been linked to 

mutant LRRK2 (Gehrke et al., 2010). Overexpression of let-7 or miR-184* reversed the 

deleterious effects of mutant LRRK2 expression. Note, however, that let-7b was also found 

to progressively inhibit neural stem cell proliferation in the subventricular zone with age 

(Nishino et al., 2008). Interestingly, the disruption of let-7 and miR-184* activity by mutant 

LRRK2 is thought to be an indirect effect, as the increased activity of mutant LRRK2 

increases the phosphorylation of eukaryotic translation initiation factor 4E binding protein 

(4E-BP). 4E-BP interacts with Argonaute 2, a pivotal constituent of the RISC, which in turn 

is required for proper let-7 and miR-184* functioning (Imai et al., 2008). The negative 

regulation of these miRNAs by LRRK2 thus depends on gain of function mutations, such as 

I1915T and G2019S (Imai et al., 2008; Smith et al., 2006). Indeed, mutant LRRK2 without 

enzymatic activity does not affect miRNA repression (Gehrke et al., 2010). Additionally, 

LRRK2 might also affect Dicer, another protein integral to the RNA interference (RNAi) 

pathway, as knocking down LRRK2 was able to attenuate some of the pathology in the 

Drosophila model related to decreased Dicer activity.

MiRNA profiling of PD brains at different stages of the disease pointed towards a miR-34b/c 

downregulation, mainly at the early premotor stages (1–3) (Minones-Moyano et al., 2011). 

MiR-34b/c is thought to modulate mitochondrial functioning via its modulation of DJ-1 and 

parkin, proteins that have both been associated with fPD. In the blood, comparing healthy 

individuals with untreated PD patients, miR-1, −22*, and −29 were found to be differentially 
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expressed, while miR-16–2*, −26a2*, and −30a were differentially expressed comparing 

treated and untreated PD patients (Margis et al., 2011). Table 11 contains the most important 

findings regarding ncRNAs associated with PD.

6.3. Non-coding RNAs and Huntingon’s disease

In accordance with the widespread dysregulation of gene expression, the expression of 

miRNAs are also affected in HD (Table 12). In HD models and patients neuronal miRNA 

expression was found to be decreased in general, resulting in an upregulation of their target 

mRNAs (Han et al., 2004; Johnson et al., 2008; Lee et al., 2011; Table 12). In addition, it 

was observed that mutant HTT expression decreased miR-125b and miR-150 expression 

(Ghose et al., 2011). These miRNAs have P53 among their targets, which is known to 

repress xsNF-κB and miR-146a expression. Further interactions between P53 and mutant 

HTT mediate nuclear and mitochondrial damage in HD models and patients (Bae et al., 

2005).

7. Epigenetic-based diagnostics and therapies

The available treatment strategies for most progressive neurodegenerative diseases only 

provide symptomatic relief, stressing the need to develop innovative, realistic therapeutic 

approaches that can effectively modulate the disease process. The factor common to all of 

the conditions discussed in this review is their neurodegenerative nature. Treatments 

providing a general neuroprotective effect could thus potentially be beneficial for any of 

them. Among such treatments HDAC and DNMT inhibitors represent interesting options to 

act upon the epigenetic machinery. These are already used in the treatment of other disorders 

such as epilepsy and cancer (Xu et al., 2012). The versatile and reversible nature of 

epigenetic changes makes epigenetic mechanisms ideal targets for the development of 

efficient, novel treatment strategies (Coppede, 2014). The adverse role of HDAC2 in 

memory facilitation has, for instance, led to the investigation of HDACIs as a potential 

treatment for memory impairment, for example in AD (Guan et al., 2009).

7.1. Strategies targeting DNA methylation

Neurodegenerative disorders may involve a dysregulated SAM metabolism, resulting in 

global DNA hypomethylation, as well as the hypermethylation of some crucial genes. It is 

thus not surprising that strategies aiming to increase or decrease DNA methylation have 

been investigated. Enhancing DNA methylation can be achieved by boosting SAM 

metabolism, for example through the administration of SAM itself, and by vitamin B12 and 

folate supplementation that was shown to be effective (Durga et al., 2007; Haan et al., 2007; 

Scarpa et al., 2003). Reducing the levels of methylated DNA can be accomplished with 

DNA demethylating agents, such as DAC (Wang et al., 2013). However, these treatment 

options are highly unspecific, which may, especially in the case of DNA demethylating 

compounds, result in considerable adverse effects. Apart from therapies targeting DNA 

methylation, it has also been suggested that differential genomic and mtDNA methylation 

patterns may serve as diagnostic biomarkers (Devall et al., 2014; How Kit et al., 2012).
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7.1.1. Alzheimer’s disease—Scarpa et al. (2003) argued that the Hcy accumulation 

often seen in AD might be an indication for an abnormal SAM metabolism. The resulting 

decrement in SAM levels could explain a global decrease in DNA methylation, which in 

turn could lead to an overexpression of multiple genes, including ones involved in AD 

pathology. lnterestingly, in vitro SAM administration led to a repression of PS1 gene 

expression and Aβ production. Accordingly, folate and vitamin B12 supplementation have 

been found to enhance cognitive functioning and slow the development of dementia (Durga 

et al., 2007; Haan et al., 2007). There are, however, also other studies that could not detect a 

positive effect of folate and vitamin B12 supplementation (Malouf et al., 2005; McMahon et 

al., 2006), and it has been reported that folic acid supplementation, in addition to other side-

effects, might exacerbate neuropathology in patients with low vitamin B12 levels (Campbell, 

1996). The observation that some crucial genes are hypermethylated in AD has led to the 

suggestion that the DNA demethylating agent DAC could be used to restore normal 

expression levels of these genes. AD, however, is also associated with general 

hypomethylation and due to the non-specific nature of DAC it might in fact cause more harm 

than good (Wang et al., 2013).

7.1.2. Parkinson’s disease—Similarly to AD, a disturbed SAM metabolism has also 

been associated with PD, and decreased methylation was linked to cognitive decline (Obeid 

et al., 2009). A viable option to counteract this decline would be to increase the levels of 

SAM, through administration of methionine, choline, folates or vitamin B12, among other 

possibilities (Xu et al., 2012).

7.2. Strategies targeting chromatin modifications

One of the most promising epigenetics-based treatment options in relation to 

neurodegeneration are HDACls. There are many HDACls, which can be subdivided into four 

classes, including short-chain fatty acids, hydroxamic acids, epoxyketones and benzamides. 

Of these, sodium butyrate (SB) has received most of the attention for clinical use. The 

bioavailability of SB in the central nervous system has been characterized and is well 

tolerated in animals and in humans due to its low toxicity (Daniel et al., 1989; Egorin et al., 

1999; Miller et al., 1987). Chen et al. (2006) investigated the short-chain fatty acid valproate 

(valproic acid, VPA), a drug used as a mood stabilizer and anti-epileptic that was found to be 

an HDACl. VPA is thought to enhance H3 acetylation indirectly, possibly through the 

recruitment of the KAT EP300 (Marinova et al., 2009). This study found that VPA exerts a 

neurotrophic effect, involving the repression of pro-inflammatory factors released by 

microglia and a stimulation of neurotropic factor expression, including glial cell line-derived 

neurotrophic factor (GDNF) and BDNF, by astrocytes. VPA may thus represent a viable 

treatment option to counteract neurodegeneration. Comparable effects have been attributed 

to other HDACls, including TSA, suberoylanilide hydroxamic acid (SAHA) and SB, as well 

as MS-275 and apicidin, which specifically inhibit class l HDACs (Chen et al., 2012; Kidd 

and Schneider, 2010; Leng et al., 2010; Marinova et al., 2011; 2009; Wu et al., 2008). Some 

HDACls, such as 4-phenylbutyrate (4PBA), VPA, and urocortin, might also exert some of 

their neuroprotective effects independent of their effects on HDACs (Huang et al., 2011; Roy 

et al., 2012; Zhou et al., 2011).
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The use of HDACls in the treatment of neurodegenerative diseases is thus promising and 

deserves much attention. However, several issues, especially concerning the non-specific 

action of most tested HDACls, must be overcome for HDACls to be ready for clinical use. 

For example, as some HDACls are already being used in cancer therapy, it was observed that 

they induce cell death and cell-cycle arrest, which has also been reported to affect neurons 

(Brahe et al., 2005; Marks, 2010; Marks and Xu, 2009; Salminen et al., 1998). HDACls have 

additionally been observed to disturb the immune system (Kelly-Sell et al., 2012; Rossi et 

al., 2012). It has thus been found that targeting specific HDACs would be more preferable 

over the more general HDACls. Some examples of specific HDACls are tubacin, a selective 

HDAC6 inhibitor, and suramin, a selective S1RT1 and S1RT2 inhibitor (Haggarty et al., 

2003; Trapp et al., 2007).

7.2.1. Alzheimer’s disease—A decrease in BDNF expression, a pivotal player in 

memory processes (Yamada et al., 2002), has been implicated as an early marker in the 

development of AD (Walker et al., 2013) and TSA treatment has been shown to enhance 

BDNF expression in vitro significantly, possibly through restoring BDNF promoter histone 

acetylation levels (lshimaru et al., 2010; Tian et al., 2010). Another HDAC1, VPA, can 

counter Aβ production in human embryonic kidney 293 (HEK293) cells expressing APPswe 

isoform 751 and in a transgenic mouse model overexpressing APPind (PDAPP mice) (Su et 

al., 2004). Using a transgenic mouse model with a 7-fold overexpression of APPswe (APP23 

mice), this decrease in Aβ was shown to be due to an inhibition of GSK-3β-mediated γ-

secretase cleavage of APP by VPA, which was also found to improve behavioral 

impairments (Qing et al., 2008). Another HDACl, (4PBA), was shown to reverse learning 

and memory problems in Tg2576 AD model mice, without affecting Aβ levels, but 

decreasing tau phosphorylation (Ricobaraza et al., 2009). This was accompanied by 

increases in GSK-3β, histone acetylation, as well as ionotropic glutamate receptor 1 

(GluR1), postsynaptic density protein 95 (PSD95) and microtubule-associated protein 2 

(MAP2), the later three being involved in synaptic plasticity (Ricobaraza et al., 2009). A 

subsequent study using the same mouse model showed that 4PBA elevated intraneuronal Aβ 
clearance, paired with an increase in plasticity-related proteins and subsequent restoring of 

dendritic spine densities in the hippocampus (Ricobaraza et al., 2012). Treatment in mice 

with the HDACl SAHA achieved an increase in H4K12 acetylation levels and accordingly 

restored expression levels of genes associated with learning (Peleg et al., 2010). VPA and 

SAHA were also reported to restore CLU expression in vitro (Nuutinen et al., 2010). 

Effective VPA, SB, and SAHA treatment in AD models has additionally been linked to 

elevating H4 acetylation levels and alleviation of memory deficits (Kilgore et al., 2009). 

lnterestingly, although VPA, SB, and SAHA by elevating H4 acetylation are likely to 

generally affect gene expression, the HDACl TSA was found to specifically enhance 

expression of those genes involved in memory consolidation (Vecsey et al., 2007). 

Curiously, inhibition of SIRTs, the class Ill HDACs, with nicotinamide was observed to 

restore cognitive impairments in 3xTg-AD mice, by indirectly promoting microtubule 

stability, which is affected by hyperphosphorylated tau in AD (Green et al., 2008). Recently, 

Forum Pharmaceuticals compound 0334 (FRM-0334), a class I HDACI specifically 

designed to cross the blood-brain barrier (BBB) was developed, addressing the problem of 

BBB permeability (Arrowsmith et al., 2012). FRM-0334 is one the first HDACI that is 
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specifically being tested for the treatment of AD, with most others having an approved 

indication in cancer treatment (Arrowsmith et al., 2012). In relation to specific HDAC 

inhibition, the selective HDAC6 tubacin has been reported to affect tau phosphorylation in 
vitro (Ding et al., 2008). In addition to HDACIs, KAT agonists are being developed 

(Chatterjee et al., 2013) and it has also been suggested that targeting HKMTs and HKDMs 

may prove to be a viable treatment strategy for AD (Fischer, 2014).

7.2.2. Parkinson’s disease—As stated above, preventing histone deacetylation may 

alleviate memory problems, such as those associated with AD (Guan et al., 2009). Similar 

approaches in PD models suggest that HDAC inhibition could be neuroprotective. In in vitro 
and Drosophila models the HDACIs SB and SAHA attenuated α-synuclein-induced toxic 

effects (Kontopoulos et al., 2006), illustrating the prominent role of disrupted histone 

acetylation in the neurotoxic effects of α-synuclein, caused by its direct binding to histones. 

TSA was able to rescue mitochondrial fragmentation and cell death induced by MPP+ in 

human neuroblastoma cells (Zhu et al., 2014). Similar results were obtained when inhibiting 

the HDAC SIRT2 with 2-cyano-3-(5-(2,5-dichlorophenyl)-2-furanyl)-N-5-quinolinyl-2-

propenamide (AGK2) (Outeiro et al., 2007). Additionally, pretreatment with VPA has been 

shown to protect midbrain dopaminergic neurons from inflammation and a-synuclein-

induced neurotoxicity (Chen etal., 2006,2007; Kidd and Schneider, 2011; Pengetal.,2005).

Currently, one of the main treatments for PD is the dopamine precursor L-DOPA, which 

provides some symptom alleviation. Although not intended as such, chronic L-DOPA 

treatment was observed to induce epigenetic alterations. Specifically, the development of L-

DOPA-induced dyskinesia presented with decreased H3K4me3 levels, whereas L-DOPA 

induced hyperkinesia was associated with decreased acetylation levels of H4K5, H4K8, 

H4K12 and H4K16, in the striatum of animal models (Nicholas et al., 2008). Additionally, it 

was shown that L-DOPA-induced dyskinesia paralleled H3 phosphoacetylation, suggesting 

that the inhibition of striatal H3 phosphoacetylation when using L-DOPA might prevent the 

development of dyskinesia (Darmopil et al., 2009).

7.2.3. Huntington’s disease—In HD, reversing the reduced expression of crucial 

genes due to histone hypoacetylation has been attempted through the application of 

HDACIs, showing promising results, both in terms of neuropathology and motor symptoms 

(Ferrante et al., 2004; Gardian et al., 2005; Igarashi et al., 2003; McFarland et al., 2012; 

Sadri-Vakili et al., 2007; Steffan et al., 2001; Sugai et al., 2004; Thomas et al., 2008). 

HDACIs improved memory and behavior in CREBBP deficiency or KAT deletion animal 

models (Alarcon et al., 2004; Korzus et al., 2004; Wood et al., 2006). Additionally, in an in 
vitro model based on the administration of toxic polyglutamine, a model that also exhibits 

histone hypoacetylation, HDACIs were able to mitigate the toxic effects of polyglutamine 

(McCampbell et al., 2001). As in PD, SAHA, and SB also were effective in transgenic HD 

mice (Hockly et al., 2003). HDAC inhibition, either through SAHA or SB administration, or 

HDAC2 knock-out, improved memory deficits in mice (Mielcarek et al., 2011). SB-treated 

transgenic mice overexpressing exon 1 of human HTT with an expanded CAG repeat length 

(R6/2 mice), however showed improved motor performance and decreased neuropathology, 

and survived significantly longer than non-treated mice (Ferrante et al., 2003). Alternatively, 
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4PBA may represent a promising candidate treatment for HD, as it is already Food and Drug 

Administration-approved and data about pharmacokinetics, toxicity, and dosing are 

available. Although 4PBA itself has no inhibitory effect on HDACs, its metabolite 

phenylacetate does, in addition to having a high bioavailability in the brain (Dasgupta et al., 

2003). As with SB, treatment with 4PBA improved motor symptoms and neuropathology in 

a transgenic HD mouse model (Gardian et al., 2005). Unfortunately, a multicenter, double-

blind, placebo-controlled clinical trial of 4PBA to determine safety and tolerability in HD, 

patients showed that its efficacy was very low, necessitating the use of high doses (Ebbel et 

al., 2010; Hogarth et al., 2007). Therefore, although promising in animal models, the use of 

4PBA in the treatment of HD is not optimal. A novel HDACI, the pimelic diphenylamide 

HDACI 4b, has also shown to be effective in R6/2 mice, improving the HD-related 

transcriptional abnormalities, including H3 acetylation and mRNA levels, and behavioral 

phenotype (Thomas et al., 2008). Additionally, in a different HD model, that expresses the 

first 171 amino acids of HTT with 82 CAG repeats at a relatively low steady-state level 

(N171–82Q mice), HDACI 4b enhanced body weight, motor function and cognitive 

performance, which may be mediated by modulatory effects of HDACI 4b on post-

translational mechanisms, such as protein phosphorylation and ubiquitination (Jia et al., 

2012a). Accordingly, activation of inhibitor of kappaB kinase (IKK) by HDACI 4b enhanced 

phosphorylation and acetylation of HTT, and subsequent clearance effected by the ubiquitin-

proteasomal and autophagy systems. The selectivity of HDACI 4b to inhibit class I and class 

II HDACs, and restore proper gene expression, was also explored in various HD models, 

including mice, flies, and cells (Jia et al., 2012b). Targeted inhibition of HDAC1 and 

HDAC3 was observed to mitigate mutant HTT-induced degeneration of the eyes and brain in 

Drosophila, and subdued some of the metabolic defects seen in STHdhQ111 mutant HTT 
knock-in striatal cells. In addition to HDACI 4b, some additional compounds were tested, 

revealing that one of the, compound 136, could effectively inhibit HDAC3 and restore 

proper gene expression in HD models. Although the exact targeting mechanisms remain 

elusive, HDACIs upregulate prosurvival genes selectively, while downregulating pro-death 

genes (Hu et al., 2011b).

Apart from drugs targeting HDACs, DNA-binding drugs have also received some attention 

in the context of HD. These efforts are mainly focused on the DNA intercalating 

anthracyclines, such as mithramycin A and chromomycin A3, which were isolated from 

Streptomyces argillaceus and Streptomyces griseus, respectively (Blanco et al., 1996; 

Chakrabarti et al., 2000; Prado et al., 1999). Mithramycin A and chromomycin A3 inhibit 

the replication and translation processes in cells, processes that are especially indispensable 

to tumors. Mithramycin A has already been used to treat Paget’s disease, hypercalcemia in 

malignancy, and various types of cancer (Ralston, 1994; Ryan, 1977; Kennedy, 1972).These 

DNA intercalating agents specifically block the binding of transcription activators and 

repressors that bind to GC-rich regions of gene promoters, thereby affecting gene expression 

(Ralston, 1994; Hagen et al., 1995; Majello et al., 1995). Their interference with 

transcription factors SP1 and SP3 are thought to be neuroprotective, as these induce 

detrimental responses after oxidative stress and DNA damage (Chatterjee et al., 2001). In 

R6/2 mice, mithramycin A was found to reduce clinical and neuro- pathological symptoms, 

as well as significantly increase survival rate, probably via the reduction of pericentromeric 
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heterochromatin condensation through an epigenetic mechanism (Ferrante et al., 2004; Ryu 

et al., 2006). Mithramycin Acan repress the HKMT SETDB1 and thereby reverse the H3K9 

hypermethylation seen in R6/2 mice (Ferrante et al., 2004). The effects of chromomycin A3 

have been investigated in both N171–82Qand R6/2 mice, showing that it can beneficially tip 

the methylation-acetylation balance at H3K9 in favor of acetylation, reactivating the 

chromatin and improving the HD phenotype (Stack et al., 2007). Despite already being used 

as chemotherapy in cancer, mithramycin A and chromomycin A3 are not well-suited for 

chronic use, which would be required for HD treatment, due to their relatively high, dose-

dependent, toxicity in humans. Nevertheless, they may serve as a template in the 

development of less toxic DNA-binding compounds to treat HD.

7.3. Strategies targeting non-coding RNAs

Due to their relatively high specificity, miRNAs have been investigated as potential 

therapeutic targets for the treatment of neurodegenerative disorders. Alternatively, miRNA 

mimics, miRNA precursor analogs, and anti-miRNAs could also be employed to restore 

miRNA homeostasis in such conditions (Junn and Mouradian, 2012). Although these RNA-

based strategies are specific, a major obstacle, as with HDACIs, remains access and 

distribution to the brain. For instance, simple intravenous administration of anti-miRNAs 

conjugated to cholesterol molecules (“antagomirs”), while showing promise, failed to cross 

the BBB (Krutzfeldt et al., 2005). Additionally, although cholesterol facilitates cell entry, it 

might induce undesirable side effects (Junn and Mouradian, 2012). More invasive, direct 

injections into the ventricles may represent an effective way of circumventing the BBB to 

enhance the performance of such treatments (Kuhn et al., 2010; Yu et al., 2012). Packaging 

siRNAs into exosomes has been suggested as a less invasive strategy to pass the BBB 

(Alvarez-Erviti et al., 2011; Lakhal et al., 2013).

7.3.1. Alzheimer’s disease—Suggested miRNA targets for the treatment of AD 

include miR-124 and miR-195, which, when increased, could lower the levels of BACE1 

and subsequently Aβ (Fang et al.,2012; Zhu et al., 2012). Alternatively, miR-323–3p, which 

is associated with inflammatory responses, has been proposed as a target for therapy in AD 

(Xu et al., 2014). Apart from being promising treatment targets, miRNA levels have also 

been investigated as potential diagnostic and prognostic markers for AD. For instance, 

Schipperetal. (2007) investigated miRNA expression in blood mononuclear cells of mild 

sAD patients, finding miR-34a and miR-181b to be upregulated in these patients. Although 

it remains to be elucidated whether these miRNAs play a significant role in AD pathology, 

they might serve as valuable prognostic biomarkers, especially as they can be relatively 

easily measured in the blood. Identifying changes in miRNA expression in very early, non- 

symptomatic stages of AD will substantially enhance AD diagnostic and treatment efficacy.

7.3.2. Huntington’s disease—Because HD is caused by the expression of mutant 

HTT, directly targeting its mRNA through RNAi is an attractive treatment strategy (Hu et al., 

2009; Lombardi et al., 2009; Zhang and Friedlander, 2011). Due to the cardinal role of 

normal HTT in neuronal survival and functioning, it is crucial that such a treatment 

specifically target only mutant HTT. Choosing for adeno-associated virus short hairpin RNA 

(shRNA)-mediated RNAi, Harper et al. (2005) were able to improve motor function and 
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neuropathology in transgenic N171–82Q mice. Subsequently, studies using adenovirus-

shRNA, lentivirus-shRNA, adeno-associ-ated virus-miRNA, or cholesterol-conjugated 

siRNA were successful in downregulating mutant HTT, reducing aggregates and improving 

motor functions and neuropathology (Boudreau et al., 2009; DiFiglia et al., 2007; Drouet et 

al., 2009; Franich et al., 2008; Huang et al., 2007; Machida et al., 2006; McBride et al., 

2008; Rodriguez-Lebron et al., 2005). Interestingly, chemically modified single-stranded 

siRNAs (ss-siRNAs) with mismatched bases have a 100-times higher mutant HTT targeting 

efficacy when compared to unmodified RNA, as tested in an HD mouse model expressing 

one mutant HTT copy with 150 CAG repeats and a normal HTT copy with 7 CAG repeats 

(HdhQ150/Q7 mice) after intraventricular infusion (Yu et al., 2012). This increased potency 

likely stems from the ability of these ss-siRNAs to distinguish mutant from normal HTT 

optimally, in collaboration with RISC, in a similar fashion as miRNAs.

8. Discussion and future perspectives

Epigenetic dysregulation currently garners much attention as a potentially pivotal player in 

aging and age-related neurodegenerative disorders, mediating interactions between genetic 

and environmental risk factors, or directly interacting with disease-specific pathological 

factors. Despite the profound differences in the epigenetic aberrancies, some similar patters 

begin to emerge and key-player molecules arise and build bridges between the seemingly 

diverse psychopathophysiology of neurodegenerative diseases, such as AD, PD, and HD. For 

instance, careful consideration of the (de)methylation dysregulations reveals a differential 

methylation pattern in genes that are accounted for the genetic predisposition of AD and PD; 

namely APP, PS1, BACE, APOE for AD and SNCA, PARKIN16 for PD. Moreover, there is 

derailled histone acetylation in all three diseases discussed and more specifically in AD and 

PD, a genome wide deacetylation of histones is observed. The various modifications on 

histone 3 are another common factor of these diseases that cannot be overlooked and 

especially the upregulated tri-methylation of H3K9 in both AD and HD. Finally, the deviant 

expression of specific ncRNAs in all the three discussed diseases posits their key-player role 

in their pathophysiology. Briefly, the differential expression of miR-132 and miR-29 is a 

common observation not only among all three age-related neurodegenerative disorders but 

also normal aging. MiR-22, miR-26a and miR-125 also present a differential expression 

pattern that is common in these diseases.

Even though the epigenetic research over more neurodegenerative disorders is expanding, 

their common points remain rather faint and sporadic, impeding the advancement towards 

innovative therapeutic strategies targeting neurodegeneration in general, instead of disease-

specific processes. This notion stems from the fact that large, empirical and broad studies are 

rare, with most investigations using only small samples with low statistical power, focusing 

on very specific tissues, cell types, or genes, and looking only at one or a few epigenetic 

modifications (Lunnon and Mill, 2013). This substantial heterogeneity in research makes it 

hard to draw concrete conclusions about the exact involvement of epigenetics in 

neurodegeneration, stressing the need for studies with larger samples sizes, longitudinal 

designs with repeated sampling schemes, study designs with tissue and cell-specific 

analyses-but not just one type at a time-the inclusion of multiple epigenetic markers and 

levels, and genome-wide approaches. Although epigenome-wide association studies are 
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performed, it should be noted that the Illumina 450k Methylation Beadchip array, which is 

the most commonly used platform for such studies, does not cover the complete methylome. 

Although this array covers most CpG-rich promoters, it may miss important phenotypically 

relevant variations in the methylome. Recent investigations have stressed the importance of 

DNA methylation at non-promoter and CpG-poor sites (Davies et al., 2012; Hansen et al., 

2011; Lister et al., 2009). On a similar note, microarray- based transcriptome analyses are 

limited to known exons and transcripts (Guffanti et al., 2014). For a whole transcriptome 

approach, including known and potentially novel ncRNAs, strategies based on next-

generation sequencing should be employed, complemented with proper bioinformatic 

analyses. When compared to proteins, a much larger proportion of the human genome is 

transcribed into ncRNAs (Amaral et al., 2008). Nevertheless, due to their codon-bias, open 

reading frames and strong sequence conservation, protein genes can be detected more 

reliably than ncRNAs (Raasch et al., 2010) Raasch et al. (2010 have therefore proposed a 

procedure combining multiple ncRNA identification strategies for increased sensitivity, but 

which is limited in its use for large genomes due to its high computational requirements.

An additional caveat of many published studies on epigenetics is the specificity of the 

detection techniques used. In the case of DNA modifications this is partly the result of the 

discovery of novel modifications. DNA methylation can be detected with techniques such as 

those based on sodium bisulfite sequencing or methyl-ation-sensitive restriction enzyme 

cleavage. With the discovery of DNA hydroxymethylation, however, it was found that these 

methods cannot distinguish between methylated and hydroxy-methylated DNA (Ito et al., 

2011). By a method of quantitative subtraction, oxidative bisulfate sequencing can be used 

to identify DNA methylation and hydroxymethylation in parallel. This procedure involves 

the oxidation of 5-hmC to 5-fC and subsequently to uracil. 5-fC, however, has recently been 

observed to play a role in epigenetic priming, and thus has an independent function from 5-

mC and 5-hmC (Song et al., 2013). Epigenetic priming of 5-fC occurs mainly at poised 

enhancer sequences and is thought to activate these sites, possibly through the recruitment of 

transcriptional coactivator EP300. To specifically detect 5-fC, Song et al. (2013) have 

described two methods, one of which has a single-base resolution and is also based on 

bisulfite sequencing. To detect 5-fC, this chemically assisted bisulfite sequencing method 

uses hydroxylamine protection of 5-fC to prevent it from bisulfite-mediated deamination and 

reduction to 5-hmC. The genomic location of 5-fC can then be determined by comparing 

hydroxylamine-treated bisulfite sequencing with traditional bisulfite sequencing. Sequencing 

of one of the various epigenetic DNA modifications should thus not be done without taking 

into account the other, functionally different, DNA modifications.

Although epigenomic profiling provides valuable gene-specific information, the input 

material for profiling studies often consists of tissue homogenates. Investigations into the 

regional and cellular specific effects of diseases illustrate that certain regions and cell types 

are often differentially affected and using homogenates may thus prevent the proper 

detection of potentially crucial epigenetic changes that only occur in a limited number of 

cells (Blalock et al., 2011). Indeed, in the healthy brain region-specific differentially 

methylated regions can be distinguished (Davies et al., 2012; Ladd-Acosta et al., 2007). 

Even when using a homogenate of a specific brain region of interest, different cell types 

could still give interfering read-outs, for instance when considering the widely different 
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levels of 5-mC and 5-hmC between cerebellar Purkinje and granule cells (Kriaucionis and 

Heintz, 2009). Although attempts are being made to investigate cell-specific epigenetic 

profiles these studies are few and are mostly limited to DNA methylation (Guo et al., 2013). 

Interestingly, Guintivano et al. (2013) have developed a model to correct DNA methylation 

patterns for cellular heterogeneity in the brain. Additionally, various methods to isolate cells 

of interest are nowadays available, including density gradients (Whittemore et al., 1993), 

laser capture microdissection (Suarez-Quian et al., 1999), fluorescence-activated cell sorting 

(Uchida et al., 2000) and magnetic affinity cell sorting (Yu et al., 2004). These methods have 

only been sparingly used for epigenetic studies and need to be validated for this purpose. 1t 

has been suggested that the isolation processes themselves could already influence gene 

expression (Lunnon and Mill, 2013).

When looking at the potentially high variability of epigenetic markers across different tissue 

and cell types it may thus be worth investing in novel techniques such as CLARITY (Chung 

et al., 2013) and fluorescent in situ RNA sequencing (Lee et al., 2014) to determine the 

regional distribution of epigenetic markers and how this may result in regional differences in 

RNA and protein expression. To complicate matters further, there is increasing evidence that 

mitochondrial gene expression is also epigenetically regulated, the investigation of which 

presents a whole new set of challenges (Devall et al., 2014).

For molecular studies of the human brain most investigations depend on post-mortem tissue 

donated by patients. Apart from possible influences of cell isolation techniques on 

epigenetics markers, various peri- and post-mortem factors, such as postmortem interval, are 

known to affect tissue components, including RNA, and which could thus potentially affect 

epigenetic analyses (Barton et al., 1993; Stan et al., 2006). Such factors are thus most likely 

to influence ncRNA quality, but are in addition likely to compromise chromatin structure 

and possibly some DNA modifications. DNA methylation, however, is thought to be 

relatively stable and thereby represents one of the more reliable epigenetic markers when 

analyzing post-mortem tissue (Pidsley and Mill, 2011).

Although many epigenetic changes are associated with aging and neurodegeneration, it 

remains unclear whether they are integral to the aging and neurodegenerative processes, or 

are an epiphenome-non; the result of other factors such as increased oxidative stress. 

Investigating causality with respect to epigenetic alterations is challenging in 

epidemiological studies and especially in studies relying on post-mortem human tissue (Mill 

and Heijmans, 2013; Pidsley and Mill, 2011). Epigenetic alterations identified through the 

comparison of epigenetic profiles of post-mortem tissue between disease states and controls 

could be a combination of disease instigating alterations, but also epigenetic changes that are 

secondary to disease pathology (Relton and Davey Smith, 2012) as well as changes that are 

an effect of medication (Boks et al., 2012). Thus, when disease related epigenetic alterations 

are identified in epigenome-wide association studies, a major issue is to determine whether 

such changes actually played a role in the etiopathogenesis of the disease. An approach to 

overcome this hurdle would be to compare post-mortem brain samples of subjects with 

varying stages of disease severity and including samples from preclinical, possibly 

prodromal stages of the disease (Lunnon and Mill, 2013). Control samples should be very 

carefully selected, as for example amyloid plaques, a pathological hallmark of AD, also 
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occur in subjects without any overt symptoms of the disease. Additionally, comparisons 

between familial and sporadic cases could help in the identification of causal epigenetic 

alternations and those that might be the secondary result of genetic mutations. Disease-

specific epigenetic changes could in addition be identified by comparing patients with the 

target disease, with patients with similar diseases, such as frontotemporal lobar 

degeneration, and dementia with Lewy bodies when looking at AD, PD, and HD.

Alternatively, determining the exact role of epigenetic alterations in progressive, age-related 

neurodegenerative diseases could be achieved through the longitudinal assessment of the 

epigenome, starting with individuals in a preclinical stage of the disease. However, assessing 

the epigenome of living individuals is only achievable in easily accessible tissues, such as 

peripheral blood. Although robust disease associated epigenetic markers in the blood have 

great potential as diagnostic and prognostic markers, thorough comparisons between such 

markers in the blood and brain should be made before their relevance to the disease process 

can be established. Although many tissue-specific differentially methylated regions related 

to tissue-specific gene expression can be identified, an important study by Davies et al. 

(2012) indicates that at least some inter-individual methylomic variation is represented in 

both brain and blood. Blood sampling could be used to investigate epigenetic markers in the 

brain in such cases. In addition to DNA methylation, chromatin status and ncRNAs in 

peripheral mononuclear cells have been identified as potential diagnostic markers for brain-

related conditions (Pasinetti et al., 2012; Sharma, 2012). Currently, for AD, PD, and HD, it 

is largely unknown whether epigenetic alterations relevant to the disease process are present 

in the blood. Nevertheless, in the case of AD, some changes in the blood transcriptome 

reflect disease-related changes in the brain (Lunnon et al., 2012).

Animal models could potentially be used to determine the relationships between disease-

associated epigenetic markers in the brain and those in blood. Additionally, the epigenetic 

effects of specific environmental factors, such as medication, can be investigated in isolation 

from other possible confounding factors (Lunnon and Mill, 2013). Presently, the most used 

models are transgenic mouse models that express mutated human genes associated with 

familial disease forms (German and Eisch, 2004). Overexpressing human mutant APP in 

mice may, however, result in unwanted side-effects as these models will likely also have 

elevated levels of APP-related products such as C-terminal fragment-β/α and amyloid 

precursor protein intracellular domain (Saito et al., 2014). As Aβ plays an important role in 

AD, the increased presence of these additional APP-related products and APP itself may 

limited the usefulness of such models. Saito et al. (2014) have recently circumvented these 

problems of APP overexpression by directly manipulating the mouse App gene, inducing 

fAD-related mutations that selectively enhance Aβ production and the Aβ42 to Aβ40 ratio, 

without affecting APP expression. Nevertheless, there are so far only few animal models of 

the more common late-onset sporadic forms of AD and PD. Some examples of sAD models 

are those based on APOE (Raber et al., 1998), or specific environmental/pharmacological 

interventions such as colchicine (Kumar et al., 2007), cholesterol (Sparks et al., 1994), or 

inhibition of the neuronal insulin receptor (Hoyer et al., 2000). In case of sPD, models based 

on toxins are mainly used, such as those using the MPTP neurotoxin, which induces a 

permanent PD-like syndrome (Przedborski and Vila, 2003).
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Using rodents to model diseases that occur mainly at the end of the life-span is attractive as 

they age relatively quickly. Rodent physiology, however, might prove to be too different to 

allow for the generation of a true model of sporadic late-onset neurodegenerative diseases. 

Moreover, as there are no natural counterparts of most of these diseases in rodents the 

successful generation of a true model depends on the available knowledge about the disease, 

which is in the case of sporadic late-onset neurodegenerative diseases very limited. 

Therefore, other model organisms may be more suitable, including non-human primates, 

which can naturally develop limited AD-like pathology (Podlisny et al., 1991), and in vitro 
models. Especially human primary cultures and induced pluripotent stem cells (iPSCs) 

represent highly promising alternatives to animal models (lsrael et al., 2012; Wojda and 

Kuznicki, 2013). A number of methods have been described to generate iPSCs from easily 

accessible fibroblasts that can be differentiated into neurons, or induce neural progenitor-like 

cells (iNPCs) directly (Qiang et al., 2011; Takahashi et al., 2007; Tian et al., 2013; Verma 

and Verma, 2011). However, these methods have not been fully optimized yet and involve 

procedures that induce widespread epigenetic alterations (Kim et al., 2010a).

To map the sequence of events leading to the development of complex diseases fully, 

epigenomic data should not be investigated in isolation, but should be complemented with 

other modalities, including genomic, transcriptomic and proteomic data (Meaburn et al., 

2010). As such, through the integration of genetic and epigenetic approaches (Mill, 2011), 

non-coding genetic variation might be found to influence gene expression through 

epigenetic mechanisms. Such integrated data may also help in determining where in the 

etiopathogenesis of complex neurodegenerative conditions epigenetic players start to play a 

role. lntegrated knowledge may additionally help to reveal whether therapeutic strategies 

targeting epigenetic mechanisms should have a general mode of action, aiming at, for 

example, DNA methylation at large (Szyf, 2014), or a more targeted approach, for example 

changing the DNA methylation status of a specific DNA sequence (de Groote et al., 2012).

Concluding, although it is clear that various levels of epigenetic regulation, including DNA 

and chromatin modifications, and ncRNAs, are affected during aging, AD, PD, and HD, it 

remains to be elucidated exactly how these epigenetic processes fit into the etiopathogenesis 

of these disorders and whether they play a causal role. Such knowledge is crucial for the 

exploration of novel therapeutic avenues, which are sorely needed to combat the devastating 

neurodegenerative diseases.
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Abbreviations:

3-mA 3-methyladenine

3R-tau tau with 3 microtubule-binding repeats
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3xTg-AD triple transgenic mouse model of AD

4PBA 4-phenylbutyrate

4E-BP eukaryotic translation initiation factor 4E-binding protein

4R-tau tau with 4 microtubule-binding repeats

5-caC 5-carboxylcytosine

5-fC 5-formylcytosine

5-hmC 5- hydroxymethylcytosine

5-hmU 5-hydroxymethyluracil

5-mC 5-methylcytosine

7-mG 7-methylguanine

A adenosine

Aβ amyloid β protein

ABCA1 ATP-binding cassette, subfamily A (ABC1), member 1

ABCA7 ATP-binding cassette, subfamily A (ABC1), member 7

ac acetylation (as in H3K9ac)

AD Alzheimer’s disease

ADAM10 a disintegrin and metalloproteases domain 10

ADAR adenosine deaminases that act on RNA

ADAT adenosine deaminases that act on tRNAs

ADP adenosine diphosphate

AGK2 2-cyano-3-(5-(2,5-dichlorophenyl)-2-furanyl)-N-5-

quinolinyl-2-propenamide

AICDA activation-induced cytidine deaminase

ALKBH5 AlkBalkylation repair homolog 5 (E. coli)

Alu Arthrobacter luteus elements

ANK1 ankyrin 1

antagomirs anti-miRNAs conjugated to cholesterol molecules

APOBEC apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like protein

APOE apolipoprotein E
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APP amyloid β precursor protein

APP23 mice transgenic mouse model with a 7-fold overexpression of 

APPswe

APP/PS1–21 mice transgenic mice overexpressing APPswe and human PS1 

with the L166P mutation, line 21

APPind human APP with the V717F Indiana mutation

APPswe human APP isoform 695 with the double KM670/671NL 

Swedish mutation

ATP adenosine triphosphate

ATP13A2 ATPase type 13A2

BACE β-secretase

BACE1-AS BACE1-antisense

BAF Brg1/hBrm associated factor

BAG2 B-cell chronic lymphocytic leukemia (CLL)/lymphoma 2 

(BCL2)-associated athanogene 2

BBB blood–brain barrier

BC200 brain cytoplasmic RNA 200

BDNF brain-derived neurotrophic factor

BLCAP bladder cancer associated protein

C cytosine

C57BL/6 mice C57 black 6 inbred mouse strain

CA cornu ammonis

CAG cytosine-adenine-guanine

cAMP cyclic adenosine monophosphate

caspase cysteine-dependent aspartate-directed protease

CBP cAMP response element-binding protein binding protein

CD2AP cluster of differentiation 2-associated protein

CD33 cluster of differentiation 33

CDK2AP cyclin-dependent kinase 2 associated protein

C. elegans Caenorhabditis elegans
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CHD chromodomain, helicase, DNA binding

CHRM1 muscarinic acetylcholine receptor 1

CLU clusterin

COG3 golgi complex subunit 3

COX-2 cyclooxygenase-2

CpG cytosine-phosphate-guanine

CR1 complement component receptor 1

CREB cAMP response element-binding protein

CREBBP CREB binding protein

CYFIP2 cytoplasmic FMR1-interacting protein 2

DAC 5-aza-2’-deoxycytidine (decitabine)

DAF-16/FOXO dauer 16/forkhead box O

DG dentate gyrus

DNMT DNA methyltransferase

DNMT3L DNMT3-like

DP differentiation regulated transcription factor protein

dsRNA small double-stranded RNA

E1A adenovirus early region 1A

E2F1 E2F transcription factor 1

EC entorhinal cortex

EDARADD ectodysplasin-A receptor-associated death domain

EID1 EP300 interacting inhibitor of differentiation 1

EP300 E1A-binding protein P300

ERK1 extracellular signal-regulated kinase 1

eRNA enhancer RNA

EZH enhancer of zeste homolog (Drosophila)

f6A N6-formyladenosine

fAD familial AD

FANCC Fanconi anemia, complementation group C
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FGF20 fibroblast growth factor 20

FLNA filamin1

fPD familial PD

FRM-0334 Forum Pharmaceuticals compound 0334

FTO fat mass and obesity-associated protein

GABRA2 gamma-aminobutyric acid receptor subunit alpha 2

GAD-3 gastrulation defective 3

GADD45 growth arrest and DNA damage 45

GCF granulocyte chemotactic factor

GCN general control of amino acid synthesis

GDNF glial cell line-derived neurotrophic factor

GFAP glial fibrillary acidic protein

GluR glutamate receptor

GPNMB glycoprotein (transmembrane) nmb

GR1 glucocorticoid receptor 1

GSK-3β glycogen synthase kinase 3β

His histidine

H histone protein, always followed by a number (for example, 

H3 in H3K4)

H2AX histone protein H2A member X

HAT histone acetyltransferase

Hcy homocysteine

HD Huntington’s disease

HDAC histone deacetylase

HDACI HDAC inhibitor

HdhQ150/Q7 mice transgenic mouse model expressing one mutant HTT copy 

with 150 CAG repeats and a normal HTT copy with 7 CAG 

repeats

HEK293 human embryonic kidney 293

HKDM histone lysine demethylase
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HKMT histone lysine methyltransferase

hm6A N6-hydroxymethyladenosine

HRDM histone arginine demethylase

HSP90 heat shock protein 90

HTT Huntingtin

HuR human antigen R

I inosine

IBA1 ionized calcium-binding adapter molecule 1

IGF1 insulin-like growth factor 1

IKK inhibitor of kappaB kinase

INO inositol requiring 80

iNPC induced neural progenitor-like cell

iPSC induced pluripotent stem cell

IRAK1 interleukin-1 receptor-associated kinase 1

ISWI imitation SWI

JMJD jumonji domain containing

K lysine (as in H3K9ac)

KAT lysine acetyltransferase

Kcnal potassium channel gene

L-DOPA L-3,4-dihydroxy-phenylalanine

lincRNA large intergenic non-coding RNA

LINE-1 long interspersed element 1

lncRNA long ncRNA

LRRK2 leucine-rich repeat kinase 2

m1A N1-methyladenosin

m1G N1-methylguanine

m6A N6-methyladenosine

MALAT metastasis associated lung adenocarcinoma transcript 1

MAP2 microtubule-associated protein 2
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MAPK mitogen-activated protein kinase

MAPT microtubule-associated protein tau

MAT methionine adenosyltransferase

MBD methyl-CpG-binding domain protein

me methylation (as in H3K4me3)

MeCP methyl CpG-binding protein

MetH methionine synthase

METTL methyltransferase-like protein

miR microRNA

miRNA microRNA

MPP+ 1-methyl-4-phenyl-pyridinium ion

MPTP 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine

mRNA messenger RNA

MS4A4E membrane-spanning 4-domains, subfamily A, member 4E

MS4A6A membrane-spanning 4-domains, subfamily A, member 6A

MSK mitogen- and stress-activated protein kinase

mtDNA mitochondrial DNA

mtDNMT1 mitochondrial DNMT1

MTHF methylenetetrahydrofolate

MTHFR MTHF reductase

N171–82Q mice transgenic mouse model expressing the first 171 amino 

acids of HTT with 82 CAG repeats at a relatively low 

steady-state level

N2a Neuro-2a

NAD nicotine adenine dinucleotide

NAT natural antisense transcript

ncRNA non-coding RNA

NDM29 neuroblastoma differentiation marker 29

NEAT nuclear paraspleckle assembly transcript

NeuN Neuronal nuclei
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NF-κB nuclear transcription factor kappa B

NFT neurofibrillary tangle

NMDA N-methyl-D-aspartic acid

NPTX neuronal pentraxin

NuRD nucleosome remodeling and histone deacetylase

p phosphorylation (as in H3S10p)

P300 E1A-binding protein P300

PAR promoter-associated RNA

PARK16 Parkinson disease 16

PASR promoter-associated short RNAs

P-bodies processing bodies

PCAF P300/CBP-associated factor

PcG Polycomb-group

PD Parkinson’s disease

PDAPP mice transgenic mice overexpressing APPind

PGC1-α peroxisome proliferator receptor gamma coactivator-1 

alpha

PICALM phosphatidylinositol binding clathrin assembly protein

piRNA piwi-interacting RNA

PKCδ protein kinase Cδ

PP2A protein phosphatase 2A

PPT protein phosphatase

PRC1 polycomb repressive complex member Bmi1

PRC2 polycomb repressive complex member EZH2

pre-miRNA precursor miRNA

PRMT protein arginine methyltransferase

PROMPTS promoter upstream transcripts

PS presenilin

PS1ΔE9 human PS1 deleted in exon 9 mutation
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PSD95 postsynaptic density protein 95

PTBP2 polypyrimidine tract binding protein 2

Psid-ps1 phosphatidylserine decarboxylase- pseudogene 1

R arginine (as in H3R2me)

R6/2 mice transgenic mice overexpressing exon 1 of human HTT with 

an expanded CAG repeat length

RAN rat sarcoma (Ras)-related nuclear protein

rasiRNA repeat-associated small interfering RNA

RISC RNA-induced silencing complex

RNAi RNA interference

RNAPII RNA polymerase II

RNAPIII RNA polymerase III

ROS reactive oxygen species

rRNA ribosomal RNA

S serine (as inH3S10p)

S100A2 S100 calcium-binding protein A2

sAD sporadic AD

SAH S-adenosylhomocysteine

SAHA suberoylanilide hydroxamic acid

SAHF senescence-associated heterochromatin foci

SAHH SAH hydrolase

SAM S-adenosylmethionine

SAMP8 senescence-accelerated prone mouse 8

SAT-α satellite-α

SB sodium butyrate

scaRNA small Cajal body-specific RNA

sdRNA snoRNA-derived small RNA

SETDB1 Drosophila Su(var)3–9 and enhancer of zeste proteins 

(SET) domain, bifurcated 1

SHMT serine hydroxymethyltransferase
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shRNA short hairpin RNA

siRNA small interfering RNA

smRNA small modulatory RNA

SIRT sirtuin

SNCA synuclein alpha

sncRNA small ncRNAs

snRNA small nuclear RNA

snoRNA small nucleolar RNA

SNP single nucleotide polymorphism

SORBS3 sorbin and v-src avian sarcoma (Schmidt-Ruppin A-2) viral 

oncogene homolog homology 3 domain containing 3

SP specificity factor

sPD sporadic PD

spliRNA splice junction-associated RNA

SPT serine palmitoyltransferase

ss-siRNA single-stranded siRNA

STX1B syntaxin 1B

SUV39H suppressor of variegation 3–9 homologue

SWI/SNF switching defective/sucrose nonfermenting

T threonine

TACE TNF-α converting enzyme

TE transposable element

TET ten-eleven translocation

Tg19959 mice transgenic mice overexpressing a combination of APPswe 

and APPind

Tg2576 mice transgenic mice overexpressing APPswe

THF tetrahydrofolate

TIP60 human immunodeficiency virus type 1 transactivating 

protein interactive protein

tiRNA transcription initiation RNA
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TNF-α tumor necrosis factor alpha

TNKS2 tankyrase, TRF1-interacting ankyrin-related ADP-ribose 

polymerase 2

TOM1L target of myb1 (chicken)-like

TREM2 triggering receptor expressed on myeloid cells 2

TRF1 telomeric repeat binding factor 1

tRNA transfer RNA

TSA trichostatin A

TSSa-RNA transcription start site-associated RNA

U uracil

UCHL1 ubiquitin carboxy-terminal hydrolase L1

UTR untranslated region

VPA valproate/valproic acid

WTAP Wilm’s tumor-associated protein

Y tyrosine

YTHDF YTH domain family
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Fig. 1. 
The three levels of epigenetic regulation. The upper section summarizes DNA methylation 

and demethylation processes, the middle section summarizes the most important chromatin 

remodeling processes, and the bottom section summarizes non-coding RNA regulation. 

Abbreviations: 5-caC, 5-carboxylcytosine; 5-fC, 5-formylcytosine; 5-hmC, 5-

hydroxymethylcytosine; 5-hmU, 5-hydroxymethyluracil; 5-mC, 5-methylcytosine; A, acetyl 

modification; AICDA, activation-induced cytidine deaminase; APOBEC, apolipoprotein B 

mRNA editing enzyme, catalytic polypeptide-like protein; BER, base excision repair; C, 

cytosine; DNMT, DNA methyltransferase; H, histone; HDAC, histone deacetylase; HKDM, 

histone lysine demethylase; HKMT, histone lysine methyltransferase; HRDM, histone 

arginine demethylase; K, lysine; KAT, lysine acetyltransferase; lincRNA, large intergenic 
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non-coding RNA; M, methyl modification; miRNA, micro RNA; MSK1, mitogen- and 

stress-activated protein kinase 1; ncRNA, non-coding RNA; P, phosphate modification; 

piRNA, piwi-interacting RNA; PPT1, protein phosphatase 1; PRMT, protein arginine 

methyltransferase; R, arginine; SAH, S-adenosylhomocysteine; SAM, S-

adenosylmethionine; snoRNA, small nucleolar RNA; TET, ten-eleven translocation; TDG, 

thymine DNA glycosylase; tiRNA, transcription initiation RNA; tRNA, transfer RNA.
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