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Abstract

Motivation: Biological experiments including proteomics and transcriptomics approaches often re-

veal sets of proteins that are most likely to be involved in a disease/disorder. To understand the

functional nature of a set of proteins, it is important to capture the function of the proteins as a

group, even in cases where function of individual proteins is not known. In this work, we propose a

model that takes groups of proteins found to work together in a certain biological context, integra-

tes them into functional relevance networks, and subsequently employs an iterative inference on

graphical models to identify group functions of the proteins, which are then extended to predict

function of individual proteins.

Results: The proposed algorithm, iterative group function prediction (iGFP), depicts proteins as a

graph that represents functional relevance of proteins considering their known functional, proteo-

mics and transcriptional features. Proteins in the graph will be clustered into groups by their mu-

tual functional relevance, which is iteratively updated using a probabilistic graphical model, the

conditional random field. iGFP showed robust accuracy even when substantial amount of GO

annotations were missing. The perspective of ‘group’ function annotation opens up novel

approaches for understanding functional nature of proteins in biological systems.

Availability and implementation: http://kiharalab.org/iGFP/

Contact: dkihara@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the rapid development of genomic and proteomic technologies,

massive amount of omics data has become available. Consequently,

computational methods for annotating protein’s function and

explaining the mechanisms through which multiple proteins work

together in a cell becomes ever more important. To meet the press-

ing need for protein function annotation, many function prediction

methods have been developed in the past (Hawkins and Kihara,

2007). Based on the classical homology search (Altschul et al., 1990;

Pearson and Lipman, 1988) and motif/domain search tools

(Finn et al., 2017), various methods have been developed recently

that extract function information thoroughly and more accurately

from sequence database search results often in combination with

other sources (Hawkins et al., 2009; Wass and Sternberg, 2008).

There are also categories of function prediction that consider co-

expression patterns of genes (van Noort et al., 2003), the tertiary

structures of proteins (Laskowski et al., 2005; Zhu et al., 2015),

protein–protein interaction (PPI) networks (Chua et al., 2006;

Sharan et al., 2007), natural language processing (Cao et al., 2017)

and various features (Cao and Cheng, 2016). It is notable that there
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is a community effort in this field, the Critical Assessment of

Function Annotation (Radivojac et al., 2013), which assesses per-

formance of automatic function prediction methods on a large set of

protein sequences which are not annotated at the time of the

assessment.

Although these methods differ in features of proteins and algo-

rithms used for predicting protein function, they all have the same

logical flow: a method takes a protein as an input and predicts func-

tion [typically Gene Ontology (GO) terms] of the protein as output.

However, real-life scenarios in an experimental lab often do not

always fit into this single-protein-single-function framework: typical

in a proteomics and transcriptomic study, an experiment will iden-

tify dozens of proteins that are in some way involved in the biologic-

al phenomenon (e.g. disease) under study. To understand why these

proteins are involved, one can perform a conventional function

prediction, e.g. using BLAST, to predict function for each protein

separately, but such an approach does not consider the critical infor-

mation that these proteins are involved in the same or related path-

ways that lead to the biological phenomenon. Rather than making

predictions separately, it is desired to consider the set of all proteins

as input, and assign a function to the group as a whole as well as to

individual proteins. The concept of group function prediction we

propose in this work thus has two main aims and advantages: (i) to

predict function of a group of proteins even when function of some

of the individual proteins in the group cannot be predicted. (ii) To

better predict function of individual proteins by considering the

identified function of the group.

The problem of building a computational model to predict pro-

tein group functions is unique and significant. The present bioinfor-

matics approach that comes closest to the notion of group function

is the functional (GO) enrichment analyses (Subramanian et al.,

2005), which identifies statistically enriched GO terms in annota-

tions of the proteins relative to the background distribution.

Drawbacks of such an approach are that it relies on identified pro-

tein functions/GO terms, which is often sparse knowledge for a

group of novel proteins. Later in this work, we highlight that our ap-

proach performs substantially better than the GO enrichment ana-

lysis in particular when annotations are sparse in proteins.

In this study, we propose a novel computational method termed

iterative Group Function Prediction (iGFP), which takes a set of pro-

teins as input and predicts the function of the protein groups as well

as function of individual proteins by iteratively updating grouping of

proteins and functional assignments. Taking into account that the

function of individual proteins may not be fully available, proteins

are clustered on a functional relevance network and are related in the

context of functional and physical interaction relationships. Several

features were incorporated, including physical PPI (Calderone et al.,

2013; Szklarczyk et al., 2017), gene co-expression network (GE),

phylogenetic profile similarity network (Phyl), GO similarity network

and KEGG pathway similarity (Kanehisa et al., 2017). Figure 1

shows a schematic diagram of the iGFP model workflow. Briefly, it

takes a group of target proteins pre-identified to be involved in a bio-

logical context such as disease/disorder as input; (i) and builds the

functional relevance network including the target proteins and other

proteins in the same organism. A network integration method, simi-

larity network fusion (SNF) (Wang et al., 2014), was used to combine

multiple functional network. (ii) Proteins are clustered based on the

similarity of integrated features. The target proteins are grouped in a

cluster with some other proteins, whose function will be predicted it-

eratively in the subsequent steps. Each protein group will be assigned

GO terms, which have P-value �0.01 in the group relative to the

annotations of the organism. Some groups remain un-annotated if

they do not contain enough annotated proteins. (iii) iGFP predicts

function of the un-annotated clusters using a conditional random field

(CRF) framework (Tang et al., 2013). The essence of the CRF module

is to predict cluster functions in the network based on the functional

properties of the cluster neighborhood and existing annotations of the

cluster. (iv) iGFP propagates the new CRF cluster GO labels to the

unknown proteins in each cluster so that it reflects the cluster function

predicted by the CRF module in the previous step. (i’) Now that the

GO term annotations of proteins are updated, protein networks are

integrated again with the updated GO similarity network and compu-

tation (i)–(iv) is iterated until the process converges or sufficient num-

ber of iterations have been reached.

iGFP was validated at two phases of the algorithm. First, we

validated the CRF module in a task of assigning function to individ-

ual proteins in protein groups. Subsequently, the whole iGFP

pipeline was validated on datasets of gene groups found to be

involved in Rheumatoid Arthritis (RA). In comparison with the GO

enrichment analysis, which is used as the baseline, iGFP showed ro-

bust accuracy even when substantial amount of GO annotations

were missing.

2 Materials and methods

2.1 Functional features of proteins
Input proteins are represented as a graph, which connect proteins

with functional relevance. Expecting that function annotation of

proteins is not fully available, we combine following features of

human proteins.

1. PPI network. The PPI network was constructed using the high

confidence physical interactions (>0.7 confidence score) of the

STRING database (Szklarczyk et al., 2017). From Human pro-

teins (NCBI taxID: 9606), a total of 15 036 proteins had high

confidence interactions.

2. Phyl. Phyl characterizes relevance of proteins by the location of

coding regions of the proteins in genomes. Protein pairs

were considered as relevant if they have a medium confidence

score or higher (>0.4) in any of the following genomic features

in STRING: ‘gene neighborhood’, ‘fusion’ or ‘co-occurrence’.

Fig. 1. Schematic diagram of the group function prediction (iGFP) model.

Iterative procedure of group function prediction. In (3) and (4), clusters/pro-

teins in red are updated with their predicted GO annotations. PPI, protein–

protein interaction; Phyl, phylogenetic profile; GE, gene expression; KEGG,

pathway similarity
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A total of 1197 human proteins had phylogenetically relevant

proteins.

3. GO similarity network. GO annotation for proteins was taken

from UniProt. Since the size of GO is very large and includes

rare terms, we slimmed the GO space by mapping GO terms to

their parental terms that have an information content of 0.3 (the

author-recommended cutoff) or higher using a GO slim creation

pipeline (Davis et al., 2010). The space was reduced from

13 709 to 303 terms. The use of the slimmed GO space was

needed because CRF cannot be trained for rare GO terms, and

also training CRF for each of the all GO terms are not practical-

ly feasible. GO similarity is quantified with the funSim score

using Biological Process (BP) and Molecular Function (MF)

terms (Schlicker et al., 2006). Two proteins were defined to have

functional similarity if they have a funSim score of over 0.7.

4. GE network. GE profiles were taken from the COXPRESdb

database (Okamura et al., 2015). Two protein genes were con-

sidered as co-expressed if the absolute value of the Pearson’s cor-

relation coefficient of expression levels was ranked within the

top 2% among all the protein pairs. The correlation values were

downloaded from the database. After this filtering, 17 341 pro-

teins had at least one correlated proteins.

5. Pathway association. There were 287 unique pathways found in

the 23 658 human proteins in the KEGG database. We con-

structed a binary vector of length 287 indicating if a protein

exists or does not exist in each KEGG pathway. Then two pro-

teins were considered as related if the cosine similarity between

their vectors is 0.2 or larger. The cutoff of 0.2 was determined

based on the score distribution (Supplementary Fig. S1).

2.2 Network integration
Similarity networks for each of the five protein features were gener-

ated, where proteins are represented by nodes and functional rele-

vance between two proteins by edges. The five networks were then

integrated by the SNF method, which performs a non-linear message

passing algorithm. SNF iteratively integrates individual networks

and converges them into one composite network within few

iterations.

2.3 Affinity propagation-based clustering method
Proteins on the functional relevance network were clustered using

the affinity propagation-based clustering method in Step 2 of iGFP

(Fig. 1). We used this method because it was shown to have a low

error rate and is as fast as other common clustering methods (Frey

and Dueck, 2007). The inter-node distance was defined as the mean

of the integrated functional relevance network’s edge weights and

the funSim score of protein pairs.

2.4 Function prediction model using conditional

random field (CRF)
In the third step of iGFP (Fig. 1) we used CRF to predict GO terms

to protein groups in the functional relevance network. CRF is a dis-

criminative probabilistic undirected graphical model, which can

model posterior probability of labels (in this work GO terms) of

nodes (protein groups) that are dependent on neighboring node

labels given observed variables (functional features of nodes).

More formally, a CRF computes the probability of having binary

labels Y (here whether proteins have a particular GO term annota-

tion) given parameters h and input variables X (the protein features

provided in the integrated network):

p Yjh;Xð Þ ¼ 1

Z

Y

c2C

Wc Yc;Xð Þ

¼ 1

Z

Y

c2C

Wc;s yi; h;Xð Þ þWc;p yi; yj; h;X
� �

g
�

(Eq. 1)

where Z(X) is a normalization factor, c is a clique and C is the set of

all cliques in the graph. The rightmost part of Equation (1) shows

that the probability is computed from two terms, a single term Wc,s,

which considers the GO term label yi of one node, and a pairwise

term Wc,p, which takes into account neighboring nodes’ GO term

labels, yi and yj. The two terms are defined concretely by potential

functions as:

Wc;s yi; h;Xð Þ þWc;p yi; yj; h;X
� �

¼ expfUs yi; h;Xð Þg þ expfUs yi;yj; h;X
� �

g
(Eq. 2)

The first term on the right-hand side represents a single term

where the probability of a label (GO term) yj, depends only on fea-

tures X of each node (and the parameter set h). As feature X of a

node, we considered other GO annotations of the node. Thus,

Us yi; h;Xð Þ ¼
X

j2Ni

w1P GOijGOj

� �
þ
X

k2N0

w2P GOijGOkð Þ (Eq. 3)

where yi ¼ GOi, N1 and N0 are the number of GO terms that anno-

tate/do not annotate the node (protein or protein group) (i.e. 1s and

0s in the GO annotation vector for the node, and P(GOijGOj) is the

function association score developed previously in our group

(Hawkins et al., 2009), which expresses the conditional probability

that yi is assigned simultaneously with yj, to each sequence in

UniProt. Thus, annotation yi for a protein depends on existing GO

annotation of the node.

The second term of the right-hand side in Equation (2) is a pair-

wise term where dependency of neighboring labels is expressed:

Up yi; yj; h;X
� �

¼ w3yje i; jð Þ þw4ð1� yjÞe i; jð Þ
þw5yjfunSim i; jð Þþw6ð1� yjÞfunSim i; jð Þ

(Eq. 4)

In the pairwise term that considers two proteins (or protein clus-

ters; we call it node in the rest of the method) i and j, e(i, j) is the

edge weight of the two nodes in the functional relevance network

and funSim(i, j) is the funSim score between i and j. Weights w3–w6

control the influence of the neighboring nodes when the node has

the GO term (yj ¼ 1) and when it does not (yj ¼ 0). The terms with

funSim(i, j) is to consider influence of neighboring nodes with over-

all similar function in assigning a particular GO term, which would

be biologically intuitive and reasonable. Weights w1–w6 were

trained on the training set.

There is a previous work which uses CRF for function prediction

from a PPI network (Gehrmann et al., 2013). Differences of iGFP

over their work are that iGFP uses the single term that considers the

coherence of the GO term’s annotation or lack thereof relative to

the existing GO terms for the protein (or protein group). More fun-

damentally, CRF is used as a component for performing protein

group function prediction in iGFP, a new and important problem

setting that reflects real-life biology research, whereas the existing

work was for predicting single-protein function in a network.

Using the equations above, the conditional probability of a node

annotated with a GO term, pðyi ¼ 1jY�i; h;XÞ can be expressed in

terms of the logistic function. Parameters of the GFP model (w1–w6)

were trained using a Metropolis–Hastings algorithm and inference

was performed using Gibbs sampling.
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2.5 Assignment of individual proteins’ function derived

from the group function
At the last step of iGFP (Step 4 of Fig. 1), GO annotations of the in-

dividual proteins in each group are updated reflecting the group

function predicted by the CRF module. The procedure of this step is

illustrated in Figure 2. Fg
i denotes a list of GO terms for the group

after iteration i and Fm denotes the same for an individual member

protein. If the protein is an unknown protein with no GO annota-

tions, we directly assign the group function Fg as its member protein

function Fm. Otherwise (if the protein has some GO annotations),

a new GO term gj will be checked with the group function Fg
i to see

if it is compatible with the existing GO annotations of the protein.

More precisely, functional similarity score SS between gj and any

existing GO term annotation of the protein, Fm, is computed in

terms of the relevance semantic similarity score (Schlicker et al.,

2006) for within-domain (BP, MF and Cellular Component

domains) GO pairs, and the function association score, i.e.

P(GOijGOj) in Equation (3), for cross-domain GO pairs. If the SS

score is above a pre-defined cutoff, we add the group function gj to

Fm. The SS score cut-off values used was 0.3 for the GO removal

test (see Results) and 0.7 for the protein removal test. As shown in

Supplementary Figure S2, the values were determined on the MAPK

pathway data in Table 1. After this step, the GO annotations of all

the individual protein nodes in the graph are updated according to

their respective group functions, i.e. group annotations predicted by

the CRF module. Note that at each iteration, Fm is taken from the

original known annotation of the member protein, i.e. F_m0, so that

successive updates of the group functions would not dilute too far

away from the original annotation.

3 Results

iGFP was validated in two ways. First, we benchmarked the CRF

module by itself because it is the key part of the pipeline and the op-

eration is more complex than other parts. To ensure the correctness

of the CRF module, we tested it on tasks of individual protein func-

tion prediction in groups. In the second test, the entire iGFP pipeline

was tested in terms of function assignment to target proteins.

3.1 Validation of the CRF module
First, we validated the CRF module on function prediction of indi-

vidual proteins in a PPI network. The dataset for this benchmark

was constructed by clustering proteins in the human PPI network

(see Materials and methods). The PPI network from the interactions

consists of 6124 human proteins that are involved in 112 895 inter-

actions. The network was then clustered by apcluster, from which

six clusters that contains only annotated proteins and have at least

50 members were selected as benchmark datasets. Each cluster has

dominant GO term annotations in its member proteins that charac-

terized function of the cluster. An exemplary GO term of Cluster 1

was protein modification process (GO: 0043412); Cluster 2 had

terms of protein folding, chaperon activity, GTPase activity and

transcription activity; Cluster 3 had a GO term of hydrolase activity

as a dominant term; Cluster 4 included proteins of mRNA metabolic

process, transcription factor activity; Cluster 5 had general (i.e. shal-

low depth) terms as dominant ones and Cluster 6 had proteins of

aromatic compound metabolic process.

For each of these six selected clusters we tested whether the CRF

with different feature combinations [used in Equations (3)–(4)] can

correctly predict the GO terms of proteins using the GO term anno-

tation of neighboring proteins in the network. For all validation

results shown in this section, a slimmed GO vocabulary of 303 GO

terms was used (see Materials and methods). In the PPI network

clusters, 10% of the proteins were randomly chosen as prediction

targets and their annotations were removed. The rest of the proteins

were used for training.

We tested three different levels of feature combinations (Fig. 3).

A 4-fold cross-validation was performed. The first combination is

with two network edge terms in Equation (2) (black bars in Fig. 3).

The second combination is all four terms in Equation (4), i.e. the

edge features and the other protein similarity (funSim) terms (red

bars). The next combination used all six features in Equations (3)

and (4) (green). For these three feature combinations, the GO term

label (1 or 0 for each GO term) of an unknown target protein was

initialized based on neighboring protein’s GO labels. For each GO

term among the vocabulary of 303 terms, the fraction of neighbor-

ing proteins that have the GO term in their annotations was com-

puted; with which a random uniform number between 0 and 1 was

generated and compared. Next, the GO term was assigned to the

target protein if the random number was smaller than the fraction

from the neighbors. For the six feature combinations, two more dif-

ferent settings were compared: The first variation (yellow) used

score cutoffs for considering the funSim (cutoff: 0.4) [Equation (4)]

and the GO association scores in Equation (3) (cutoff: 0.25), which

means the funSim terms were considered only for neighboring pro-

teins that are sufficiently similar and the GO term association was

considered only GO pairs with a conditional probability of 0.25 or

higher. The second variation used a different prior on top of the first

Fig. 2. Assignment of protein’s function derived from the group function.

Step 4 of the iGFP pipeline shown in Figure 1

Table 1. Dataset of 10 protein groups involved in RA

KEGG pathway # Proteins # Nodes # Edges

Allograft rejection 8 37 220

Apoptosis 11 155 2074

Pathways in cancer 32 1159 23 907

Chemokine signaling 26 1013 33 914

Jak-STAT 15 403 5817

Leukocyte migration 17 757 13 715

MAPK signaling 20 715 12 019

Neurotrophin signaling 20 779 14 950

T cell receptor signaling 16 595 11 240

Toll-like rec. signaling 13 611 10 405

Note: This dataset is comprised of experimentally verified protein groups

taken from Table 3 of the paper by Bakir-Gungor and Sezerman.
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variation, a naı̈ve prior distribution of GO annotations in UniProt,

for initializing GO assignments (blue bars). Average F-scores (the

harmonic mean of precision and recall) of GO predictions are used

as the performance measure (Fig. 3).

Comparing the five distinct feature combinations, the second

variation of the six-feature combination (blue) showed the highest

average F-score, 0.737, considering all six clusters, while the other

feature combinations showed values between 0.716 and 0.720.

Thus, the subsequent results in this paper used this best feature com-

bination for the CRF module.

Next, we evaluated prediction accuracy for individual GO terms.

Figure 4 reports the result with CRF (D) for the six clusters as in

Figure 3 in comparison with a naı̈ve prediction based simply on the

frequency of GO terms in the group (� in the plot). The x-axis in

the plots is the fraction of proteins in the cluster that have the GO

annotation (more precisely, proteins in the training data set of the

cluster) and y-axis is the average cross-validation F-score for that

GO term. For all six selected clusters in Figure 4, CRF showed a

strong ability to make a correct GO assignment when GO terms are

not common in the group (left half of the plots), where the

frequency-based prediction breaks down. When GO terms are rare

and only occur in 35% or less proteins (i.e. x ¼ 0.0–0.35), on aver-

age 27.1% of GO terms had positive F-score, while the naı̈ve assign-

ment cannot predict any of such GO terms. The CRF was still

effective when the GO occurrence is from 0.35 to 0.7 as shown in

the plots. The average F-score of CRF and the naı̈ve prior for this

range of GO occurrence were 0.588 and 0.352, respectively. When a

GO term is abundant in the cluster, it is trivial for both CRF and the

naı̈ve prior to assign the term, showing comparable high F-score in

the all six clusters (the right upper corner of plots).

3.2 Performance of the iGFP pipeline
Now we investigated how well the entire iGFP pipeline (Fig. 1) pre-

dicts functions of proteins in groups. We used a dataset of 10

experimentally verified protein groups involved in RA. These groups

of proteins were identified by a genome-wide association study to be

involved in the disease (Bakir-Gungor and Sezerman, 2011), where

disease-related genes were identified by considering statistical sig-

nificance of single nucleotide polymorphisms of genes and the func-

tional groups of the genes were found by mapping onto a human PPI

network and annotated with KEGG pathways. Table 1 shows the

pathway and the size of the 10 groups.

For a group in Table 1, proteins in the group were first mapped

onto the five functional feature networks, which were then inte-

grated into the functional relevance network. iGFP was run as

shown in Figure 1 on these network until convergence. For this test,

the training of CRF was performed on clusters that have <10% of

target proteins as members while their GO term annotations were

kept empty. As an example, the results of iGFP pipeline for the MAP

Kinase pathway are shown in Figure 5. iGFP was run on 715 pro-

teins including the 20 target proteins with 12 019 interactions in the

integrated functional relevance network. iGFP was run until either

the predicted GO terms of protein groups converged or the number

of iterations reached 10. In the benchmark, to examine the robust-

ness of the iGFP pipeline’s prediction, an increasing fraction (shown

in x-axis) of the GO terms annotating the 20 target proteins (there

were 475 terms in total) were removed from the 20 target proteins

and the F-score of the prediction for the removed terms was com-

puted (Fig. 5A, C and E). The last iteration is shown separately (D in

the plots). For the GO removal experiment of the 20 proteins from

the MAPK pathway, there were six iterations of the CRF run. The

sixth iteration output had 34 clusters. Out of the 34 clusters, 16 had

at least one gene from MAPK.

Fig. 3. Average F-score of GO prediction using the CRF module for the six pro-

tein clusters. For the six protein clusters (C1–C6), GO term prediction was per-

formed using five different feature combinations: black, two features, the first

two network edge-based features in Equation (4); red, four features, all four

features (two edge-based features and two protein similarity, the funSim

score-based features) in Equation (4); green, six features from Equations (3)

and (4); yellow, the same six features but used score cutoffs for considering

the funSim (cutoff: 0.4) [Equation (4)] and the GO association scores in

Equation (3) (cutoff: 0.25); blue, same as yellow except that the known GO

term distribution was used as prior of function annotation. See text for more

details. The average values from a 4-fold cross-validation are reported Fig. 4. GO term prediction accuracy of the CRF module. Prediction results of

CRF with six features with the funSim and GO association score cutoff using

naı̈ve prior (triangles), which corresponds to the blue bars in Figure 3, was

compared with GO assignment based on the background GO distribution

(black dots). A 4-fold cross-validation was performed for the six protein clus-

ters, C1–C6
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Figure 5A, C and E shows F-score, recall and precision for GO

annotations to the 20 MAPK target proteins after removal of a frac-

tion of the GO terms. When compared with the baseline, assignment

of enriched GO terms in a cluster to target proteins (dotted line,

enrichment), iGFP showed robust accuracy (F-score) even after more

than 50% of GO terms were removed (Fig. 5A). In contrast, the refer-

ence GO enrichment quickly lost correct annotations as GO terms

were removed from proteins. Notably, recall (Fig. 5C) grew signifi-

cantly better with successive iterations. iGFP showed significant im-

provement over the enrichment for all x-axis points after 50% or

more of the annotations were removed with a high recall of 0.839 at

50% removal (x ¼ 0.5) where the enrichment showed a recall of

0.323. On the other hand, precision went lower as the iteration pro-

gressed (Fig. 5C), which is intuitive as iGFP tends to add more GO

terms in successive iterations. As for precision (Fig. 5E), the enrich-

ment has naturally a very high value until 100% of the annotations

were removed because at each removal of GO terms from the target

proteins, remaining terms are still all correct existing annotations.

In Figure 5B, D and F, instead of removing an increasing fraction

of GO terms we removed entire GO annotations for an increasing

fraction of target proteins. This test simulates the situation that we

have proteins of unknown functions in the dataset.

Overall, the conclusion remains the same as the results in the previ-

ous GO term removal test. While GO annotation by naı̈ve enrichment

naturally deteriorates as GO annotations of more proteins were

removed, iGFP showed more stable annotations even when annotations

were removed from over 50% of target proteins (recall and F-score,

Fig. 5B and D). In particular, for recall (Fig. 5D), we observe that itera-

tions improve the annotations. A difference between the previous GO

term removal (Fig. 5A, C and E) and the protein full annotation removal

(Fig. 5B, D and F) is that the baseline model (enrichment) has a slightly

higher accuracy in the latter than the former. This is because in the latter

even after removal of a protein’s annotation, the same GO annotations

still remain in the other proteins, which contribute to retain accuracy for

the baseline enrichment analysis. Nevertheless, iGFP achieved recall as

high as 0.806 at 70% protein’s annotation removal, compared to base-

line recall of 0.419.

Table 2 summarizes GO term prediction performance, F-score and

recall of iGFP on all the 10 protein groups (Table 1) in comparison

with the baseline enrichment analysis. Results of the GO term removal

and the protein removal tests are shown. The fraction of the GO terms

and proteins removed was 0.9 (i.e. corresponds to x ¼ 0.9 in Fig. 5).

It is apparent that iGFP’s performance was substantially superior to

Fig. 5. GO term prediction for 20 proteins in the Map Kinase signaling path-

way. iGFP was run six iterations and the F-score was reported at each iter-

ation (Iter1–Iter 5 and IterLast). iGFP results were compared with GO

assignment with a GO enrichment analysis (ENRICH). Two tests were per-

formed: prediction after removing a fraction of GO terms (panel A, C, E) and

after removing all GO annotations from a fraction of target proteins (panel B,

D, F). A, F-score of the GO term removal test; B, F-score of the protein re-

moval test; C, recall of the GO term removal test; D, recall of the protein re-

moval test; E, precision of the GO term removal test; F, precision of the

protein removal test

Table 2. Prediction performance of iGFP on the 10 protein groups

A. F-score

KEGG pathway GO removal Protein removal

iGFPa Enrichb iGFP Enrich

Allograft rejection 0.200 0.000 0.600 0.000

Apoptosis 0.233 0.211 0.667 0.000

Pathways in cancer 0.527 0.140 0.778 0.000

Chemokine signaling 0.429 0.061 0.938 0.000

Jak-STAT 0.182 0.000 0.154 0.000

Leukocyte migration 0.348 0.000 0.676 0.000

MAPK signaling 0.468 0.000 0.456 0.278

Neurotrophin signaling 0.359 0.071 0.828 0.000

T cell receptor signaling 0.456 0.414 0.581 0.000

Toll-like rec. signaling 0.522 0.357 0.714 0.000

Average 0.372 0.125 0.584 0.028

Note: Results of the GO term removal test (the MAPK signaling pathway

results corresponds to Fig. 5A, C and E) and the protein removal test (corre-

sponds to Fig. 5B, D and F) are shown. The fraction of the GO terms and pro-

teins removed was 0.9.
aResults from the last iteration were shown.
bGO assignment by enrichment analysis where GO terms with P-value

�0.01 in a cluster are assigned to member proteins.

B. Recall

KEGG Pathway GO removal Protein removal

iGFPa Enrich iGFP Enrich

Allograft rejection 0.667 0.000 0.667 0.000

Apoptosis 0.438 0.125 0.938 0.000

Pathways in cancer 0.453 0.075 0.925 0.000

Chemokine signaling 0.281 0.031 0.778 0.000

Jak-STAT 0.273 0.000 0.545 0.000

Leukocyte migration 0.333 0.000 0.958 0.000

MAPK signaling 0.354 0.000 0.581 0.161

Neurotrophin signaling 0.259 0.037 0.889 0.000

T cell receptor signaling 0.565 0.261 0.782 0.000

Toll-like rec. signaling 0.522 0.217 0.870 0.000

Average 0.415 0.075 0.793 0.016

aResults from the last iteration were shown.
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the baseline enrichment analysis for all the ten protein groups. In the

situation where the majority of annotations was not available (90%

of GO terms and annotations of 90% of proteins were removed for

these results in Table 2), the conventional enrichment analysis failed

to provide any useful function annotation most of the time. In con-

trast, iGFP was still able to provide a notable amount of correct GO

annotations. Regarding recall (Table 2B), iGFP identified on average

41.5% (recall: 0.415) of correct GO terms after 90% of GO term re-

moval and 79.3% (recall: 0.793) of correct GO terms after annota-

tions of 90% of target proteins for the 10 protein groups. These

results demonstrate strong superiority of iGFP over the conventional

enrichment analysis in identifying functions of proteins by considering

the functional relevance groups they belong to.

4 Discussion

In this work, we proposed a new concept of protein group function as

opposed to the conventional single-protein-single-function framework.

The developed method, iGFP, is aimed at identifying function of groups

of proteins even in cases that proteins are sparsely annotated. As shown

in Supplementary Table S1, iGFP performed even better than sequence-

based function prediction methods, PFP (Hawkins et al., 2009) and

ESG (Chitale et al., 2009), for a fraction of proteins when the accuracy

of single-protein function prediction was concerned. The results suggest

that the group function prediction may further improve by combining

with single-protein function prediction by PFP and ESG. The accuracy

of iGFP will improve as more protein function association information

becomes available by the advancement of omics experiments and phylo-

genetic analysis of the increasing number of genomes.
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