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Background: The emergence of Neisseria gonorrhoeae resistant to all currently available antimicrobial therapies
poses a dire public health threat. New antimicrobial agents with activity against N. gonorrhoeae are urgently
needed. Apramycin is an aminocyclitol aminoglycoside with broad-spectrum in vitro activity against MDR Gram-
negative pathogens and Staphylococcus aureus. However, its activity against N. gonorrhoeae has not been
described.

Objectives: The activity spectrum of apramycin against a collection of MDR N. gonorrhoeae was assessed.
Isolates tested included those susceptible and resistant to the structurally distinct aminocyclitol, spectinomycin.

Results: The modal MICs for apramycin and spectinomycin were 16 mg/L and 32 mg/L, respectively. The epi-
demiological cut-off (ECOFF) for apramycin was 64 mg/L. No strains among 77 tested had an MIC above this
ECOFF, suggesting very low levels of acquired apramycin resistance. In time–kill analysis, apramycin demon-
strated rapid bactericidal activity comparable to that of spectinomycin.

Conclusions: Apramycin has broad-spectrum, rapidly bactericidal activity against N. gonorrhoeae. Future phar-
macokinetic and pharmacodynamic studies will be needed to determine whether apramycin and/or apramycin
derivatives hold promise as new therapeutics for N. gonorrhoeae infection.

Introduction

Neisseria gonorrhoeae is a sexually transmitted pathogen that
continues to present a significant and global public health chal-
lenge. According to the data from global sexually transmitted in-
fection surveillance networks, an estimated 78 million cases of
gonorrhoea are diagnosed each year.1 With the introduction of ef-
fective antimicrobial agents in the 1940s, gonorrhoea could be reli-
ably treated; however, during the past few decades, successful
treatment has become significantly more difficult due to the
organism’s propensity to develop resistance to the antimicrobial
agents typically used for treatment.2–4

Antimicrobial resistance (AMR) in N. gonorrhoeae occurs by sev-
eral mechanisms: drug inactivation, alteration of antimicrobial tar-
gets, efflux pumps and/or decreased antimicrobial uptake. Several
regional and global surveillance networks for AMR in N. gonor-
rhoeae have raised concerns regarding emerging MDR based on
these mechanisms that will ultimately lead to infection that is ef-
fectively untreatable with currently available agents.4–6

In 2012, the WHO published its ‘Global Action Plan to Control
the Spread and Impact of Antimicrobial Resistance in Neisseria
gonorrhoeae’.7,8 This plan contains three important core compo-
nents: rigorous AMR surveillance; early detection of AMR and treat-
ment failures in individual patients; and development of
antimicrobials with unique mechanisms of action. In response to
this threat, several new antimicrobial agents, such as solithromy-
cin (a fluoroketolide), eravacycline (a glycylcycline) and zolifloda-
cin (a spiropyrimidinetrione), are in development.9–14 However,
their potential contribution to treatment shortfalls and staying
power against emerging resistance in N. gonorrhoeae is not yet
established. Several studies have suggested that further evalu-
ation of existing antimicrobial agents such as ertapenem, fosfomy-
cin and gentamicin may be warranted.15,16

Aminoglycosides are potent Gram-negative agents with poten-
tial activity against N. gonorrhoeae.17 Concerns about treatment-
associated ototoxicity and nephrotoxicity have generally
precluded their use in N. gonorrhoeae treatment. However, genta-
micin is the first line of treatment in Malawi, based on cost, proven
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efficacy and lack of obvious toxic effects after a single intramuscu-
lar injection.18,19 Gentamicin has been used either alone or in
combination with doxycycline.18,19 The emergence of isolates with
reduced susceptibility, but not resistance, has been variably
observed in different longitudinal studies.18–22 Interestingly, the
structurally distinct aminocyclitols, spectinomycin and apramycin,
are known or believed to have significantly lower risk of these side
effects.23,24 Spectinomycin is an approved agent for N. gonor-
rhoeae treatment via intramuscular injection and resistance is
rarely observed.25 However, this agent is neither routinely available
nor routinely used for human therapy.25 It is unavailable in 30 of
38 European countries and in the USA.26

Apramycin is currently available as a veterinary treatment for
bovine mastitis and diarrhoeal disease in farm animals.27–30 It pos-
sesses an unusual bicyclic octadiose aminosugar linked to a mono-
substituted 4-O-deoxystreptamine moiety. Apramycin was
originally isolated in 1967 from Streptomyces tenebrarius obtained
from a soil sample from Sonora, Mexico.31–33 Apramycin is believed
to bind to the 16S rRNA A-decoding site of the 30S ribosomal sub-
unit and thereby inhibit peptide chain elongation and also lead to
incorporation of non-cognate amino acids through induced mis-
coding activity.34 Resistance is primarily conferred by a single ami-
noglycoside modifying enzyme, AAC(3)-IV, which circulates at very
low frequency in Gram-negative pathogens.35,36 Importantly, in
contrast to other aminoglycosides, apramycin’s activity is not
blocked by circulating G1405 rRNA methylases which are found
with increasing frequency in NDM-1-carbapenemase-producing
Enterobacteriaceae.27,37–40

Apramycin demonstrates broad-spectrum in vitro
activity against human isolates of MDR Acinetobacter
baumannii, Pseudomonas aeruginosa, carbapenem-resistant
Enterobacteriaceae and Staphylococcus aureus,15,16,35,36,41,42 and
rapid in vitro bactericidal activity.43 It has also demonstrated in vivo
activity against A. baumannii, S. aureus and Mycobacterium tuber-
culosis in murine models.43,44 Therefore, based on previously dem-
onstrated broad-spectrum activity and other compelling
properties, we evaluated in vitro activity of apramycin against con-
temporary clinical strains of N. gonorrhoeae as a first step in assess-
ing whether apramycin or potential derivatives of apramycin might
serve as future therapeutics against this problematic pathogen.

Materials and methods

Bacterial isolates

A total of 72 clinical isolates of N. gonorrhoeae were tested against spec-
tinomycin and apramycin. Forty-nine isolates were obtained from the FDA-
CDC Antimicrobial Resistance Isolate Bank (https://www.cdc.gov/drugresist
ance/resistance-bank/). Twenty-one isolates were from the CDC
Gonococcal Isolate Surveillance Program (GISP) Bank at Beth Israel
Deaconess Medical Center (BIDMC) and were obtained from several loca-
tions in the USA (Chicago, IL; Minneapolis, MN; New York, NY; Boston, MA;
and Erie, PA). Testing of de-identified GISP isolates was approved by the
Institution Review Board at BIDMC. Three spectinomycin-resistant isolates
were obtained from the Culture Collection University of Gothenburg (CCUG):
CCUG 15821 (WHO-A); CCUG 57601 (WHO-O) and CCUG 41811. ATCC
49226/F-18 and CDC F-28 are spectinomycin-susceptible and -resistant
quality control strains, respectively. These quality control strains were
tested for spectinomycin susceptibility in duplicate on each day of testing
and results were consistently within the acceptable range. Among the FDA-
CDC Antimicrobial Resistance Isolate Bank isolates, 100%, 82%, 100%, 2%,

80% and 0% were non-susceptible to penicillin, ciprofloxacin, tetracycline,
ceftriaxone, cefpodoxime and spectinomycin, respectively, based on CLSI
susceptibility criteria (i.e. MIC .0.06, .0.06, .0.25, .0.25, .0.5 and
.32 mg/L, respectively) and strain MIC data.

Agar dilution (AD) antimicrobial susceptibility testing
(AST)
Spectinomycin was obtained from Sigma–Aldrich (St Louis, MO, USA) or Alfa
Aesar (Tewksbury, MA, USA), and apramycin was obtained from Alfa Aesar.
AST was performed using the AD method following CLSI guidelines and the
CDC’s GISP protocol for AST of N. gonorrhoeae.45,46 From spectinomycin
stock solutions, appropriate working concentrations were prepared to
achieve a range of test concentrations from 0.5 to 1024 mg/L. Similarly,
from apramycin stock solutions, appropriate working concentrations were
prepared to achieve a range of test concentrations from 0.5 to 256 mg/L.

For inoculum preparation, colonies of all N. gonorrhoeae isolates (includ-
ing the quality control strains) from a chocolate agar plate (20–24 h of incu-
bation) were suspended in Mueller–Hinton broth to prepare a solution
adjusted to a 0.5 McFarland standard density. The agar plates were inocu-
lated with 1–2 lL of each suspension using a Steers inoculum-replicating
apparatus. Agar growth control plates (no antimicrobial agent added) were
inoculated at the beginning and end of every test run to ensure that there
was no contamination or antimicrobial carry-over during inoculation. The
endpoints for determining the MIC by AD testing were interpreted as no vis-
ible growth on an agar plate for a specific antimicrobial concentration. The
CLSI categorical interpretive criteria of �32 mg/L, susceptible; 64 mg/L,
intermediate; and�128 mg/L, resistant were applied for spectinomycin.24

Time–kill studies
Time–kill studies were performed according to CLSI recommendations47,48

with substitution of Wade–Graver liquid medium (WGM), as previously
described,17,49 to permit robust growth of N. gonorrhoeae. Antibiotic stocks
were diluted in 10 mL of WGM in 25%150 mm glass round-bottom tubes to
achieve multiples of the MIC for each strain tested. To prepare the inocu-
lum, 100 lL of a 0.5 McFarland suspension of colonies from an overnight
chocolate agar plate (Remel, Lenexa, KS, USA) were added to 5 mL of WGM
and incubated at 35�C in a 5% CO2 incubator for 8–10 h until log phase (i.e.
1.0–1.5 McFarland). The culture was then adjusted to a turbidity of 1.0
McFarland and 200 lL was inoculated into each growth tube containing
antibiotic dilutions.

During incubation of tube cultures on a shaking platform at 35�C, 5%
CO2 atmosphere, aliquots were removed at indicated timepoints and 10-
fold serial dilutions prepared in 0.9% sodium chloride. A 10lL drop from
each dilution was spotted on a chocolate agar plate and incubated over-
night. Drops containing 3 to 30 colonies were considered ‘countable’ and
used for cfu determination. If more than one dilution was countable, the
cfu of the two dilutions was averaged. If no drops were countable, consecu-
tive drops above and below the countable range were averaged. The limit
of detection was 300 cfu/mL. Antibiotic carry-over effect was not observed.
Bactericidal activity was defined as a �3 log10 cfu/mL reduction sustained
at 24 h of incubation at�4% the MIC determined by AD.

Genomic analysis
We queried the AAC(3)-IV and ApmA protein sequence against all predicted
proteins from N. gonorrhoeae available at the NCBI using the BlastP50 algo-
rithm with an expect value (e-value) cut-off of ,10#10. All N. gonorrhoeae
protein sequences available in the CARD Prevalence, Resistomes, & Variants
database (https://card.mcmaster.ca/download), which uses a more con-
servative e-value threshold of ,10#30, were also screened for matches to
all known apramycin resistance determinants.51,52
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Results and discussion

A total of 72 strains of N. gonorrhoeae were tested. MIC distribu-
tions for apramycin and spectinomycin are shown in Figure 1(a
and b), respectively. The modal MICs for apramycin and spectino-
mycin were 16 mg/L and 32 mg/L, respectively. No categorical in-
terpretive breakpoints are available for apramycin from either
EUCAST or CLSI and therefore categorical assessment was not
made. An apramycin epidemiological cut-off value (ECOFF) of
64 mg/L was assigned based on visual inspection.53 There were no
strains with an apramycin MIC above this value, suggesting ab-
sence of acquired resistance in the tested strain set.

For the 68 spectinomycin-susceptible strains of N. gonorrhoeae,
56 isolates (82%) had identical apramycin and spectinomycin
MIC values; 13 isolates (19%) had a 2-fold dilution lower apramycin
MIC; and 3 isolates (4%) and 4 isolates (6%) had a 2-fold and 4-fold
dilution higher apramycin MIC, respectively. Four known
spectinomycin-resistant isolates were tested and confirmed to be
spectinomycin resistant (MIC .1024 mg/L). WHO-O contains the
C1192T spectinomycin resistance mutation in the 16S rRNA gene.25

WHO-A contains the T22P spectinomycin resistance mutation in
the ribosomal S5 protein (encoded by the rpsE gene).25 The muta-
tions in F-28 and CCUG 41811 have not yet been characterized.
Notably, high-level spectinomycin resistance in these strains did
not confer detectable cross-resistance to apramycin. Two of the
spectinomycin-resistant isolates had an apramycin MIC of 16 mg/L
and two had an apramycin MIC of 32 mg/L, consistent with findings
in spectinomycin-susceptible strains.

Four representative strains were tested in time–kill analysis
including the ATCC type strain F-18; spectinomycin-resistant F-28;
and FDA-CDC Isolate Bank strains 193 and 200. Rapid, sustained
bactericidal activity was observed for both apramycin and
spectinomycin within 4 h, with the exception, as expected, for
spectinomycin in the spectinomycin-resistant strain, F-28
(Figure 2). Time–kill results were consistent with prior observations
of rapid bactericidal activity of spectinomycin17,54 and gentami-
cin17 for N. gonorrhoeae. Our data suggest that apramycin also
exhibits similar bactericidal activity.

In Gram-negative organisms, a single aminoglycoside-
modifying enzyme, AAC(3)-IV, has been described that inactivates
apramycin through acetylation of the C-3 amine on the

deoxystreptamine ring.55 The presence of this resistance element
is rare, even in MDR organisms such as carbapenem-resistant
Enterobacteriaceae and A. baumannii, consistent with the infre-
quency of organisms with MICs above the ECOFFs for these patho-
gens.36,43 A BLASTP56 search performed on 12 August 2018 for
AAC(3)-IV found no matches to N. gonorrhoeae among the 451
complete genomes and other N. gonorrhoeae sequences available
in the NCBI databases.51 Similarly, no significant homology was
found with ApmA, an aminoglycoside-modifying enzyme, which
also inactivates apramycin, and has been described recently in
two staphylococcal porcine isolates.57,58

Of note, apramycin remains active in strains expressing riboso-
mal methylases that modify 16S rRNA at position G1405, in con-
trast to aminoglycosides currently used for human therapy and
the novel aminoglycoside, plazomicin.59 In contrast, activity of
both apramycin and the aforementioned aminoglycosides are
blocked by NpmA, identified in one Escherichia coli clinical isolate,
and KamB, found in aminoglycoside-producing Actinomycetales
that methylate 16S rRNA at position A1408.60,61 However, again,
BLASTP analysis did not identify any significant homology between
these proteins and available N. gonorrhoeae sequences. Therefore,
our analysis also indicates that, currently, A1408 ribosomal rRNA
methylases, that would undermine apramycin activity, must be
extremely rare or absent in N. gonorrhoeae. Furthermore, a search
of the curated CARD Prevalence, Resistomes, & Variants database
(Version 3.0.2) also did not identify apramycin resistance elements
in the N. gonorrhoeae genomic sequences. Only a single kana-
mycin aminoglycoside-modifying enzyme, APH(30)-Ia,62 was iden-
tified at very low prevalence (0.24%) in the N. gonorrhoeae
sequences available in the NCBI database.

Several limitations of our study should be noted. First, spectino-
mycin does not achieve sufficient pharyngeal levels for effective
treatment of gonococcal pharyngitis,25 although cure of pharyn-
geal infection with gentamicin used in combination with azithro-
mycin appears to occur.21 Based on these observations, it is
possible that apramycin, also a highly hydrophilic aminocyclitol,
may have similar limitations. Second, isolates with reduced sus-
ceptibility to gentamicin, observed in regions where gentamicin is
used for primary treatment,19,22 were not available to us. It is pos-
sible such reduced susceptibility, potentially based on decreased
bacterial permeability or acquisition of efflux pumps, could be the
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Figure 1. Apramycin and spectinomycin MIC distribution for N. gonorrhoeae.
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basis for cross-resistance to apramycin, an issue that warrants fur-
ther study. Furthermore, it is not yet established with what fre-
quency spontaneous apramycin resistance would arise under
direct selective pressure.

Taken together, the lack of acquired resistance (i.e. strains with
MIC values above the ECOFF and genetic evidence for resistance
elements), rapid bactericidal activity and putative lack of typical
aminoglycoside-associated toxicities24 highlight the potential of
apramycin, either directly and/or after derivatization, for develop-
ment as an alternative treatment of MDR N. gonorrhoeae.
However, further experimental and human pharmacokinetic and
pharmacodynamic studies are needed to determine whether effi-
cacious drug levels can be obtained at sites of infection and
whether compelling dosing strategies, such as single, high-dose
administration for cure, can be established.
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