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Abstract

Motivation: Fingerprints (FPs) are the most common small molecule representation in cheminfor-

matics. There are a wide variety of FPs, and the Extended Connectivity Fingerprint (ECFP) is one of

the best-suited for general applications. Despite the overall FP abundance, only a few FPs represent

the 3D structure of the molecule, and hardly any encode protein–ligand interactions.

Results: Here, we present a Protein–Ligand Extended Connectivity (PLEC) FP that implicitly enco-

des protein–ligand interactions by pairing the ECFP environments from the ligand and the protein.

PLEC FPs were used to construct different machine learning models tailored for predicting protein–

ligand affinities (pKi=d). Even the simplest linear model built on the PLEC FP achieved Rp¼ 0.817 on

the Protein Databank (PDB) bind v2016 ‘core set’, demonstrating its descriptive power.

Availability and implementation: The PLEC FP has been implemented in the Open Drug Discovery

Toolkit (https://github.com/oddt/oddt).

Contact: pawel@ibb.waw.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Fingerprints (FPs) are one of the key concepts in cheminformatics,

allowing for effective representation of a molecule with a fixed

length vector of Booleans or integers. Such representations are high-

ly efficient to process, store and compare. There are a wide variety

of FP flavours, from the most simplistic, enumerating a catalogue of

2D substructures (e.g. MACCS), to more advanced versions that en-

close 3D information about the molecular conformation (Axen

et al., 2017).

The Extended Connectivity Fingerprint (ECFP) is one of the

most versatile types of FP for general use (Maggiora et al., 2014;

O’Boyle and Sayle, 2016). ECFPs store information about the envi-

ronments surrounding each atom in a molecule (Rogers and Hahn,

2010). The environments are defined by the bond-step radius, e.g.

ECFP1 encodes the root atom and its direct neighbours. This FP has

already been successfully used as an input to train machine learning

(ML) models in ligand-based virtual screening (Chen et al., 2012).

FPs have also been used to represent intramolecular interactions.

Structural Interaction Fingerprints (SiFTs) (Deng et al., 2004) and

Python-based Protein–Ligand Interaction Fingerprints (PyPLIFs)

(Radifar et al., 2013) explicitly define well-known interaction types

such as hydrogen bonds, halogen bonds and p stacking and map

them onto the protein sequence. There are also variants of inter-

action fingerprints (IFPs) that group interactions by the residue type,

e.g. the Simple Ligand–Receptor Interaction Descriptor (SILIRID)

(Chupakhin et al., 2014). A more advanced IFP, the Structural

Protein–Ligand Interaction Fingerprint (SPLIF) (Da and Kireev,

2014), uses an ECFP atom hashing algorithm instead of explicit
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definitions of the interactions. Here, ECFP1, accompanied by the

Cartesian coordinates of the atoms, is used to represent contacts. To

select similar ligand poses within a complex, a custom similarity

function is used that accounts for the 3D distance during bits match-

ing. There have also been some efforts to include the protein envir-

onment in this type of FP. In LORD_FP (Weber et al., 2015), the

receptor environment is encoded using the pharmacophoric types of

protein atoms within a certain distance of the ligand atoms (2, 3 and

4.5 Å bins).

Efforts have been made to use IFPs in scoring functions (SF) to

predict binding affinities with the assistance of ML models, such as

neural networks (Chupakhin et al., 2013; Gomes et al., 2017; Vass

et al., 2016; Witek et al., 2014), random forest (Sato et al., 2010)

and support vector machines (Yan et al., 2017). The SPLIF FPs were

recently integrated into the MoleculeNet benchmark (Wu et al.,

2017), which yielded promising results when trained on Protein

Databank (PDB) bind database.

Although a number of attempts have been made to develop inter-

action FPs, we still lack a general, descriptive and versatile solution

that is useful as an input for training SF and other predictive models.

Herein, we describe a Protein–Ligand Extended Connectivity

(PLEC) FP, a novel IFP that encodes the ECFP environments of the

protein and the ligand atoms in contact, and demonstrate its appli-

cation to binding affinity predictions. Various ML models have been

trained with PLEC, all showing similar, consistent results, superior

to SILIRID (Chupakhin et al., 2014), SPLIF (Da and Kireev, 2014),

RF-Score v3 (Li et al., 2015) and X-Score (Wang et al., 2002). These

results emphasize the ‘scoring power’ of PLEC FPs, as introduced by

CASF benchmark (Li et al., 2014), with the ‘screening’ and

‘docking’ powers yet to be optimized in future research. Our results

suggest, that the implicit approach to defining protein–ligand inter-

actions allows for PLEC to be used in other areas such as lead opti-

mization and scaffold hopping campaigns.

2 Materials and methods

2.1 Fingerprint construction
The PLEC FP builds on the idea of atom environments originally

presented by Rogers and Hahn (2010) in the ECFP. The atomic fea-

tures are identical to those in ECFP, i.e. the atomic number, iso-

tope, number of neighbouring heavy atoms, number of hydrogens,

formal charge, ring membership and aromaticity. However, in con-

trast to ECFP, only atoms in contact with another molecule are

used in the PLEC FP. The algorithm (see pseudocode below) con-

sists of two main steps. First, for a pair of interacting atoms,

defined by default as within a 4.5 Å distance cut-off (in 3D space),

the environments are identified for each atom. An environment

contains the root atom itself and its closest neighbours, within at

most n bonds diameter (defined by the ‘depth’ parameter), see

Figure 1. Note that the environment, which is meant to describe

physico-chemical properties of a root atom, is based on a mole-

cule’s topology only and does not include any 3D information.

During the second step, each ligand environment is paired with an

environment of corresponding depth from the receptor, and these

pairings are subsequently hashed to a final bit position in the PLEC

FP. If one of the molecules has greater depth (as shown in Fig. 1),

the additional environments are paired with the largest environ-

ment from the other molecule. Water molecules can also be

included, as the water-bridged interactions may play an important

role in molecule binding. In these cases, the water molecules are

attributed to the receptor. During our analysis we have ignored

water molecules, since modelling their explicit positions in an auto-

mated manner would be prone to error.

PLEC uses a standard Python hashing function ‘hash’, modified

to produce an unsigned 32-bit integer. The raw FP consists of inte-

gers between 0 and 232 (32 bits) and is folded, as in every other FP,

to a much smaller length. We have analysed different folding sizes of

FPs, ranging from 212 to 216, to assess the performance of various

models.

Tanimoto or Dice coefficients [similarity measures for binary

and count vectors, widely used in cheminformatics (Maggiora et al.,

2014)] can be used to compare two PLEC FPs, in the same way that

standard FPs are compared. As the PLEC FP is invariant to orienta-

tion in 3D space, complexes do not need to be aligned to compare

two different ligand poses. Due to the implicit enumeration of the

interactions in the PLEC FP, which does not encode the protein se-

quence, receptor–ligand complexes formed by proteins with differ-

ent sequences can be compared to each other.

2.2 Machine learning models
Scikit-learn was used as a prime ML python library, which was pro-

ven to be performant and robust (Pedregosa et al., 2011). Three

types of ML models were built in scikit-learn v. 0.19 and trained

using the PLEC FP to predict protein–ligand affinities (pKi=d),

specifically:

• linear regression (SGDRegressor);
• random forest (RandomForestRegressor);
• neural network (MLPRegressor);

The linear model used the Huber loss and the ‘elasticnet’ penalty

as elements of the objective function. Huber loss is a hybrid loss

function, which uses a mixture of quadratic cost for small errors and

linear cost for less accurate predictions, enhancing handling of out-

liers when compared to standard quadratic cost, see Equation (1)

(Huber, 1964).

Ldðy; f ðxÞÞ ¼
1

2
ðy� f ðxÞÞ2 for jy� f ðxÞj � d;

djy� f ðxÞj � 1

2
d2 otherwise:

8>><
>>:

(1)

Equation 1 : Huber loss objective function equation:

‘Elasticnet’ penalty, similarly to Huber loss, is also a hybrid pen-

alty function that applies L2 (quadratic) penalty to certain cut-off

(� ¼ 0:1) and L1 (linear) penalty for others to keep the coefficients

low. Random forest was built with 100 fully grown trees; neither

the depth nor the number of leaf limits were specified. A dense, also

Algorithm pseudocode:
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called fully connected feed-forward, neural network with 3 hidden

layers of 200 neurons each was built using MLPRegressor. All the

neurons had ReLU activations [Rectified Linear Unit, which is a

positive part of an input—maxð0; xÞ] and the network was trained

with L-BFGS-B minimization. We have also tried various dense net-

works implemented in TensorFlow (Abadi et al., 2016), but the

results were very similar to the scikit-learn implementation and did

not improve with increasing network complexity (data not shown).

2.3 Training and testing datasets
PDBbind v2016 (Liu et al., 2017) was used for training and testing

the predictive models built with the PLEC FP. The PDBBind dataset

consist of receptor–ligand complexes, with experimentally deter-

mined 3D structures and binding affinity values. It is divided into

three overlapping subsets: general, refined and core set. Usually the

‘refined set’, consisting of 3673 complexes, is utilized for training

predictive models, whereas the ‘core set’ (295 complexes) is used for

Fig. 1. Construction of the PLEC fingerprint. Depicted is the schematic 2D representation of a 3D complex. Atoms in close contact (green) are identified,

followed by the subsequent generation and hashing of corresponding layers on the ligand and the protein side. Note that the ligand depth is 2 and the receptor

depth is 4
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testing whether those predictions are valid (Li et al., 2014, 2015;

Zilian and Sotriffer, 2013). In our work we have explored the rela-

tionship between the size of the training set and the performance of

the PLEC linear model, to be sure enough data is available for train-

ing (see Supplementary Fig. S1). Our analysis showed that the

‘refined set’ far too small for this purpose as the linear model gener-

alized poorly. Therefore, we have decided to use the ‘general set’ in-

stead, which consists of 12 906 complexes to train the PLEC based

predictive models.

The model benchmarking (testing) was done with two separate

‘core sets’ from PDBbind v2016 and v2013. Note that these sets

have an overlap of 108 structures but were evaluated separately for

retrospective (e.g. CASF-2013 uses ‘core set’ v2013) and prospective

comparisons. As the complexes from training ‘general set’ and test-

ing ‘core sets’ do overlap, it is important to highlight that all over-

lapping structures were removed from the ‘general set’ to avoid data

leakage.

As an additional, external dataset The Astex Diverse Set, consist-

ing of 85 complexes, was used. Similar to the above procedure, all

overlapping complexes were removed from the training dataset (the

PDBBind v2016 ‘general set’). Additionally, 11 out of the 85 com-

plexes had no binding affinity information, therefore only 74 pro-

teins were used. The only pre-processing applied to the protein files

from the Astex dataset was the changing of the mol2 dummy atoms

(‘Du’) to appropriate atom types based on their atom labels and resi-

due types.

3 Results and discussion

3.1 Selection of parameters
The PLEC FP is mainly defined by three parameters: the protein

depth, the ligand depth and the folded FP size. The values of these

three parameters strongly affect the final performance of the predict-

ive models trained on the FP. To find the best set of parameters we

have tested protein depths between 1 and 6, ligand depths between 1

and 6 and FP sizes of 4096 (212), 16 384 (214), 32 768 (215) and

65 536 (216). Each of the 144 (6 � 6 � 4) combinations of parame-

ters was fed to three different predictive models (linear regression,

random forest and neural network), resulting in 432 distinct models

in total. Based on these analyses, we have selected a protein depth of

5, a ligand depth of 1 and a FP size of 65 536 as the most universal

set of parameters, with good FP properties and consistent perform-

ance across different ML models. Below we provide some of the

details of our analysis and the conclusions drawn from them.

3.2 Fingerprint sparsity analysis
To be descriptive, a FP should have very few bits that are either very

frequent or very rare. Importantly, high bit occupancy might also be

related to collisions that arise due to FP folding (i.e. when two dis-

tinct bits are folded to one bit in the final FP). To analyse the spars-

ity, or the PLEC FP bits occupancy, we have checked how many

frequent bits (i.e. interaction types) are present in the PDBbind

v2016 ‘general set’. To do this, we have filtered out the bits with a

variance threshold of 0.01, which in a count vector such as the

PLEC FP translate to a singular difference at certain position for at

least 1% of all complexes. Figure 2 shows a saturation plot for dif-

ferent FP sizes from 1024 to 262 144 with depths of 5 and 1 for the

protein and the ligand, respectively. For sizes equal to or below

16 384 all the bits are frequent and there is an abundance of colli-

sions. For the size of 65 536 the number of bits reaches a plateau

and actually decreases with further elongation of the FPs due to

fewer collisions. We observed similar results for other FP depths (see

Supplementary Fig. S2). In general, FPs with greater depths require

larger sizes as a single contact is described by more bits. A final FP

size of 65 536 has been chosen as the most comprehensive option

for training predictive models.

3.3 Fingerprint depth analysis
Parameters defining the depths of the protein and the ligand inter-

action environments have a profound impact on the PLEC FP per-

formance. To establish the most flexible, robust and consistent

settings, we have tested each combination (depths ranging from 1 to

6 for the ligand and the receptor, thus 36 combinations) with three

different ML models (see Section 2) and four FP sizes. All the models

were trained on the PDBbind v2016 ‘general set’ and tested on a

non-overlapping ‘core set’. Figure 3 presents the results obtained

from this experiment.

For each of the 36 combinations, a predictive model has been

trained and a Pearson correlation coefficient (between the predicted

and the measured binding affinity) was plotted as a single coloured

dot. Different colours represent different model types, so for each

model type and FP size there are 36 dots. The results obtained are

shown with respect to FP size (see below). The full set of results is

available in Supplementary Table S1.

An important conclusion that can be drawn from the models

trained on the PLEC FP is that the performance of nearly every test

case is similar, especially when the FP size is larger, even for the least

complex, linear model. This consistent predictive power for all the

models may be due to the features embodied in PLEC rather than

the model complexity. Although a performance gain is possible, es-

pecially for shorter FP sizes, by switching from a linear to a more

complex model such as random forest or neural network, our results

show that the linear regression is preferred due to its simplicity and

the direct interpretability of its feature weights. The linear equation

coefficients can show the impact of a given feature on the ligand af-

finity. Importantly, each bit can be traced to a parent substructure,

which expands the many possible applications of the PLEC FP.

By weighing the combination of the Pearson correlation coeffi-

cients for both the v2016 and v2013 ‘core sets’, we estimated the

best-performing size for the PLEC FP to be 65 536 bits. This esti-

mate is also consistent with our sparsity analysis (see Section 3.2).

Finally, from the obtained 432 Pearson correlation coefficients,

we also estimated the most consistently performing depths for the

PLEC FP, a protein depth of 5 and a ligand depth of 1. A larger

Fig. 2. Fingerprint bits saturation plot. The depths of the PLEC FP are 5 and 1

for the protein and the ligand, respectively. For convenience, the fingerprint

sizes are plotted on a logarithmic scale. The saturation line (dotted red) shows

that all the bits are frequent. Unsaturated FPs are available for sizes larger

than 16 384
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protein depth improved the performance of the models, probably

due to the additional ability to encode contacts on a residue/side

chain level. However, in the case of the ligand, increasing the depth

did not improve the overall predictive performance of the models

(see Supplementary Table S1). Therefore, we conclude that the near-

by environments of the ligand atoms involved in contacts combined

with a larger receptor environment provides just enough informa-

tion for the accurate prediction of affinities.

3.4 Stability of the results
The PDBbind database provides a set of heterogeneous examples of

protein–ligand complexes. Usually, models are trained on large sets

(i.e. ‘refined’ or ‘general’ sets) and tested on a much smaller ‘core

set’ (only 290 structures in v2016). This small test set size can lead

to incorrect performance estimates for prospective predictive mod-

els. To evaluate the stability of our results, we have tested all the

models with 10-fold cross validation (CV). PDBbind contains some

redundant proteins, therefore special effort was made during split-

ting the folds in CV, so that same protein (Uniprot ID) was not

shared across testing and training folds. Additionally, an external

validation was carried out using the Astex Diverse Set—a set of in-

dependently processed, high quality PDB structures.

Each fold in the 10-fold CV contains 1285 or 1286 structures

(the total number of complexes is not divisible by 10). In this scen-

ario, the model is tested on a single fold and trained on the remain-

ing complexes.

The Pearson correlation coefficients for CV folds are presented

in Figure 4. Not surprisingly, the prediction accuracy depends

strongly on the size of the training set. In our CV setup, one-tenth of

the samples were moved from the training set to the test set, which

lowered the Rp to a reasonable range; in most cases, the Rp values

were 0.6–0.7 (Fig. 4A). The linear model was most sensitive to the

training size, with particularly high prediction deterioration for

smaller FP sizes. The more complex methods, i.e. random forest and

neural network, performed more similarly, independent of the num-

ber of bits in the FP.

Importantly, the results were stable despite predicting the affin-

ities of 10 different sets of molecular complexes (Fig. 4B). This sug-

gests that the important global features were encoded in the PLEC

representation. The full details of the CV predictions for the ‘core

sets’ v2016 and v2013 are available in Supplementary Table S2 and

Supplementary Figure S1.

An external validation was employed to confirm that the level of

prediction accuracy does not dependent on the complexes deposited

in the PDBbind dataset. The Astex Diverse Set was chosen as a source

Fig. 3. Prediction accuracy for different combinations of PLEC depth parameters. Each dot depicts the result obtained for a particular combination of a model and

fingerprint parameters. Three model types (linear model: red dots, random forest: blue dots and neural network: green dots) were tested against 36 depth combi-

nations for the ligand and the protein (ranges of 1–6; 36 dots for each model) with respect to four fingerprint sizes. The position of each dot on the Y-axis repre-

sents the Pearson correlation coefficient (Rp) for the PDBbind ‘core set’ v2016. Red and magenta dotted lines show the results achieved by X-Score (Rp¼0.649)

and RF-score v3 (Rp¼0.797, ODDT implementation), respectively

Fig. 4. Stability of the predictions based on PLEC. (A) Mean performance results (Rp) in 10-fold cross validation for all the tested combinations of PLEC parame-

ters. Each dot depicts the result obtained for a particular combination of a model and fingerprint parameters: ligand depth (from 1 to 6), protein depth (from 1 to

6) and fingerprint size (212, 214, 215 and 216). Dots are coloured by the model used and separated on the X-axis by the fingerprint size. The CV performance

depends on the training set size but also on the model complexity. The linear model gains with additional FP size, while the most complex neural network is al-

most insensitive to the size of the input vector. (B) Predictions of each CV fold for the preferred setup (FP size: 65 536, protein depth 5, ligand depth 1)
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of independently processed, high quality PDB structures. The results

of this experiment are shown on Figure 5. The binding affinity predic-

tions made by models trained on PLEC (in terms of Rp) are within a

similar range to those observed for the CV experiments, although a

higher variance is observed across the FP depths. The Pearson correl-

ation coefficients of the best models are within 0.65–0.7. Again, the

linear model was generally as good as neural networks and most of

the setups were significantly (up to a 0.2 increase in Rp) better than

X-Score (Rp¼0.521) and RF-Score v3 (Rp¼0.586).

3.5 Comparison with state-of-the-art scoring functions

and interaction fingerprints
Here, we show a detailed view of the predictive power of the PLEC

FP tested on both versions of the ‘core sets’ (v2013 and v2016) and

compare it to two recognized IFP representations. As described pre-

viously, the PDBbind v2016 ‘general set’ was used as the training set

for three different models: linear, random forest and neural net-

work. For the following comparison experiments, a single PLEC FP

representation was used with the previously established parameters:

an FP size of 65 536, a protein depth of 5, and a ligand depth of 1,

which we suggest for general use. Figure 6 depicts the affinity pre-

dictions made by the linear model and the neural network. Since our

models based on the random forest provided the worst performance

of the three methods tested (see Fig. 3 for details), its results are not

shown. It is interesting to note that the random forest model bene-

fited the least from increasing the FP size compared to other two

models. It seems that the additional data provided by FP sizes larger

than 16 384 only marginally influence the random forest learning,

leading to a plateau in the prediction results. From the results shown

in Figure 3, one can see that the linear model is almost as good at

predicting pKi as the neural network, which highlights the descrip-

tive power of the PLEC FP. The PLEC linear model tested on the

v2016 ‘core set’ achieved Rp¼0.817 and standard deviation (SD)

¼1.255 (SD from regression, defined by The comparative assess-

ment of scoring functions (CASF) authors, Li et al., 2014). To the

best of our knowledge, this is the best model published to date, in

addition to being the least complex one. The PLEC neural network

SF did equally well, with Rp¼0.817 and SD¼1.256. Due to the

complexity of the neural network (3 dense layers of 200 neurons)

compared to the linear model, the latter should be preferred since it

is simpler (6 634 401 parameters vs. 65 536, respectively).

Compared to models tested with the CASF-2013 ‘scoring power’

benchmark (Li et al., 2014), the PLEC linear model and the neural

network outperform all 20 different SF. In this setup, the PLEC lin-

ear model scored Rp¼0.757 and SD¼1.472, while the PLEC neural

network achieved Rp¼0.774 and SD¼1.426. This shows signifi-

cant improvement compared to the best X-Score, which obtained

Rp¼0.614 and SD¼1.78.

The PLEC linear model has even outperformed the latest, best

ML SF, RF-Score v3, which scored Rp¼0.803 and SD¼1.42 on the

‘core set’ v2016, while providing a much simpler and easier to inter-

pret result.

Finally, we have compared the PLEC FP with two other IFPs. As

mentioned in the introduction, there are two main approaches to

IFP: (i) explicit definition of the interactions, such as in SILIRID

(Chupakhin et al., 2014) and (ii) use of implicit interactions, such as

in SPLIF (Da and Kireev, 2014), which employs ECFP environments

to define the interactions.

The affinity prediction models were trained and tested using

the same procedure as described for the PLEC models. Briefly,

the PDBbind v2016 ‘general set’ was used as a training set. The

PDBbind ‘core set’ v2016 was used as an independent test set. The

SILIRID and SPLIF and PLEC interaction descriptions were the in-

put for linear, random forest and neural network models. Note that

explicit FPs such as SILIRID have predefined sizes; thus, there is

only one variant for each model.

Direct comparison to these two state-of-the-art IFPs (see Fig. 7)

shows the descriptive power of the PLEC FP and its improvement

over SPLIF, which uses a similar approach for representing interac-

tions. The SILIRID-based linear model scored Rp¼0.36, while the

neural network achieved Rp¼0.52. SPLIF with an FP size of

65 536, performed much better, yielding Rp¼0.78 for both the lin-

ear and the neural network models. The SPLIF result is on par with

the best performing SF (e.g. RF-Score v3 achieved Rp¼0.797).

Models trained using the PLEC FP representations showed another

substantial gain in prediction accuracy, obtaining Rp¼0.817 with

the neural network and Rp¼0.817 with the linear model.

4 Availability and implementation

The PLEC FP has been implemented in the Open Drug Discovery

Toolkit (ODDT) (Wójcikowski et al., 2015) and can be used with

Fig. 5. Prediction results from an independent test set. Correlation coefficients (Rp) for the Astex Diverse Set, depicted with coloured dots. Each dot depicts the re-

sult obtained for a particular combination of a model and fingerprint parameters: ligand depth (from 1 to 6), protein depth (from 1 to 6) and fingerprint size (212,

214, 215 and 216). Dots are coloured by the model used and separated on the X-axis by the fingerprint size. The red dotted line denotes the X-Score scoring func-

tion result, while magenta represents the RF-Score v3 result
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Fig. 6. Detailed view of the prediction accuracy for the PDBbind ‘core sets’. The models were trained on the PLEC representation (FP size 65 536, 5-1 depths). Each

dot represents a prediction for a single ligand–receptor complex deposited in the ‘core set’. The left column shows the prediction plots of the neural network, the

right column for the linear model. The results for the PDBbind ‘core set’ v2016 are plotted in the upper row and v2013 in the bottom row

Fig. 7. A single Rp value (Pearson correlation coefficient) for each model built on PDBbind v2016 ‘core set’ using the SILIRID, SPLIF and PLEC fingerprints. SILIRID

is an explicit interaction fingerprint and has a fixed size; thus, it is presented as a horizontal dotted line. All the models trained using SILIRID are inferior to the

others. In addition, the PLEC FP models outperform their SPLIF counterparts
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the RDKit and/or OpenBabel backend. ODDT is available on

GitHub [https://github.com/oddt/oddt] on a 3-clause BSD licence.

Additionally, SF based on the linear model (PLEC-linear) and the

neural network (PLEC-nn) can be accessed via ODDT CLI without

any programming knowledge, e.g. to rescore docking results.

5 Conclusions

Herein, we present a novel FP, PLEC and demonstrate its applica-

tion as an input for binding affinity predictions. The PLEC FP impli-

citly enumerates protein–ligand contacts, which further allows the

predictive models to automatically classify the impact of each con-

tact on the affinity of the compound. The best-performing depths of

the PLEC FP are 5 and 1 for the protein and the ligand, respectively,

which roughly corresponds to the side chains of residues on the pro-

tein side and single atoms on the ligand side. We also demonstrated

that the preferable FP size is 65 536, although shorter FPs, combined

with more complex models, can achieve comparable performance.

The presented solution performs substantially better than any

other method used to represent receptor–ligand complexes in pre-

dictive models to date. We also demonstrate the consistent predict-

ive performance of different ML models built using the PLEC FP.

This consistency is likely a consequence of the feature power, rather

than the model complexity. Our results suggest that the linear model

should be preferred since it is simpler and more easily interpretable,

although we note that additional performance can be gained in cer-

tain cases when using neural networks.

The PLEC FP and SF are freely available as a part of the Open

Drug Discovery Toolkit at https://github.com/oddt/oddt. PLEC FP and

other functionalities implemented in ODDT can be easily tested via a

web browser using MyBinder, see https://github.com/oddt/notebooks.
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