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Abstract

Traditional methods of sample size and power calculations in clinical trials with a time-to-event 

end point are based on the logrank test (and its variations), Cox proportional hazards (PH) 

assumption, or comparison of means of 2 exponential distributions. Of these, sample size 

calculation based on PH assumption is likely the most common and allows adjusting for the effect 

of one or more covariates. However, when designing a trial, there are situations when the 

assumption of PH may not be appropriate. Additionally, when it is known that there is a rapid 

decline in the survival curve for a control group, such as from previously conducted observational 

studies, a design based on the PH assumption may confer only a minor statistical improvement for 

the treatment group that is neither clinically nor practically meaningful. For such scenarios, a 

clinical trial design that focuses on improvement in patient longevity is proposed, based on the 

concept of proportional time using the generalized gamma ratio distribution. Simulations are 

conducted to evaluate the performance of the proportional time method and to identify the 

situations in which such a design will be beneficial as compared to the standard design using a PH 

assumption, piecewise exponential hazards assumption, and specific cases of a cure rate model. A 

practical example in which hemorrhagic stroke patients are randomized to 1 of 2 arms in a putative 

clinical trial demonstrates the usefulness of this approach by drastically reducing the number of 

patients needed for study enrollment.
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1 | INTRODUCTION

Sample size and power calculations are an integral part of a clinical trial design. Numerous 

clinical trial designs have been developed over the last half-century to compare 2 treatment 

arms where the outcome of interest is a continuous variable. In a typical situation, 

biomedical researchers approach a statistician asking him or her to calculate the number of 

patients that they need to enroll in the 2 arms to have acceptably high power (eg, 80%) to be 

able to detect a clinically meaningful treatment effect (should it truly be present) at a given 

level of significance (eg, 5%). This gives rise to the notion of “effect size,” the magnitude of 

which is sometimes known to the researchers on the basis of factors such as topic-related 

experience or pilot data, often guided by published literature. In situations where such 

information is not readily available, a statistician can still perform sample size–power 

calculations on the basis of the concept of “standardized” effect size, wherein the effect size 

is defined by how large a clinically important effect is in terms of standard deviation(s) 

relative to the mean. Further, sample size–power calculations can be performed for both one-

sided (eg, as for a superiority trial) or two-sided trials, for hypothesized noninferiority or 

bioequivalence of the new treatment as compared to the standard treatment, or for different 

allocation ratios (that is, the ratio of the sample sizes in the 2 arms). Sample size calculations 

can then be adjusted for the effect of other covariates, repeated measures, and study attrition 

rates.

In clinical trials using a survival end point (time-to-event data), the traditional methods of 

sample size–power calculations aim to calculate the number of events that each treatment 

arm is hypothesized to experience. The total sample size is then adjusted for the assumed 

rate of censoring (ie, the number of observations who will not experience the event of 

interest). Popular software packages such as GPower, PASS, and nQuery allow the user to 

conduct sample size–power calculations using the following traditional approaches: (1) 

Logrank test: nonparametric (see Machin et al,1 Lakatos,2 Lachin and Foulkes3); (2) Cox 

regression: semiparametric (see Schoenfeld,4 Hsieh and Lavori5); and (3) Exponentially 

distributed failure times: parametric (see Bernstein and Lagakos6).

Of these approaches, the sample size calculation method proposed by Schoenfeld using Cox 

regression (Cox7) is used most commonly and is often used in phase II and phase III clinical 

trials. This method is based on the assumption of the proportionality of hazards (PH) 

between the 2 treatment groups with the magnitude of this proportionality remaining 

constant throughout the observation window. That is, the individual hazards in the 2 

treatment arms may increase, decrease, or remain constant, but the hazard ratio ΔHR always 

remains constant and is used as a measure of effect size. A typical scenario involves a 

researcher providing the statistician information about a clinically relevant ΔHR (a ΔHR less 

than 1 implies risk reduction, with the new treatment being more effective than standard 

treatment) and asking him or her to do the sample size calculation for a given value of 

power, significance level, allocation ratio, and standard deviation of a covariate.

Some authors such as Royston and Parmar8 and Zhao et al9 have discussed the PH 

assumption being too restrictive and, as a result, have proposed alternate methods of sample 

size calculation such as restricted median survival time or model-free approaches on the 
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basis of event rates. However, such approaches have yet to find widespread acceptance 

compared to the traditional approaches discussed above. Nevertheless, in the context of our 

proposed method, it is important to confront the limitations of the Cox approach from the 

perspective of both the validity of the PH assumption (that is, whether this assumption can 

be met with certainty) as well as the practical difficulties faced by researchers in adopting 

this approach. In Section 2 of our manuscript, we discuss these limitations motivated 

primarily by challenges faced in designing a clinical trial for a specific scenario. Section 3 

lays the foundation for our proposed method, and the proposed method is explained in 

Section 4. Results for our motivating example as well as for other simulated scenarios 

(including comparisons with the PH approach) are presented in Section 5, followed by a 

discussion in Section 6.

2 | MOTIVATING EXAMPLE

A large cohort (n = 69 371) of patients with end stage renal disease receiving maintenance 

dialysis was constructed by linking data from the United States Renal Data System, 

comprised largely of persons insured by Medicare, to Medicaid claims data to create a 

cohort of “dually eligible” (Medicare-Medicaid) individuals. This was done to permit 

observation of both medication exposures (via Medicaid) and clinical outcomes (via 

Medicare billing data claims data). The primary clinical entity of interest in this example 

was stroke (both hemorrhagic and ischemic). The research team developed clinical 

algorithms that allowed identification of hemorrhagic and ischemic stroke events from 

Medicare claims data, as described in Wetmore et al.10,11 Follow-up for this cohort began 

upon full observability in the database (specifically, dialysis initiation plus 90 d, as is 

standard with analyses of United States Renal Data System data since in many cases, 

Medicare coverage is not secured until 3 mo has elapsed). Patients were then followed until 

death (the outcome of interest) and were right-censored in the case that they lost their 

Medicare or Medicaid coverage (rare), received a kidney transplant (rare), or became 

unobservable when follow-up ended at the last time point in the data (common). As would 

be expected in any study, additional exclusion criteria based on clinical considerations were 

applied to construct this cohort. Both hemorrhagic (n = 534) and ischemic (n = 2391) strokes 

were hypothesized to confer substantial risk for mortality in dialysis patients, with various 

patient-level factors and comorbidities affecting the risk of mortality; the effect of 

hemorrhagic strokes would be expected to be substantially greater than ischemic strokes. 

Kaplan Meier (KM) curves for the 2 stroke types are shown in Figure 1 (solid blue for 

hemorrhagic and solid red for ischemic) accompanied by the summary statistics.

As can be seen in the case of hemorrhagic strokes (from the solid blue arc-shaped survival 

curve in Figure 1), fully 60% of the deaths occur by 1.8 months, indicating poor longevity 

for the most afflicted patients. If a new treatment were to become available for hemorrhagic 

stroke, it would be important that it demonstrates superiority to any existing treatment 

regimens by conferring substantial improvements in longevity. On the basis of the large 

sample size of the observational study, investigators could be fairly confident that the 

survival curve for the standard-of-care treatment arm would closely mimic the KM curve for 

hemorrhagic strokes shown in Figure 1. However, it would be extremely difficult for 

investigators to quantify a hypothesized improvement (that is, effect size) of the new 
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treatment over the standard treatment in terms of ΔHR, the hazard ratio, due to a variety of 

reasons. First, there is no real reason to believe that the PH assumption will necessarily hold 

true for such a proposed trial and, based on the clinical expertise of researchers in the field 

of stroke and cardiovascular research (see Phadnis et al12), nonproportionality of hazards is a 

realistic assumption. Second, sample size calculations using the PH assumption (even if it 

were to hold true) could be criticized because an effect size justification based on ΔHR is 

rather arbitrary. That is, prior to the trial actually being conducted, it cannot be absolutely 

clear to the researchers whether the manner in which a ΔHR of, say, 0.75 or 0.60 or 0.50 

affects the overall improvement in longevity associated with the novel intervention is a 

realistic expectation. To illustrate the dangers, the projected survival curves for the treatment 

group shown in Figure 2 (with ΔHR = 0.70, 0.60) using the PH assumption do not reflect the 

improvement in longevity hypothesized by the investigators. Third, no general consensus is 

available in published literature on Cohen-type qualitative definitions of “small, moderate, or 

large” for ΔHR. As such, one can imagine a phase III clinical trial with large sample sizes 

that declares small risk reductions as being statistically significant without discussing its 

corresponding effect on any clinically meaningful improvement in longevity.

In case of our planned clinical trial, we hypothesize that the new treatment called “NewTrt” 

may be superior to the standard treatment regimen if it can double the longevity for 60% of 

the deaths (40th percentile on the solid blue KM curve in Figure 1) from 1.8 to 3.6 months. 

NewTrt might, for example, be administered immediately upon onset of confirmation of a 

hemorrhagic stroke by cerebral imaging in the hospital emergency department, NewTrt 

might have its effect by preserving brain tissue from hypoxemia, or by reducing the effect of 

cerebral edema on vascular reactivity, or by reducing oxygen free radical damage (any 

number of realistic mechanisms could be posited). The proposed definition of improvement 

is a more realistic expectation given the steep arc-shaped KM curve in Figure 1 and is also 

strongly motivated by practical considerations. That is, for most patients (and their families) 

for whom life expectancy would otherwise be less than 2 months when receiving standard-

of-care treatment, a potent motivation for enrolling in the study is the direct and 

straightforward interpretation of the prospect of the doubling of lifespan should the patient 

be randomized to the NewTrt treatment arm (of note, the risk reduction by 50% does not 

directly translate to doubling the lifespan unless there are exponentially distributed failure 

times). Furthermore, the solid blue KM curve in Figure 1 also shows that 75% of the deaths 

occur by ≈11 months and that 85% of the deaths occur by ≈33 months. While the doubling 

of lifespan for this 25th and 15th survival percentile would be a prodigious clinical 

achievement, researchers would likely be gratified if NewTrt increases the longevity by a 

factor of 1.5 or even 1.4. The dotted blue curve in Figure 1 demonstrates a hypothetical 

scenario in which longevity due to NewTrt is doubled for any given survival percentile of 

patients experiencing a hemorrhagic stroke. As can be seen from the example, the 

hypothesized superiority of NewTrt over the standard-of-care treatment is better defined by 

an effect size that incorporates a multiplicative factor on time rather than the hazard.

In the next 2 sections, we describe how this goal can be realized.
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3 | METHODS: BACKGROUND DETAILS

3.1 | Using a three-parameter generalized gamma distribution

As the main research question is motivated by improvement in longevity of the new 

treatment group, compared to the standard treatment group, by a multiplicative factor of 

time, we cannot ignore the shape of the hazard function for the 2 treatment arms. Table 1 

compares the fit of commonly used parametric distributions for the observational study data 

for hemorrhagic stroke patients.

We note that the generalized gamma (GG) distribution provides the best fit (AICc = 1668.81, 

BIC = 1681.61) whereas the exponential distribution provides the worst fit (AICc = 2511.17, 

BIC = 2515.44) for this data (see Figure 3). If we ignore the information (for the standard 

treatment arm) provided by the observational study, and instead naively use the assumption 

of exponentially distributed survival times in the 2 arms (noting that many commercial 

statistics software have only this option for parametric distributions), then our sample size 

calculation based on a hypothesized improvement of doubling the mean survival time would 

yield a total sample size of N = 54 (27 in each arm). To understand why this is incorrect, we 

need to briefly discuss the specifics of the GG distribution as discussed below.

The GG distribution (Stacy and Mihram13) is a three-parameter family of distributions with 

a probability density function:

f (t) = β
Γ(k) . θ

t
θ

kβ − 1
e

− t
θ

β

, (1)

where β > 0 and k > 0 are the shape parameters, θ > 0 is the scale parameter, and Γ(k) is the 

gamma function defined as Γ(k) = ∫ 0
∞xk − 1e−xdx.

For model fitting purposes, a reparametrization is used to avoid convergence problems using 

location parameter μ, scale parameter σ, and shape parameter λ that generalizes the two-

parameter gamma distribution. The general notation used to specify the distribution is GG(μ, 

σ, λ). It is given by the density function:

f GG(t) = λ
σtΓ λ−2 λ−2 exp( − μ)t λ/σ λ−2

exp −λ−2 exp( − μ)t λ/σ , (2)

where σ > 0, μ ∈ (−∞, ∞), λ ∈ (−∞, ∞), and Γ(x) = ∫ 0
∞mx − 1e−mdm is the gamma 

function of x.

The parameters of (1) and (2) are related in the following way:
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μ = ln(θ) + 1
β ln λ−2 ,

σ = 1
β k

,

λ = 1
k

= βσ .

(3)

A complete taxonomy of the various hazard functions for the GG family has been 

articulately explained in Cox et al,14 and the relevant aspects are discussed in the following 

subsections. Briefly, the GG family allows the flexibility of modeling different shapes of 

hazard functions such as increasing from 0 to ∞, increasing from a constant to ∞, 

decreasing from ∞ to 0, decreasing from ∞ to a constant, arc-shaped hazards, and bathtub-

shaped hazards. Another important feature of this family is that many popular parametric 

distributions are special case members of this family. Thus, λ = σ gives the two-parameter 

gamma 𝒢  distribution; μ = 0; σ = 1 gives the standard gamma distribution for fixed values 

of λ; λ = 1 gives the Weibull distribution; λ = σ = 1 gives the exponential distribution; λ = 

0 gives the lognormal distribution; λ = − 1 gives the inverse Weibull distribution; λ = − σ 
gives the inverse gamma distribution; λ = 1/σ gives the ammag distribution; λ = − 1/σ gives 

the inverse ammag distribution; and a lognormal distribution with σ′= 1.82σ approximates 

the log-logistic distribution (Cox et al13). Maximum likelihood estimation using standard 

statistics software can be used to obtain estimates of the 3 parameters of the GG distribution 

with parsimonious reductions resulting in fitting of well- known parametric distributions.

3.2 | Quantiles of the GG distribution

Cox et al14 discuss that for a GG(μ, σ, λ) distribution,

log tGG(μ, σ, λ)(p) = μ + σ ⋅ log tGG(0, 1, λ)(p) ,
= μ + σ ⋅ gλ(p) .

(4)

Here, gλ(p) is the logarithm of the p-th quantile from the GG(0, 1, λ) distribution. The 

location parameter μ acts as a time multiplier and governs the values of the median for fixed 

values of σ and λ, resulting in an accelerated failure time (AFT) model. The scale parameter 

σ determines the interquartile ratio for fixed values of λ and independently of μ. The shape 

parameter λ determines the GG(0, 1, λ) distribution. Together, σ and λ describe the type of 

hazard function for the GG(μ, σ, λ) distribution. See Wei15 for operational details of a 

standard AFT model.

3.3 | The concept of relative time with proportional time as a special case

The time by which p% of the population experience an event can lead to a statistic called 

“relative times RT(p),” which can be used to compare survival profiles of patients in 

different treatment arms (new treatment versus standard treatment). Thus,
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RT(p) =
t1(p)
t0(p) =

S1
−1(1 − p)

S0
−1(1 − p)

, (5)

where Si
−1(1 − p) is the inverse survival function for group i (i = 0,1).

The interpretation of RT(p) is that the time required for p% of individuals in the stroke group 

to experience death is RT(p) times the time required for p% of individuals in the no stroke 

group to experience death. Thus, if (μ0, σ0, λ0) and (μ1, σ1, λ1) denote 2 different sets of 

GG parameter values, then

RT(p) = exp μ1 − μ0 + σ1 ⋅ gλ1
(p) − σ0 ⋅ gλ0

(p) . (6)

The manner in which covariates affect RT(p) can be summarized as

1. If λ1 = λ0 and σ1 = σ0, then we have a conventional AFT model resulting in 

non-PH, but proportional RT or simply “proportional times (PT) assumption”; 

that is, covariates affect μ only. Thus,

RT(p) = exp μ1 − μ0 = ΔPT ≡ PT assumption . (7)

2. If only λ1 = λ0, then we have a model that results in non-PH and 

nonproportional RT(p); that is, covariates affect both μ and σ.

3. Full generalization is obtained by having covariates affect all 3 parameters.

4. Reduced parsimonious models result in the fitting of family members of the GG 

distribution.

As is evident from our discussion above, sample size calculations performed using the 

assumption of exponentially distributed times for the 2 treatment arms is only a restrictive 

special case that conveniently ignores information available to us from the previously 

performed observational study.

In the next section, we show how sample size calculations can be performed under the PT 

assumption.

4 | METHODS: SAMPLE SIZE CALCULATIONS

4.1 | Development of a test statistic

Combining Equations 3 and 7, we can show that
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RT(p) = exp μ1 − μ0 = exp ln θ1 + 1
β ln λ−2 − ln θ0 − 1

β ln λ−2 =
θ1
θ0

. (8)

Denoting the maximum likelihood estimate (MLE) of θi as θ i for i = 0 (standard) and i = 1 

(new), Bernsetin and Lagakos6 have shown that for an exponential distribution

θ1
θ0

θ1
θ0

Fn0, n1
, (9)

where n0 and n1 are the number of events for the standard and new treatment arm, 

respectively.

Following a similar framework, in case of a GG distribution, we show (see Appendix A) that 

the test statistic, which is a ratio of the MLEs for the two treatment arms, follows a four-

parameter GG ratio (GGR) distribution.

θ1
θ0

GGR
n0
n1

θ1
θ0

β
, n0k, n1k, β , (10)

For new treatment to standard treatment allocation ratio r = n1/n0 we get

θ1
θ0

GGR 1
r

θ1
θ0

β
,

n1k
r , n1k, β , (11)

Under the null hypothesis H0: θ0 = θ1 we get

θ1
θ0

GGR 1
r ,

n1k
r , n1k, β . (12)

Thus, for calculating number of events based on the PT assumption, we can replace β and k 
by their MLEs obtained from the large observational study. Then number of events(s) can be 

calculated for a given magnitude of PT (effect size), power, alpha, and allocation ratio (See 

Appendix A for the iterative logic used in the sample size calculation using the GGR 

distribution).

4.2 | Calculating total sample size

In a clinical trial with accrual time a and follow-up time f, we can calculate the proportion of 

patients that will die in each treatment arm using Simpson′s rule as shown below:
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di = 1 − 1
6 Si( f ) + 4Si( f + 0.5a) + Si( f + a) . (13)

If information is available about the survival curve S0 for the standard treatment arm (as in 

our case, from a large observational study), d0 can be calculated easily. Then using the value 

of ΔPT under the alternate hypothesis, the survival curve S1 for the new treatment arm is 

tractable and, hence, d1 can be calculated. If pi is the probability of being assigned to 

treatment arm i, the proportion of patients that will die during the clinical trial can be 

calculated as

d = ∑i = 0
1 pidi =

n0
N d0 + rd1 , (14)

where N = n0 + n1 is the total number of events in the 2 treatment arms.

The total sample size Ntotal = N/d can be simply obtained by dividing N by d. Alternatively, 

Ntotal can be calculated simply by dividing N by the anticipated event rate.

4.3 | Variance inflation factor adjustment for an additional covariate

Our sample size calculations based on PT are applicable to an AFT model. In this case, we 

assume that treatment assignment has correlation ρ with an additional covariate and that this 

additional covariate affects only the location parameter of the GG distribution; the total 

sample size can be adjusted using a variance inflation factor of (1 − ρ2)−1. This follows from 

the discussion by Hsieh and Lavori,5 where such adjustment can be performed in a 

regression model. In our case, the difference in the location parameters between the new 

treatment arm and standard treatment arm μ1 − μ0 can be represented by α1X1 in a 

regressing setting where X1 = 0, 1 represents the 2 treatment arms and α1 is the regressing 

coefficient of X1. Hsieh and Lavori5 discuss that in a regression model, the variance of the 

estimate a1 of the parameter α1is inversely related to the variance of the corresponding 

covariate X1 and that increasing the scale of X by a factor c increases the variance of X1 by 

c2 and decreases the variance of a1 by c2. Thus, if ρ2 is the proportion of variance explained 

by the regression of X1 on an additional covariate X2, then the conditional variance of X1∣X2 

is smaller than the marginal variance of X1 by a factor of 1 − ρ2. This increases the variance 

of a1 estimated from the regression model by a factor of (1 − ρ2)−1. Thus, to preserve power, 

we can use this variance inflation factor to calculate the adjusted sample size using the 

formula Nadjusted = Ntotal/(1 − ρ2).

5 | RESULTS

5.1 | Sample size (analytical) calculations for our example

From our observational study data, we obtained (using SAS 9.4) the following MLEs and 

corresponding 95% confidence intervals: σ = 1.4140 (1.2719 − 1.5561), 
λ = − 1.9929 ( − 2.3175 to  − 1.6683). This yields k = 0.2518 and β = 1.4094. Then for 80% 
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power and 5% level of significance, using a relation between the GGR distribution and the F 

distribution (see Appendix A), we get the following results: (1) For r = 0.5, n0 = 84, n1 = 42, 

N = 126; (2) for r = 1, n0 = n1 = 54, N = 108; and (3) for r = 2, n0 = 39, n1 = 78, N = 117.

For r = 1, Table 2 shows sample size calculations for different values of accrual time a, 

follow-up time f, and correlation ρ with an additional covariate.

From Figure 2, we see that the survival curve for the new treatment arm with ΔHR = 0.80 

(corresponding to a 20% risk reduction) comes closest (visually) to our anticipated survival 

curve for the new treatment arm with ΔPT = 2. If the statistician were to render the 

calculations for the number of events that would be needed to have 80% power at the 5% 

significance level to detect 20% reduction in risk, he or she would end up with N = 498 

(verified using PASS statistical software), and this would be drastically different from the N 

= 108 that we obtained using ΔPT = 2. Thus, in our motivating example, ignoring the shape 

of the survival curve obtained from the previous observational study could have significant 

drain on resources, as it would be very difficult to enroll 498 patients for a trial where the 

survival rates for most patients are low to begin with. In the next subsection, we compare the 

2 approaches to gain a better understanding of the advantages and limitations of the 2 

approaches.

5.2 | Comparisons with PH approach—an overview

To compare the PT approach with the PH approach, we first performed analytical 

calculations for number of events N that would be required to detect ΔPT = 2 with 80% 

power at the 5% level of significance. The left-hand side of Table 3 shows these calculations 

for r = 1 assuming a one-sided hypothesis. Note that as per Equation 3, specifying λ and β 
automatically fixes the value of σ. The right-hand side of Table 3 shows corresponding 

calculations for N using the PH approach for varying values of ΔHR again keeping r = 1.

From Table 3, we see that when λ = β = σ = 1, we obtain N = 52. This represents a special 

case corresponding to the exponential distribution for which ΔPT = 2 implies ΔHR = 0.5 and 

the calculation for N matches what we get using the PH approach. When we only have the 

restriction λ = 1, we are confronting the special case scenario of a Weibull distribution. The 

Weibull distribution has the property of fulfilling both the PT and PH assumptions; hence, 

our calculations for N should match. For example, if we look at λ = 1, β = 0.5 (Weibull with 

decreasing hazard with σ = 2), then using the PT assumption ΔPT = 2, we calculate N = 208. 

Using the relation ln(ΔPT) = − ln(ΔHR). σ specific to the Weibull, we calculate ΔHR = 0.707 

and this matches the N = 208 we obtain using the PH assumption.

For cases where λ ≠ 1, the comparisons between the 2 approaches are not straightforward. 

For example, consider the survival curve (solid red color) for ischemic strokes (see Figure 1) 

arising from the observational study as representative of the standard treatment arm and 

hypothesize that NewTrt will double longevity (ΔPT =2). Then from the observational study 

data, we calculate σ = 1.8831 (95% CI, 1.8035 − 1.9625) and 

λ = − 0.2002 (95% CI, − 0.4263 − 0.0259] as the MLEs. Next, using our PT approach of 

Equation 10, we arrive at N = 184 using r = 1 with 80% power at the 5% significance level. 

Note how the 95% CI for λ includes 0, and hence, the lognormal distribution will be a good 
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fit for this data. Using the sample-size method of Hale16 for the lognormal distribution 

would have resulted in N = 178. If we were to adopt the PH approach and use ΔHR = 0.7 (a 

commonly used effect size in many time-to-event based trials), as per Table 3, we would 

need N = 196 as the required number of events. From Figure 4A, for this particular case, we 

see that ΔHR = 0.7 does indeed generate a survival curve for the new treatment arm that 

“visually” comes somewhat close to what would have been obtained using ΔPT =2 (note that 

although ΔHR = 0.675, yielding N = 162 would be obtained by using S1(0.5) = S0(0.5)
ΔHR

and would be an even better approximation it would be difficult for a researcher come up 

with this magnitude of ΔHR for effect size). Thus, it appears that either approach would work 

adequately for performing the sample size calculations for a hypothesized new treatment for 

ischemic stroke patients; ΔPT = 2, however, would have a more direct clinical interpretation 

than ΔHR = 0.7.

For situations where N in Table 3 is large and ΔPT = 2, we generated KM curves using 

appropriate values for the parameters of the GG distribution and found that these large 

values of N were due the survival curve of the standard treatment arm being even more steep 

than the one shown for hemorrhagic stroke patients in Figure 1. Thus, in these situations, for 

a majority of the patients, “doubling” of longevity does not offer a significant benefit. Small 

effect sizes require large N, meaning that to get smaller N, we would have to define the 

effect size in terms of larger values of ΔPT (for example, 3, 4, or even larger). When the 

survival curve for the standard treatment arm is very steep, then using the PH approach also 

results in very large N for commonly values of ΔHR such as 0.7, 0.6 or 0.5. Here also, to 

reduce N, we would then need to define large effect sizes, thereby implying small values of 

ΔHR such as 0.3 or 0.2.

5.3 | Evaluation of the PT method when the PH assumption is true

Since the PH method is widely used in designing a clinical trial, it is important to consider 

the situations where the PH assumption holds true in the population (that is, when ΔHR is 

constant). We calculate the sample size N obtained for 80% power and 5% significance level 

using this assumption and then assess how well the proposed PT approach performs. Note 

that no direct formula is available to convert N between the 2 approaches; thus, to perform 

these comparisons, we undertook the following tasks. (1) Generate baseline survival curve 

representing the standard treatment arm by simulating data from a known parametric 

distribution. This baseline distribution can be from the GG family (so as to include well-

known parametric distributions as special cases) or some other distribution such as the log-

logistic or the exponentiated Weibull distribution (see Mudholkar and Srivastava17 and Cox 

and Matheson18). (2) Assuming that the PH assumption to be true (ΔHR defines the effect 

size), generate the survival curve for the new treatment arm. Calculate the sample size 

required for achieving 80% power at the 5% level of significance for a one-sided test. (3) 

Using careful visual inspection, calculate an approximate value for ΔPT using the survival 

curves for the 2 treatment arms. Thus, ΔPT can be approximated at either the median survival 

time or the average of the 25th, 50th, and 75th survival quartiles, or, if the situation permits, 

the average of survival deciles. (4) Assess, if using this value of ΔPT, power comparable to 

80% is achieved for a given value of sample size. Results are displayed in Table 4A.
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For example, say that the survival times in a standard treatment arm follow a GG (μ = 0, λ = 

0.832, σ = 0.416) distribution and that the hazards in the 2 treatment arms are truly 

proportional, with ΔHR = 0.4 being the effect size of clinical interest. Then, as per Table 3, 

for 80% power at the 5% significance level, we need to accrue N = 30 events in the study. 

Figure 4B shows the “true” KM curves (considering that all simulated observations are 

events) for the 2 treatment arms for this study. Thus, a 60% hypothesized (and clinically 

meaningful) risk reduction requires that the 2 treatment arms experience only 15 events each 

for the study to have 80% power. Now, suppose that we were to define the effect size in 

terms of ΔPT instead of ΔHR. Since no direct conversion is available, we can take an 

approximate approach. We observe that at the 75th and 25th percentile of survival, the ratio 

RT(p) using Equation 5 is approximately 1.45, whereas at the 50th percentile (median) of 

survival, the ratio RT(p) is about 1.5. Thus, ΔPT can be averaged out to be (1.45 + 1.5 

+ 1.45)/3 = 1.5. Then by using our proposed method, for N = 30—that is 15 events in each 

treatment arm—the empirical power obtained from 10 000 simulations is 82.47%. Thus, in 

this scenario, even if the PH assumption were to hold true, designing a trial using the PT 

assumption would give comparable performance. Figure 4C represents a similar situation 

with the survival times in a standard treatment arm following a GG (μ = 0, λ = 0.832, σ = 

0.208) distribution with ΔHR = 0.4 yielding N = 30 (15 in each arm). In this case, calculating 

ΔPT at each survival decile yields an average of ΔPT= 1.215, resulting in empirical power of 

80.28% for N = 30 using our proposed method. In Figure 4D, we consider a more extreme 

case with survival times in a standard treatment arm following a GG (μ = 0, λ = 0.832, σ = 

0.166) distribution with 25% event rate. In this case, ΔHR = 0.6 would require enrollment of 

a total of N = 96 patients (48 in each arm). Here, too, an averaged estimate of ΔPT= 1.09 

yields 80.30% power with N = 96 patients using the PT assumption. Other simulation 

scenarios in Table 4A yield similar results, even when other baseline distributions for the 

standard treatment arm are used.

5.4 | Performance evaluations of PT method using simulations

We also performed simulations to assess the overall performance of our approach. Table 4B 

displays the results of power calculations for 10 000 simulations done for the various 

scenarios explained above with r = 1. Data were simulated from the GG distribution, and the 

SAS procedure PROC LIFEREG was used to obtain MLEs of the GG parameters and hence 

calculate ΔPT, the estimate of PT. This allowed us to calculate the bias, mean square error, 

and coverage probability, in addition to evaluating the power under both the null (type I 

error) and the alternate hypothesis. In all of our simulations, we found that there was a small 

positive bias in estimating ΔPT but that it was always less than 5%. The empirical type I 

error rate was close to the nominal type I error rate of 5%, and it never exceeded 6.67% even 

for small sample sizes. We chose sample sizes so as to be able to compare simulated value of 

power with the analytical calculations displayed in Table 3. As can be seen from Table 4B, 

power obtained through simulations either matched the analytical calculations given in Table 

3 or was marginally below it. In most situations where the power was slightly below 80%, 

the addition of 2 or 4 subjects (1 or 2 in each group) resulted in the achievement of power 

above the 80% threshold value. The approximate Wald coverage probability was lower than 

the nominal value of 95% in some simulations. However, it should be noted that PROC 
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LIFEREG assumes an approximate normal distribution for the location parameters μi and 

that this may explain the somewhat lower values for coverage. (Note that since our test 

statistic follows a GGR distribution, the μi follows a log-GGR distribution of which the log-

GG is a special case and the normal distribution is in turn a special case of the log-GG 

distribution.) Overall, it appears that there is a good match between the analytical and 

simulated results.

5.5 | Comparisons with a cure rate model and piecewise exponential model

When the PH assumption is not valid, a researcher may opt for conducting the sample size 

calculations using alternative methods that do not require this assumption to hold. For 

example, a researcher may perform the sample size calculations using the cure rate (CR) 

model or the piecewise exponential (PE) model to account for the nonproportionality of 

hazards in the 2 treatment arms, provided such approaches are appropriate. To evaluate the 

robustness of our PT method, we compared it to the CR and PE model using simulations. 

Table 5 displays the simulation results where the data are simulated using the PT assumption 

and sample sizes are obtained. These are compared to sample sizes that would have been 

obtained had the CR or PE methods been used. Analogously, Table 6 displays the simulation 

results where the CR model is assumed to be true and where sample sizes calculated are 

therefore assumed to be correct. These are then compared to sample sizes that would have 

been obtained had the PT or PE methods been used. It should be noted that direct 

comparisons between these 3 approaches are not always possible owing to the different 

assumptions under which these methods operate. We therefore sought to evaluate the 

robustness of our method only under those situations where such comparisons are possible.

Briefly, a CR model assumes that the failure time T* is given by T* = vT + (1 − v)∞, where 

T is the failure time for uncured patients and v = 0, 1 is an indicator of whether a patient will 

eventually not experience or experience treatment failure. Thus, the overall survival 

distribution S*(t) = π + (1 − π)S(t) is a mixture model of a CR π = P(v = 0) and the 

conditional survival distribution S(t) of patients who will experience failure. Xiong and 

Wu19 have performed sample size calculations under the CR model using a weighted log-

rank test and compared their results to the sample size calculation done using the standard 

log-rank test by Wang et al.20 They have considered 3 scenarios: (a) New treatment has 

reduced hazards as compared to standard treatment and resulted in an improved CR; (b) new 

treatment does not have reduced hazards as compared to standard treatment but resulted in 

an improved CR; (c) new treatment has reduced hazards as compared to standard treatment, 

but no improvement in CR resulted. Our PT approach cannot be compared directly to (a) and 

(b) when the CR model is assumed to be true. Specifically, in (a), it is not clear as to how to 

calculate ΔPT as it ranges from a value greater than 1 to ∞ as we move along the time axis. 

In (b), the survival curves may cross until the CR is realized, and our PT approach is not 

intended for this scenario since we are interested specifically in performing sample size 

calculations aimed at improving longevity using a multiplicative factor of time. Therefore, in 

both Tables 5 and 6, we have compared our PT approach to (c). The footnote below Table 5 

briefly explains the notations used in these 2 tables, the detailed explanations for which can 

be found in Xiong and Wu.19 In Table 5, we see that when the PT assumption is true and the 

CR model is used, all situations require larger sample sizes to design the trial. In Table 6, it 
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can be seen that when the CR assumption is true and when the hazard ratio between the 2 

treatment arms is large, our PT method yields equivalent sample sizes once the appropriate 

values of the shape parameters of the GG distribution are estimated. In the case of hazard 

ratios of small magnitude, our PT methods yield sample sizes smaller than those obtained by 

the CR method. However, these comparisons are not direct one-to-one comparisons, as both 

models are working under different assumptions. Xiong and Wu19 note that they have found 

optimal weighted logrank tests for sample size calculation only for (b) and that more work 

needs to be done in scenarios (a) and (b). Thus, merely obtaining smaller sample sizes 

should not be seen as one method being superior, as the CR model can also handle scenarios 

(a) and (b). Rather, the comparisons should be seen to complement each other by helping the 

researcher make informative choices.

Another approach to approximating the survival curves when the PH assumption does not 

hold true is to assume a PE model. Operational details of this model are briefly discussed in 

Hougaard.21 In this case, the observation time is partitioned into J successive intervals with 

cut points 0 = ε0 < ε1 < … εJ < ∞ and the j-th interval [εJ − 1, εJ) extends from the j-1th 

boundary (inclusive) to the j-th boundary (noninclusive). In each interval of time, the 

baseline hazard of the standard treatment arm is assumed to be constant so that h0(t) = hj for 

t in [εJ − 1, εJ). This allows modeling of the baseline hazard using J parameters h1, h2, …, hj 

one in each interval representing the hazard of the reference group. Using careful selection 

of cut points, it is then possible to approximate, with reasonable accuracy, any shape of the 

baseline hazard. Another selection of cut points for the new treatment arm allows 

approximation of the hazard shape in the new treatment arm. Thus, the PE model can be 

used to approximate survival curves when the PH assumption is not true and, therefore, to 

calculate sample sizes prior to designing a clinical trial. Lakatos2 and Lakatos22 discuss 

sample size calculations using the PE model using Markov processes; these calculations can 

be performed using standard statistics software. It should be noted that judicious selection of 

cut points is needed to achieve sample sizes of reasonable magnitude; not doing so may 

considerably inflate the sample sizes.

Table 5 shows the results where the PT assumption is true and the sample sizes obtained by 

using the PE model are compared to those obtained by the PT model when varying values of 

accrual and follow-up time are used. In all scenarios, we see that the PE method renders 

comparable sample sizes. However, the choice of the weighing function (standard logrank, 

Gehan, or Taroneware) seems to play a key role in obtaining sample sizes comparable to 

those of the PT approach. Likewise, results presented in Table 6 where the CR model is 

assumed to be true are quite informative in comparing what sample sizes would have been 

obtained had the researcher used the PE or the PT approach. This comparison represents a 

realistic scenario whereby it is known to the researchers that a small proportion of the 

patients are likely to get cured in both treatment arms, and in anticipating nonproportionality 

of hazards, they might want perform the sample size calculations using the PE method. From 

Table 6, it can be said that, in general, the PE method gives smaller sample sizes than the CR 

method and the PT method but that the choice of the weights seems to influence the 

calculations. However, the unequal number of intervals for the 2 treatment arms was selected 

by us after carefully studying the shape of the survival functions. This means that unlike the 

CR and PT methods, where knowledge of only a few parameters is required to calculate the 
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sample sizes, careful selection of cut points is needed to use the PE method. In real-life 

scenarios, a researcher may not be comfortable using only the weights that yield smaller 

sample sizes, meaning that knowledge of comparisons displayed in Table 6 is informative in 

making sample size decision.

Overall, from Table 5 and Table 6, it appears that our PT approach is reasonably robust 

provided that the shape parameters of the GG distribution for the standard treatment arm are 

estimated with reasonable accuracy. In the next section, we discuss some real-life 

implications of choosing our method to do the sample size calculations.

6 | DISCUSSION

In our work, we have attempted to show how a statistician can incorporate information 

available from a previously conducted observational study into designing a clinical trial for 

time-to-event data. Similarly, one could also use information from large-scale clinical trials. 

Investigators experienced in their field of study often have an intuitive idea as to what is a 

clinically meaningful improvement for a new proposed treatment compared to standard 

treatment regimen, meaning that availability of observational study data can only help a 

statistician in translating a researcher′s definition of improvement into a statistically relevant 

definition of effect size. In areas where survival of patients receiving a standard treatment 

regimen is quite modest (or even poor), researchers are intuitively interested in how much 

additional longevity will be conferred by a new proposed treatment rather than in a 

hypothesized percentage risk reduction. Our proposed method of sample size calculation 

aims to fulfil this requirement, as it allows researchers to converse directly in terms of 

improved lifetimes when enrolling patients for a new study. From the point of view of 

potential participants also, an effect size for improved longevity defined in terms of a 

multiple of time is easy to interpret.

Our proposed method, therefore, is not in opposition to traditional PH, PE, or CR methods 

for sample size calculation; rather, it provides an opportunity to use it when there is good 

reason to believe that the proportionality of hazards assumption may not be valid and that 

improvement in longevity by a multiplicative factor is the primary aim of a researcher′s 

proposed intervention. For example, in the field of oncology, there is considerable interest in 

the development of newer treatment regimens and vaccines that improve patient lifetime. A 

detailed search on National Institute of Health (NIH) and National Cancer Institute (NCI) 

websites suggests that many ongoing phase II and phase III clinical trials discuss doubling 

of survival time as the hypothesis of main interest. When successful, published papers often 

report improvement in median survival times (and sometimes improvement in 25th and 75th 

percentiles of survival time) as the measurement scale for evaluating treatment efficacy and 

effectiveness. In such trials, percentage reduction in risk is not of immediate interest and 

many a times not reported at all, but knowing by what factor of time lifetime has increased is 

considered very important. A search on the internet with keywords such as “doubling 

survival time,” “improvement in longevity,” and “treatment increases survival time” shows 

numerous results both of ongoing trials as well as published articles and official news 

briefings for successful trials.
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The oncology literature readily provides examples in which the extension of life was the 

desired trial endpoint and, therefore, constitute examples where our approach might have 

considerable utility. For example, the monoclonal antibody blinatumomab is considered 

superior to standard chemotherapy since it resulted in a twofold increase in overall survival 

in patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (See 

Kantarjian et al23). Another example is that of treatment fasudil, a rho kinase inhibitor, 

which has been shown to double the lifespan of mice with pancreatic cancer (see Vennin et 

al24); where this drug to be trialed in humans, lifespan improvement would likely constitute 

the end point of interest. There are many other such studies where the research is driven by a 

hypothesis that requires a multiple-of-time–based definition of effect size such as research in 

new treatment options for metastatic renal cell carcinoma (see Zarrabi et al25). Similarly, 

research in human ageing is preceded by animal studies mostly using mouse models where 

significant advancements have been made using techniques that target calorie and 

methionine restrictions, telomerase enhancements, metabolic enzyme alterations, growth 

hormone knockout and insulin signaling manipulations, and reducing the activity of 

mitochondria associated genes. The Palo Alto Longevity Prize26 is an international $1 

million life science competition dedicated to ending ageing with the specific aim of restoring 

the human body′s homeostatic capacity to promote an extended and healthy lifespan. Their 

mission statement commits $500 000 to the first team of researchers that will demonstrate 

improvement in mean lifespan of a wild-type mammalian cohort by 50% relative to what is 

expected naturally (that is, a multiplicative factor of 1.5 in the context of the PT model) at 

the 5% significance level. Should success be found in the near future for a large cohort 

study, it is then not farfetched to imagine a PT-based early phase clinical trial come into play 

that uses information from the large cohort study.

Therefore, there is intuitive clinical appeal in designing a clinical trial based on an effect size 

that is defined in terms of improvement in survival time. Current methods of sample size 

calculation do so only in the case of exponentially distributed times (which is only a special 

case of the GG distribution); hence, we suggest that sample size calculations should be 

performed using PT assumption when efforts are focused on extending it to the more 

generalizable RT(p) assumption.

In our simulations, we have found our proposed PT approach to be relatively robust even 

when the PH assumption represent the true model. Likewise, it is also comparable to the CR 

model under the conditions discussed in Section 5. While the CR model is indeed pertinent 

to areas of biomedical research where a proportion of patients are said to be cured, it 

operates under the theoretical assumption of infinite longevity for such cured patients; 

obviously, this may not always be justifiable. In contrast, the PT method makes no such 

assumption and can model the shape of the survival curve as long as it is within the ambit of 

the GG family of distributions. Available software fits a parametric CR model with the 

hazard part modeled by an exponential, Weibull, lognormal, or log-logistic distribution, 

while the CR is modeled by a logit, probit, or complementary log-log link. This means that 

for sample size calculations, the CR method often requires a priori knowledge of 3 

parameters (2 for the hazard component and 1 for the CR component, as shown in Table 5) 

plus an effect size defined in terms of a hazard ratio. In this sense, it is similar to the PT 

method where, once again, a priori knowledge of 3 parameters is required along with a time-

Phadnis et al. Page 16

Stat Med. Author manuscript; available in PMC 2019 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based definition of effect size. More research is needed to investigate the possibility of 

combining the 2 approaches.

The PE method relies on careful selection of the intervals and shares the aspect of requiring 

some prior knowledge with the PT method. It is somewhat tedious in that some trial and 

error is needed to obtain the appropriate choice of intervals. Additionally, comparable 

sample sizes will be obtained only when such intervals are constructed for both treatment 

arms. Thus, in practice, this method can be used when an a priori hypothesis is well 

formulated. It can therefore be argued that the CR and PT methods provide a faster (and 

more parsimonious) alternative, as then the shape of the survival curve for the new treatment 

arm follows from knowledge of at most 3 parameters plus a well-defined effect size.

One limitation of our approach is that it depends on reliable information made available 

from a large observational study or large clinical trial. The MLEs of λ and σ obtained from 

the observational study data are used as the parameters that generate the survival curve for 

the standard treatment arm. If the previous research did not have large sample sizes, then λ 
and σ would have wide confidence intervals and it would be difficult to rely on their point 

estimates. For example, a very wide 95% confidence interval for λ that included 0 and 1 

would imply that the choice between a lognormal distribution (PH assumption is not met) 

and a Weibull distribution (PH assumption is met) for the standard treatment arm could not 

be made in a reliable manner. In our motivating example, even with a sample size of 534 

(76.6% event rate), the 95% CI for λ is (−2.3175 to −1.6683)—which is still somewhat wide 

but not of alarming concern (as per the schematic representation of hazard functions given in 

Cox et al14—there will be no qualitative difference in the shape of the hazard function 

whether we take λ = − 1.9929 or any other value that falls in this CI). Still, reasonably large 

sample sizes are desirable if we are to depend on observational study data for reliable 

estimates of λ. However, any sample size calculation method relies on clinically relevant 

definitions of effect size, and we suggest that when such information is present, it should be 

used to have better study designs.

In view of the limitations mentioned above, researchers should rely on practical 

considerations while designing a clinical trial. If absolutely no prior knowledge is available 

about the shape parameters, a safe choice is to assume λ = σ = 1, in which case, the trial will 

be designed using the assumption of exponentially distributed times. In fact, it can be argued 

that all such trials that have assumed exponentially distributed survival times are a special 

case of our PT method, and it may be that in at least some of these studies, some information 

was available about the shape parameters but that it was ignored. Likewise, documentation 

of the Weibull++ software by Reliasoft27 recommends that for obtaining stable estimate of 

the shape parameter β of a Weibull distribution, (1) a sample size of 10 is needed when 

using the criterion of average relative bias less than 20% and (2) a sample size of 31 is 

needed when the criterion of average coefficient of variation is less than 0.15. This means 

that when information is available from a phase I or II study with 31 observations, it could 

be used to design a future phase II or III study by assuming λ = 1 and using the point 

estimate of β to design a clinical trial. This would result in the same sample size as would 

result from a PH assumption. Thus, even with the lack of knowledge of λ, our method 

cannot practically perform any worse than does the PH method. However, in cases where 

Phadnis et al. Page 17

Stat Med. Author manuscript; available in PMC 2019 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information about the point estimate of λ is available from moderately sized prior studies, 

our sample size formula can be used to design future trials. Examples of future work in this 

area are to investigate situations where information about the GG parameters is available 

only through multiple small sample studies (instead of one large observational study), to 

extend our approach to the more general RT(p) assumption, to investigate stability criteria 

for the shape parameter λ, and to explore Bayesian options to further this approach.

APPENDIX A

A. | The probability density function of a GGR distribution is

f Z(z) = β δ
a0

ℬ a0, a1
1 + δzβ − a0 + a1 z

βa0 − 1
,

where z>0, δ =
θ1
θ0

β
 and ℬ( . , . ) is the beta function.

Let T1, T2, … , Tn be i.i.d random variables that follow the GG distribution given in 

Equation 1. We can show the MLE of θ to be

θ =
∑ j = 1

n t j
β

nk

1
β

.

Now when T ~ GG(k, β, θ), a known result is that Tβ 𝒢 k, θβ . Using the relationships 

between a GG distribution and a 𝒢 distribution, it is then easy to show that 

∑ j = 1
n T j

β

nk 𝒢 nk, θβ

nk  and hence θ GG nk, θ

nkβ , β .

Let i = 0 and i = 1 index the standard treatment arm and the new treatment arm, respectively. 

Then we have θ0 GG n0k,
θ0
n0kβ , β  and θ1 GG n1k,

θ1
n1kβ , β , respectively. Then following the 

in Coelho and Mexia28 for the ratio of 2 GG distributed variables, we get the result given in 

Equation 10. Under the null hypothesis H0: θ0 = θ1 we get Equation 12. The relationship 

between a random variable that follows the F distribution and a GGR distribution can be 

summarized as

If X F2n0k, 2n1k and if Q = X1/β

θ0/θ1
 then Q GGR

n0
n1

θ1
θ0

β
, n0k, n1k, β .
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Under the null hypothesis H0: θ0 = θ1, we simply have Q = X1/β and this makes the sample 

size calculations easy. Following iterative logic can be used to do the sample size 

calculations:

Step 1. For a starting value of n0 and n1 (or n1 and allocation ratio r), shape 

parameters k and β, and type I error rate α, find the critical value from the GGR 

distribution under the null hypothesis H0: θ0 = θ1. This may be denoted as 

Qcritical =  ggr
1 − α, 1

r ,
n1k

r , n1k, β
, the (1 − α)th quantile from the GGR

1 − α, 1
r ,

n1k

r , n1k, β

distribution.

Step 2. Under the alternative hypothesis, we have Q GGR 1
r

θ1
θ0

β
,

n1k

r , n1k, β . 

Therefore, for a PT effect size of interest ΔPT and type II error rate τ, Power (using 

sample sizes n0 and n1) can be calculated as

Power = 1 − τ = P Q > Qcritial |Q GGR
ΔPT

β

r ,
n1k

r , n1k, β

.

Step 3. If this value of power exceeds a desired value, say 0.8, decrease the values of 

n0 and n1, and repeat the 2 steps mentioned above. Similarly, if this value of power is 

lower than a desired value, say 80%, increase the values of n0 and n1, and repeat the 2 

steps mentioned above. Continue this step till you find n0 and n1 that yield power 

greater than or equal to 80% such that the same calculation done with sample sizes n0 

− 1 and n1 − 1 will give less than 80% power. For two-sided hypothesis, α/2 can be 

used in place of α.

Step 4. For small sample sizes, simulation may be used to confirm the above 

mentioned analytic calculations.
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FIGURE 1. 
Kaplan Meier curves for the 2 stroke types for standard arm and proposed new treatment 

arm
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FIGURE 2. 
Survival curves for ΔHR = 0.8, 0.7, 0.6 in comparison to the standard treatment group (for 

hemorrhagic stroke)
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FIGURE 3. 
Distribution fits for the generalized gamma vs exponential for hemorrhagic stroke mortality 

data
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FIGURE 4. 
Survival curves for comparing standard treatment arm to new treatment arm A, ischemic 

stroke observational study with ΔHR = 0.7, B, hypothetical data GG (μ = 0, λ = 0.832, σ = 

0.416) with ΔHR = 0.4, C, hypothetical data GG (μ = 0, λ = 0.832, σ = 0.208) with ΔHR = 

0.4, D, hypothetical data GG (μ = 0, λ = 0.832, σ = 0.166) with ΔHR = 0.6
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TABLE 1

Model comparisons for hemorrhagic stroke observational study data

Distribution AICc −2 Loglikelihood BIC

Generalized gamma 1668.812 1662.766 1681.608

Lognormal 1815.855 1811.832 1824.393

Log-logistic 1832.544 1828.521 1841.082

Weibull 1952.095 1948.072 1960.633

Exponential 2511.168 2509.160 2515.441

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion.
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TABLE 2

Sample size for our example (r = 1) for varying values of a and f

ρ = 0 ρ = 0.4

a = 12 months, f = 12 months Ntotal = 144 Nadjusted = 172

a = 24 months, f = 12 months Ntotal = 140 Nadjusted = 168

a = 12 months, f = 24 months Ntotal = 136 Nadjusted = 162

a = 24 months, f = 24 months Ntotal = 132 Nadjusted = 158
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TABLE 3

Comparing PT versus PH approaches

# Events N for PT assumption
(80% power, α = 0.05 one-sided, ΔPT = 2, r = 1)

# Events N for PH assumption
(80% power, α = 0.05 one-sided, r = 1)

β N

4 3 2 1.5 1 0.75 0.5 0.25 0.1 0.85 938

0.10 - - - - - - - 10 52 0.8 498

0.25 - - - - - - 14 52 322 0.75 300

0.50 - - - - 14 24 52 208 1288 0.7 196

0.75 - - - 14 30 54 118 466 2898 0.65 134

|λ| 1.00 - - 14 24 52 94 208 826 5150 ΔHR 0.6 96

1.50 10 16 32 56 120 210 466 1858 11586 0.55 70

2.00 16 28 56 96 212 372 828 3300 20596 0.5 52

2.50 26 44 88 150 332 582 1294 5158 - 0.45 40

3.00 38 64 128 218 478 838 1864 7426 - 0.4 30

N is rounded up to an even number to avoid fractional values for n0 and n1.

A “-” indicates that N is either too small or too large to be considered practically meaningful.

This table shows N for a one-sided hypothesis. Similar calculations can be done for a two-sided hypothesis.

This table is constructed for ΔPT = 2. For ΔPT > 2, N will decrease and vice versa.
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TABLE 4A

Performance of PT method using 10 000 simulations (r = 1 in all cases, one-sided test) when the proportional 

hazards assumption is true

Baseline Distribution (Control Group) n/ΔHR/Power Approximated ΔPT % Empirical Power

Exponential 12/0.35/0.8 ΔPT = 2.857 78.90

λ = 1, σ = 1 d = 1 16/0.35/0.9 ΔPT = 2.857 88.95

Generalized gamma
a 15/0.40/0.8 ΔPT = 1.501 82.47

λ = 0.832, σ = 0.416 d = 1 21/0.40/0.9 ΔPT = 1.501 92.23

Generalized gamma
a 15/0.40/0.8 ΔPT = 1.215 80.28

λ = 0.832, σ = 0.208 d = 1 21/0.40/0.9 ΔPT = 1.215 90.48

Inverse gamma 20/0.45/0.8 ΔPT = 1.889 78.89

λ = −0.8, σ = 0.8 d = 1 27/0.45/0.9 ΔPT = 1.889 88.95

Log-logistic
c 26/0.50/0.8 ΔPT = 3.251 79.26

μlocation = 1.08, Sscale = 0.9882 d = 1 36/0.50/0.9 ΔPT = 3.251 88.85

Exponentiated Weibull
c 35/0.55/0.8 ΔPT = 2.075 79.30

λ = 1, σ = 2, αshape = 2 d = 1 48/0.55/0.9 ΔPT = 2.075 88.86

Generalized gamma
a 48/0.6/0.8 ΔPT = 1.090 80.30

λ = 0.832, σ = 0.166 d = 0.25 66/0.6/0.9 ΔPT = 1.090 90.41

Generalized gamma
b 54/0.62/0.8 ΔPT = 2 80.62

λ = −1.992, σ = 1.414 d = 0.766 75/0.62/0.9 ΔPT = 2 90.28

2-parameter gamma 97/0.70/0.8 ΔPT = 2.050 79.48

λ = 2, σ = 2 d = 1 135/0.70/0.9 ΔPT = 2.050 89.40

Ammag 150/0.75/0.8 ΔPT = 1.776 79.76

λ = 0.5, σ = 2 d = 1 207/0.75/0.9 ΔPT = 1.776 90.33

Inverse Weibull 299/0.80/0.8 ΔPT = 1.450 79.59

λ = −1, σ = 1.667 d = 1 344/0.80/0.9 ΔPT = 1.450 89.38

Inverse Ammag 469/0.85/0.8 ΔPT = 1.115 80.20

λ = −0.817, σ = 1.225 d = 1 649/0.85/0.9 ΔPT = 1.115 89.99

Standard gamma 1114/0.9/0.8 ΔPT = 1.427 79.82
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Baseline Distribution (Control Group) n/ΔHR/Power Approximated ΔPT % Empirical Power

λ = 1.5, σ = 1 d = 1 1543/0.9/0.9 ΔPT = 1.427 90.17

a
These simulations represent the scenarios presented in Figure 4B–D.

b
This scenario represents the motivating example discussed in the text.

c
Baseline distribution is not from the generalized gamma family.
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TABLE 4B

Performance evaluation of proportional time (PT) method using 10 000 simulations (r = 1 in all cases) when 

the PT assumption is true

Simulation Scenario: PT Assumption 
is True

ΔPT SE (ΔPT) Bias (ΔPT) % Bias (ΔPT)
MSE % Wald Coverage % Power

Exponential ΔPT = 1 1.0393 0.0031 0.0393 3.930 0.0972 92.24 5.77

λ = σ = 1 ΔPT = 1.5 1.5589 0.0046 0.0589 3.930 0.2151 92.24 41.46

n = 26, N = 52 ΔPT = 2 2.0786 0.0062 0.0786 3.930 0.3889 92.24 78.47

Weibull ΔPT = 1 1.0386 0.0029 0.0386 3.860 0.0871 94.86 4.68

λ = 1, σ = 2 ΔPT = 1.5 1.5579 0.0044 0.0579 3.860 0.1959 94.86 49.48

n = 104, N = 208 ΔPT = 2 2.0772 0.0059 0.0772 3.860 0.3482 94.86 79.86

Weibull ΔPT = 1 1.0453 0.0033 0.0453 4.530 0.1131 87.78 6.15

λ = 1, σ = 0.8 ΔPT = 1.5 1.5679 0.0050 0.0679 4.530 0.2545 87.78 49.46

n = 17, N = 34 ΔPT = 2 2.0906 0.0067 0.0906 4.530 0.4524 87.78 78.47

Standard gamma ΔPT = 1 1.0420 0.0030 0.0420 4.020 0.0931 84.74 5.88

λ = 2, σ = 1 ΔPT = 1.5 1.5603 0.0044 0.0603 4.020 0.2094 84.74 49.78

n = 30, N = 60 ΔPT = 2 2.0804 0.0060 0.0804 4.020 0.3723 84.74 81.93

2-parameter gamma ΔPT = 1 1.0469 0.0030 0.0469 4.693 0.0932 93.42 5.64

λ = σ = 2 ΔPT = 1.5 1.5704 0.0045 0.0704 4.693 0.2097 93.42 49.62

n = 107, N = 214 ΔPT = 2 2.0939 0.0060 0.0939 4.693 0.3728 93.42 81.00

Lognormal
ab ΔPT = 1 1.0414 0.0030 0.0414 4.135 0.0922 94.42 5.52

λ = −0.2, σ = 1.883 ΔPT = 1.5 1.5620 0.0044 0.0620 4.135 0.2075 94.42 49.46

n = 92, N = 184 ΔPT = 2 2.0827 0.0060 0.0827 4.135 0.3689 94.42 80.23

Ammag ΔPT = 1 1.0382 0.0029 0.0382 3.820 0.0856 94.72 5.07

λ = 0.5, σ = 2 ΔPT = 1.5 1.5595 0.0044 0.0595 3.820 0.2015 94.72 49.46

n = 104, N = 208 ΔPT = 2 2.0794 0.0059 0.0794 3.820 0.3583 94.72 80.03

Inverse gamma ΔPT = 1 1.0444 0.0031 0.0444 4.435 0.0979 89.91 6.41

λ = −0.8, σ = 0.8 ΔPT = 1.5 1.5665 0.0046 0.0666 4.435 0.2202 89.91 49.77

n = 18, N = 36 ΔPT = 2 2.0887 0.0062 0.0887 4.435 0.3915 89.91 81.48

Inverse Weibull ΔPT = 1 1.0366 0.0029 0.0366 3.660 0.0887 94.24 5.10

λ = −1, σ = 1.667 ΔPT = 1.5 1.5599 0.0044 0.0599 3.660 0.1996 94.24 41.58

n = 72, N = 144 ΔPT = 2 2.0732 0.0059 0.0732 3.660 0.3548 94.24 79.66

Inverse ammag ΔPT = 1 1.0424 0.0031 0.0424 4.240 0.0960 93.56 5.44

λ = −0.817, σ = 1.225 ΔPT = 1.5 1.5636 0.0046 0.0636 4.240 0.2486 93.56 49.45

n = 39, N = 78 ΔPT = 2 2.0848 0.0061 0.0848 4.240 0.3839 93.56 79.52

Generalized gamma
c ΔPT = 1 1.0469 0.0030 0.0469 4.693 0.0942 91.66 5.37

λ = −1.992, σ = 1.414 ΔPT = 1.5 1.5704 0.0045 0.0704 4.693 0.2118 91.66 49.60

n = 54, N = 108 ΔPT = 2 2.0939 0.0061 0.0939 4.693 0.3766 91.66 80.62

a
Lognormal has λ = 0, but here, we have taken λ = − 0.2 to reflect the scenario discussed in the text.
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b
This simulation scenario is visually represented in Figure 4A.

c
This scenario represents the motivating example discussed in the text.
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TABLE 5

Sample size comparisons for proportional time (PT) approach (true) versus piecewise exponential model 

(PEM) and cure rate (CR) model

PT model (ΔPT assumed true) Piecewise Exponential PE model

Cure Rate Mixture CRM model
(EL = Exponential-Logit, WL = Weibul-Logit, CL = Cox-
Logit)

Simulation
Scenarios Power/NTotal

Calculation
Parameters Power/NTotal

Calculation
Parameters Power/NTotal

λ = −1.9930 0.8/ 142 mstd = 9 0.8/ NLR = 408, π0 = π1 = 0.1335, 0.8/ NWLR = 258, NSLR = 238

σ = 1.414 mnew = 9 NG = 220, NTW = 282 λ0 = 0.3641,

a = 12, f = 36 0.9/ 194 a = 12 0.9/ NLR = 564, ω = −0.6931, 0.9/ NWLR = 356, NSLR = 330

d = 0.77, ΔPT = 2 f = 36 NG = 304, NTW = 390 a = 12, f = 36, EL

λ = −0.2 0.8/ 232 mstd = 15 0.8/ NLR = 230, π0 = π1 = 0.1988, 0.8/ NWLR = 360, NSLR = 378

σ = 1.8830 mnew = 11 NG = 212, NTW = 218 λ0 = 0.1456,

a = 12, f = 48 0.9/ 324 a = 12 0.9/ NLR = 316, ω = −0.6931, 0.9/ NWLR = 498, NSLR = 524

d = 0.63, ΔPT = 2 f = 48 NG = 306, NTW = 300 a = 12, f = 48, EL

λ = 1.5, 0.8/ 48 mstd = 15 0.8/ NLR = 62, π0 = π1 = 0.0001, 0.8/ NWLR = 76, NSLR = 72

σ = 0.85 mnew = 11 NG = 92, NTW = 74 λ0= 1.1985,

a = 1, f = 2.5 0.9/ 62 a = 1 0.9/ NLR = 86, ω = −0.6066, 0.9/ NWLR = 104, NSLR = 98

d = 1, ΔPT = 2 f = 2.5 NG = 128, NTW = 102 a = 1, f = 2.5, CL

λ = 2 0.8/ 232 mstd = 9 0.8/ NLR = 304, π0 = π1 = 0.0001, 0.8/ NWLR = 622, NSLR = 618

σ = 2 mnew = 11 NG = 932, NTW = 544 λ0 = 0.6274,

a = 2, f = 8 0.9/ 312 a = 2 0.9/ NLR = 422, ω = −0.2006, 0.9/ NWLR = 862, NSLR = 856

d = 1, ΔPT = 1.1 f = 8 NG = 1290, NTW = 754 a = 2, f = 8, CL

λ = 0.9717 0.8; 70 mstd = 9 0.8/ NLR = 80, π0 = π1 = 0.0547 0.8/ NWLR = 90, NSLR = 76

σ = 0.1606 mnew = 8 NG = 72, NTW = λ0 = 0.2567, β = 3.8956

a = 0, f = 1.5 0.9; 96 a = 0 740.9/ NLR = 110, ω = −0.7431 0.9/ NWLR = 126, NSLR = 104

d = 0.80 f = 1.5 NG = 98, NTW = 102 a = 0, f = 1.5, WL

λ = 0.5559 0.8; 134 mstd = 4 0.8/ NLR = 138, π0 = π1 = 0.0464, 0.8/ NWLR = 155, NSLR = 147

σ = 2.0396 mnew = 7 NG = 144, NTW = 134 λ0= 1.3645, β = 1.8475 0.9/ NWLR = 214, NSLR = 203

a = 6, f = 15 0.9; 186 a = 6 0.9/ NLR = 190, ω = −0.6010,

d = 0.5, ΔPT = 2.5 f = 18 NG = 198, NTW = 184 a = 6, f = 15, WL

For PE model: NLR, NG, and NTW represent the sample size calculations using the Logrank, Gehan, and Taroneware options; mstd and mnew 
represent the number of intervals for the standard and new treatment groups, respectively, such that the shape of the survival curve for the 2 groups 
is approximated as much as possible.

For CR model (following Xiong and Wu19), NWLR and NSLR are the sample sizes calculated using the weighted logrank and the standard 

logrank test, respectively; π0 and π1 are the cured proportions in the standard and new treatment arms, respectively; λ0 is the constant hazard rate 

in the standard treatment arm; and ω is the log hazards ratio comparing the new treatment to the standard treatment arm.
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TABLE 6

Comparing sample sizes for cure-rate model (true) versus proportional time (PT) and piecewise exponential 

model (PEM), for one-sided hypothesis, r = 1

Cure Rate Mixture CR model assumed true Proportional Time PT model Piecewise Exponential PE model

Simulation
Scenarios δ−1/γ

Power/NWLR;
NSLR

Calculation
Parameters Power/Ntotal

Calculation
Parameters Power/Ntotal

Exponential-logit mixture 1.3/0.0 0.8/ λ = 0.01 0.8/562 mstd = 9 0.8/ NLR = 566,

944; 1020 σ = 1.5539 mnew = 15 NG = 460, NTW = 458

0.9/ a = 12, f = 36 0.9/776 a = 12 0.9/ NLR = 784,

1306; 1412 d = 0.874, ΔPT = 1.418 f = 36 NG = 638, NTW = 636

π0 = 0.1 1.5/0.0 0.8/ λ = 0.01 0.8/366 mstd = 9 0.8/ NLR = 346,

λ0 = 0.1 380; 428 σ = 1.5539 mnew = 15 NG = 274, NTW = 282

a = 12 0.9/ a = 12, f = 36 0.9/504 a = 12 0.9/ NLR = 480,

f = 36 526; 592 d = 0.868, ΔPT = 1.545 f = 36 NG = 378, NTW = 388

β = 1 1.8/0.0 0.8/ λ = 0.01 0.8/190 mstd = 9 0.8/ NLR = 188,

174; 204 σ = 1.5539 mnew = 13 NG = 142, NTW = 150

0.9/ a = 12, f = 36 0.9/262 a = 12 0.9/ NLR = 258,

240; 282 d = 0.859, ΔPT= 1.836 f = 36 NG = 198, NTW = 206

2/0.0 0.8/ λ = 0.01 0.8/124 mstd = 9 0.8/ NLR = 110,

122; 148 σ = 1.5539 mnew = 12 NG = 84, NTW = 90

0.9/ a = 12, f = 36 0.9/172 a = 12 0.9/ NLR = 152,

180; 204 d = 0.847, ΔPT = 2.143 f = 36 NG = 116, NTW = 124

Weibull-logit mixture 1.3/0.0 0.8/ λ = 0.2903 0.8/906 mstd = 14 0.8/ NLR = 898,

1030; 1096 σ = 0.7705 mnew = 14 NG = 692, NTW = 732

0.9/ a = 2, f = 6 0.9/1256 a = 2 0.9/ NLR = 1244,

1426; 1518 d =, ΔPT= 1.145 f = 6 NG = 960, NTW = 1014

π0 = 0.1 1.5/0.0 0.8/ λ = 0.2903 0.8/372 mstd = 14 0.8/ NLR = 344,

λ0 = 0.1 418; 460 σ = 0.7705 mnew = 14 NG = 290, NTW = 292

a = 12 0.9/ a = 2, f = 6 0.9/516 a = 2 0.9/ NLR = 476,

f = 36 578; 636 d = 0.875, ΔPT= 1.237 f = 6 NG = 400, NTW = 402

β = 2 1.8/0.0 0.8/ λ = 0.2903 0.8/192 mstd = 14 0.8/ NLR = 188,

192; 220 σ = 0.7705 mnew = 14 NG = 138, NTW = 146

0.9/ a = 2, f = 6 0.9/266 a = 2 0.9/ NLR = 260,

264; 304 d = 0.870, ΔPT= 1.347 f = 6 NG = 190, NTW = 202

2.0/0.0 0.8/ λ = 0.2903 0.8/134 mstd = 14 0.8/ NLR = 134,

134; 157 σ = 0.7705 mnew = 13 NG = 98, NTW = 104

0.9/ a = 2, f = 6 0.9/184 a = 2 0.9/ NLR = 184,

186; 218 d = 0.862, ΔPT = 1.432 f = 6 NG = 136, NTW = 146

See footnote below Table 5 for explanation of the notation used in this table. Additionally, δ−1 represents the hazard ratio comparing the standard 
treatment to the new treatment and γ = 0 represents no change in cure rate between the 2 treatment arms.
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