Skip to main content
. Author manuscript; available in PMC: 2019 Apr 23.
Published in final edited form as: Stat Med. 2017 Aug 16;36(26):4121–4140. doi: 10.1002/sim.7421

TABLE 4A.

Performance of PT method using 10 000 simulations (r = 1 in all cases, one-sided test) when the proportional hazards assumption is true

Baseline Distribution (Control Group) n/ΔHR/Power Approximated Δ^PT % Empirical Power
Exponential 12/0.35/0.8 Δ^PT=2.857 78.90
λ = 1, σ = 1 d = 1 16/0.35/0.9 Δ^PT=2.857 88.95
Generalized gammaa 15/0.40/0.8 Δ^PT=1.501 82.47
λ = 0.832, σ = 0.416 d = 1 21/0.40/0.9 Δ^PT=1.501 92.23
Generalized gammaa 15/0.40/0.8 Δ^PT=1.215 80.28
λ = 0.832, σ = 0.208 d = 1 21/0.40/0.9 Δ^PT=1.215 90.48
Inverse gamma 20/0.45/0.8 Δ^PT=1.889 78.89
λ = −0.8, σ = 0.8 d = 1 27/0.45/0.9 Δ^PT=1.889 88.95
Log-logisticc 26/0.50/0.8 Δ^PT=3.251 79.26
μlocation = 1.08, Sscale = 0.9882 d = 1 36/0.50/0.9 Δ^PT=3.251 88.85
Exponentiated Weibullc 35/0.55/0.8 Δ^PT=2.075 79.30
λ = 1, σ = 2, αshape = 2 d = 1 48/0.55/0.9 Δ^PT=2.075 88.86
Generalized gammaa 48/0.6/0.8 Δ^PT=1.090 80.30
λ = 0.832, σ = 0.166 d = 0.25 66/0.6/0.9 Δ^PT=1.090 90.41
Generalized gammab 54/0.62/0.8 Δ^PT=2 80.62
λ = −1.992, σ = 1.414 d = 0.766 75/0.62/0.9 Δ^PT=2 90.28
2-parameter gamma 97/0.70/0.8 Δ^PT=2.050 79.48
λ = 2, σ = 2 d = 1 135/0.70/0.9 Δ^PT=2.050 89.40
Ammag 150/0.75/0.8 Δ^PT=1.776 79.76
λ = 0.5, σ = 2 d = 1 207/0.75/0.9 Δ^PT=1.776 90.33
Inverse Weibull 299/0.80/0.8 Δ^PT=1.450 79.59
λ = −1, σ = 1.667 d = 1 344/0.80/0.9 Δ^PT=1.450 89.38
Inverse Ammag 469/0.85/0.8 Δ^PT=1.115 80.20
λ = −0.817, σ = 1.225 d = 1 649/0.85/0.9 Δ^PT=1.115 89.99
Standard gamma 1114/0.9/0.8 Δ^PT=1.427 79.82
λ = 1.5, σ = 1 d = 1 1543/0.9/0.9 Δ^PT=1.427 90.17
a

These simulations represent the scenarios presented in Figure 4B–D.

b

This scenario represents the motivating example discussed in the text.

c

Baseline distribution is not from the generalized gamma family.