Skip to main content
. Author manuscript; available in PMC: 2019 Apr 23.
Published in final edited form as: Stat Med. 2017 Aug 16;36(26):4121–4140. doi: 10.1002/sim.7421

TABLE 6.

Comparing sample sizes for cure-rate model (true) versus proportional time (PT) and piecewise exponential model (PEM), for one-sided hypothesis, r = 1

Cure Rate Mixture CR model assumed true Proportional Time PT model Piecewise Exponential PE model
Simulation
Scenarios
δ−1 Power/NWLR;
NSLR
Calculation
Parameters
Power/Ntotal Calculation
Parameters
Power/Ntotal
Exponential-logit mixture 1.3/0.0 0.8/ λ = 0.01 0.8/562 mstd = 9 0.8/ NLR = 566,
944; 1020 σ = 1.5539 mnew = 15 NG = 460, NTW = 458
0.9/ a = 12, f = 36 0.9/776 a = 12 0.9/ NLR = 784,
1306; 1412 d = 0.874, ΔPT = 1.418 f = 36 NG = 638, NTW = 636
π0 = 0.1 1.5/0.0 0.8/ λ = 0.01 0.8/366 mstd = 9 0.8/ NLR = 346,
λ0 = 0.1 380; 428 σ = 1.5539 mnew = 15 NG = 274, NTW = 282
a = 12 0.9/ a = 12, f = 36 0.9/504 a = 12 0.9/ NLR = 480,
f = 36 526; 592 d = 0.868, ΔPT = 1.545 f = 36 NG = 378, NTW = 388
β = 1 1.8/0.0 0.8/ λ = 0.01 0.8/190 mstd = 9 0.8/ NLR = 188,
174; 204 σ = 1.5539 mnew = 13 NG = 142, NTW = 150
0.9/ a = 12, f = 36 0.9/262 a = 12 0.9/ NLR = 258,
240; 282 d = 0.859, ΔPT= 1.836 f = 36 NG = 198, NTW = 206
2/0.0 0.8/ λ = 0.01 0.8/124 mstd = 9 0.8/ NLR = 110,
122; 148 σ = 1.5539 mnew = 12 NG = 84, NTW = 90
0.9/ a = 12, f = 36 0.9/172 a = 12 0.9/ NLR = 152,
180; 204 d = 0.847, ΔPT = 2.143 f = 36 NG = 116, NTW = 124
Weibull-logit mixture 1.3/0.0 0.8/ λ = 0.2903 0.8/906 mstd = 14 0.8/ NLR = 898,
1030; 1096 σ = 0.7705 mnew = 14 NG = 692, NTW = 732
0.9/ a = 2, f = 6 0.9/1256 a = 2 0.9/ NLR = 1244,
1426; 1518 d =, ΔPT= 1.145 f = 6 NG = 960, NTW = 1014
π0 = 0.1 1.5/0.0 0.8/ λ = 0.2903 0.8/372 mstd = 14 0.8/ NLR = 344,
λ0 = 0.1 418; 460 σ = 0.7705 mnew = 14 NG = 290, NTW = 292
a = 12 0.9/ a = 2, f = 6 0.9/516 a = 2 0.9/ NLR = 476,
f = 36 578; 636 d = 0.875, ΔPT= 1.237 f = 6 NG = 400, NTW = 402
β = 2 1.8/0.0 0.8/ λ = 0.2903 0.8/192 mstd = 14 0.8/ NLR = 188,
192; 220 σ = 0.7705 mnew = 14 NG = 138, NTW = 146
0.9/ a = 2, f = 6 0.9/266 a = 2 0.9/ NLR = 260,
264; 304 d = 0.870, ΔPT= 1.347 f = 6 NG = 190, NTW = 202
2.0/0.0 0.8/ λ = 0.2903 0.8/134 mstd = 14 0.8/ NLR = 134,
134; 157 σ = 0.7705 mnew = 13 NG = 98, NTW = 104
0.9/ a = 2, f = 6 0.9/184 a = 2 0.9/ NLR = 184,
186; 218 d = 0.862, ΔPT = 1.432 f = 6 NG = 136, NTW = 146

See footnote below Table 5 for explanation of the notation used in this table. Additionally, δ−1 represents the hazard ratio comparing the standard treatment to the new treatment and γ = 0 represents no change in cure rate between the 2 treatment arms.