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Abstract
Recent studies have revealed that brain development is marked by morphological synchroniza-

tion across brain regions. Regions with shared growth trajectories form structural covariance

networks (SCNs) that not only map onto functionally identified cognitive systems, but also cor-

relate with a range of cognitive abilities across the lifespan. Despite advances in within-network

covariance examinations, few studies have examined lifetime patterns of structural relationships

across known SCNs. In the current study, we used a big-data framework and a novel application

of covariate-adjusted restricted cubic spline regression to identify volumetric network trajecto-

ries and covariance patterns across 13 networks (n = 5,019, ages = 7–90). Our findings revealed

that typical development and aging are marked by significant shifts in the degree that networks

preferentially coordinate with one another (i.e., modularity). Specifically, childhood showed

higher modularity of networks compared to adolescence, reflecting a shift over development

from segregation to desegregation of inter-network relationships. The shift from young to mid-

dle adulthood was marked by a significant decrease in inter-network modularity and organiza-

tion, which continued into older adulthood, potentially reflecting changes in brain organizational

efficiency with age. This study is the first to characterize brain development and aging in terms

of inter-network structural covariance across the lifespan.
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1 | INTRODUCTION

Brain development is marked by coordinated structural growth of

brain regions, which form what are referred to as structural covariance

networks (SCNs; Alexander-Bloch, Giedd, & Bullmore, 2013). In

healthy children and adults, the formation of SCNs is dependent on

the functional similarity, structural homology, and spatial proximity of

the contributing brain areas (Alexander-Bloch et al., 2013; Evans,

2013). While structural correlations are not direct reflections of func-

tional connectivity, or indeed structural connectivity (Alexander-Bloch

et al., 2013), SCNs have been proven to provide insight into brain

properties of typical and atypical aging, and to some extent corre-

spond with functional and structural connectivity (Gong et al., 2009;

Liao et al., 2013). It is consequently not surprising that SCNs parallel

known functional networks such as primary sensory, language, and

executive networks (Zielinski, Gennatas, Zhou, & Seeley, 2010), are
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markers for disease (Seeley, Crawford, Zhou, Miller, & Greicius, 2009),

and correlate with individual cognitive variability, including IQ and

degree of task expertise (Bermudez, Lerch, Evans, & Zatorre, 2009;

Lerch et al., 2006; Lv et al., 2008).

Studies have established a consistent set of individual SCNs

(e.g., the auditory SCN is comprised of structurally coordinated

regions associated with auditory functions) and probed their rela-

tion to subject characteristics (Alexander-Bloch, Raznahan, Bull-

more, & Giedd, 2013; Chen, He, Rosa-Neto, Gong, & Evans, 2011;

Guo et al., 2015; Montembeault et al., 2012; Zielinski et al., 2010).

However, fewer studies have examined how SCN trajectories cor-

relate with one another (e.g., inter-network covariance)—for exam-

ple, how auditory and visual networks volumetrically change

together over development. Importantly, inter-network structural

covariance may be a critical missing piece in the understanding of

brain development across the lifespan: functional neuroimaging

studies suggest that inter-network relationships provide unique

insight into typical aging (La et al., 2015), as well as the character-

istics of neurobiologically vulnerable populations (Chan, Park, Sava-

lia, Petersen, & Wig, 2014; Tost, Bilek, & Meyer-Lindenberg, 2012).

In this study, we used a big-data framework and novel application

of covariate-adjusted restricted cubic spline regression to character-

ize the inter-network volumetric covariance patterns of 13 known

SCNs across the lifespan in healthy populations (see Figure 1).

1.1 | Typical age trajectories of SCNs

Structural studies show that childhood and adolescence are marked

by organized regional development, the organization of which is

dependent both on functional groupings (e.g., lower- versus higher-

order cortices) and spatial proximity (Alexander-Bloch et al., 2013;

Gogtay et al., 2004; Zielinski et al., 2010). Over the course of

development into young adulthood, covariance patterns shift from

local to more distributed topologies, with increased communication

across networks with age (Fair et al., 2009; Zielinski et al., 2010).

The transition from adolescence to young adulthood additionally

includes global synaptic pruning processes that lead to the estab-

lishment of stable, young adult patterns of covariance (Arain et al.,

2013; Zielinski et al., 2010). The transition from young to middle

adulthood (~30–55) marks a “shrinking” of connections within

expected SCNs (i.e., intra-network connections) (Gong et al., 2009;

Li et al., 2013; Montembeault et al., 2012), and a broadening of

functional and structural interactions across networks (i.e., inter-

network connections; Chen et al., 2011). This pattern of desegrega-

tion, in which global communication across networks is preferred,

continues into late adulthood (Chen et al., 2011; Li et al., 2013;

Montembeault et al., 2012). For example, in the only study to date

that has examined any metric of structural inter-network relation-

ships, Chen et al. (2011) compared cortical thickness covariance in

older versus younger adults, and found age-related increases in the

preference for inter- versus intra-network covariance in older

adults. These results parallel functional MRI studies which have

found that aging corresponds with disruption within expected func-

tional networks within subjects, particularly associative networks

(Siman-Tov et al., 2016), and increased cross-talk between

networks—a pattern thought to reflect decreased neural efficiency

(Chan et al., 2014). Notably, while there are significant differences

in the specific characteristics of SCNs across the lifespan, a com-

parison of studies reveals core SCNs that are seen in populations

during early development, young adulthood, and older adulthood,

including primary sensory networks (auditory, visual, and sensori-

motor), frontal networks, and networks related to the default mode

network (DMN) (Chen et al., 2011; Geng et al., 2016; Li et al.,

2013; Zielinski et al., 2010).

Age-related structural differences can consequently be described

through measures of modularity. In the context of structural covari-

ance and brain growth patterns, regions (or networks) can be clus-

tered into groups of regions with similar growth patterns. Modularity

is the degree to which a region “prefers” its cluster relative to regions

outside of its cluster (Sporns & Betzel, 2016; see Supporting Informa-

tion Figure S1 for examples in the current pipeline). Importantly, the

formation of sub-groups along the continuum of modularity can either

reflect organized or disorganized groupings, in which healthy organiza-

tion preserves high modularity between functional, homotopic, and

spatially proximal groupings (Alexander-Bloch et al., 2013), though

many studies of brain modularity limit groupings to hypothesized

organization strategies. Disruption of organized modularity is associ-

ated with a number of neurodegenerative diseases (Hohenfeld, Wer-

ner, & Reetz, 2018), particularly Alzheimer's Disease (Brier et al.,

2014), as well as neural health in typical aging (Chan et al., 2014),

FIGURE 1 Analytical pipeline. Analysis included multi-atlas segmentation of n = 5,019 images and subsequent division into 13 networks of

interest, TICV-correction of gray matter volumes, growth curve fitting using a covariate-adjusted restricted cubic spline regression, and
hierarchical clustering analysis to identify inter-network correlations [Color figure can be viewed at wileyonlinelibrary.com]
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leading some to suggest that the metric of modularity, and its underly-

ing implication of global brain organization, is in fact a key predictive

and diagnostic biomarker of neurodegenerative diseases (Brier et al.,

2014; Hohenfeld et al., 2018), and brain health over aging more gen-

erally (Chan et al., 2014). Previous work suggests that brain organiza-

tion can be described through two primary metrics: (a) the parcellation

characteristics of network sub-groupings (e.g., whether networks that

are functionally or spatially related are correlated with each other),

and (b) the lateral coordination (LC) of homotopic brain areas

(e.g., how closely left and right hemisphere homologs correlate with

each other).

The current study aimed to identify lifespan patterns of inter-

network covariance in healthy populations along three primary dimen-

sions of efficient brain organization: modularity, parcellation, and

LC. From this conceptual framework, we hypothesized that inter-

network modularity would vary significantly across developmental age

groups (see Figure 2). Specifically, we anticipated that early life would

be marked by efficient network organization (as reflected by high

modularity with organized inter-network groupings), while later adult-

hood would show a shift to inefficient network organization

(as reflected by low modularity and disorganized inter-network group-

ings). While our examination was cross-sectional and, consequently,

does not directly reflect growth/decline processes within individuals

(see Sections 4 and 5), the present findings fill a critical gap between

previous studies that have been restricted to regional and whole brain

examinations of brain development. The current study provides a new

systems-level framework in which to examine changes in clinical and

nonclinical populations.

2 | METHODS

2.1 | Participants

Data included n = 5,019 (2,319 females; age range = 7–90 years)

healthy subjects with T1w 3D MR images from nine data sets (see

Table 1 and Figure 3). Only subjects that were marked as controls in

each dataset were used in the present project, with the exception of

children with a diagnosis of attention-deficit/hyperactivity disorder or

dyslexia. Subjects with autism, mild cognitive impairment, Alzheimer's

disease, or psychiatric diagnoses were excluded.

2.2 | Segmentation

A multi-atlas segmentation framework was used to automatically seg-

ment each T1-weighted image; 45 atlases were nonrigidly registered

(Avants et al., 2008) to a target image (i.e., the subject's T1 image) and

nonlocal spatial staple (NLSS) label fusion (Asman et al., 2014) was

used to fuse the labels from each atlas to the target image under the

FIGURE 2 Hypotheses and networks of interest (NOIs). (a) selected studies suggest that there are age-related differences in regional structural

covariance networks (SCNs), which the present study extended to inter-network hypotheses. Current studies of structural covariance are
restricted to either early (light gray) or later (dark gray) life examinations, and only one study that we are aware of (Chen et al., 2011) has
examined inter-network structural correlation patterns in any age group. (b) the current study examined 13 core SCNs (left and right of those
displayed here, with the exception of the cerebellum) that are seen in development, young adulthood, and later life (see Section 2 for full
description). See Table 2 for regions included in each network [Color figure can be viewed at wileyonlinelibrary.com]
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BrainCOLOR protocol (Klein et al., 2010) (Figure 1). NLSS label fusion

uses multiple atlases to “rate” what atlas label each voxel should

receive. NLSS improves upon previous multi-atlas segmentation tools

by taking into account known anatomical features that can weight

individual atlas ratings based on the atlas's alignment with the known

structures. Whole brain and regional volume were then calculated by

multiplying the volume of a single voxel by the number of voxels from

the fused labels in original image space. All segmentations underwent

automated and manual quality control (QC) protocols (see below).

Notably, multi-atlas segmentation is not sensitive to absolute intensity

(Huo, Aboud, Kang, Cutting, & Landman, 2016), and is consequently

robust to site-related intensity differences.

2.3 | Network definition

For each subject, the sum gray matter volume (GMV; mm3) was

extracted from voxels within the anatomical regions that fell within

13 previously identified basic SCNs (see Table 2 for anatomical

regions). The 13 SCNs examined in the present article have been

found to be stable in young adults, and have been previously identi-

fied based on data-driven approaches rather than seed selection (see

Figure 2; Guo et al., 2015). Similar networks have been observed in

(a) early in development (Geng et al., 2016) and (b) in healthy aging

(Chen et al., 2011; Li et al., 2013). Networks included: bilateral visual,

bilateral auditory, bilateral sensorimotor, cerebellum (CB), bilateral

anterior cingulate, bilateral anterior DMN, and bilateral posterior

DMN (see Table 2 for regions included in each network). Intra-

network relationships for the 13 networks have already been well

described (see Chen et al., 2011; Geng et al., 2016; Guo et al., 2015;

Li et al., 2013), and in order to reduce data dimensionality and isolate

the relationships between these specific networks across different

ages, intra-network relationships were not considered for the present

article. However, as intra-network relationships likely interact with

inter-network relationships differentially across the lifespan, charac-

terization of this interaction is an important complimentary question

that should be examined by future studies (please see Section 5). Total

intracranial volume (TICV) was estimated by SIENAX (Smith, et al.,

2001, 2002), part of FSL (Smith et al., 2004), and used to account for

overall brain size. TICV has been widely used as a covariate in brain

volumetric analyses to control the inter-subject variations in overall

brain size (Barnes et al., 2010; Farias et al., 2012; Peelle et al., 2012;

Westman et al., 2013; Whitwell et al., 2001).

2.4 | Quality control

All images underwent a rigorous three-part QC protocol. First, images

underwent an automated QC check, and images were marked as

questionable if their regional volume fell outside of 2.5 standard devi-

ations from the overall population. In parallel, all image segmentations

were manually inspected by a trained observer. If images were marked

as questionable by either the automated or manual QC pipelines, they

were inspected by a second trained observer. If segmentations did not

pass QC, the image was excluded from analysis. Final inclusion deter-

minations were made based on discussion.

2.5 | Covariate-adjusted restricted cubic spline

For each network, cross-sectional growth curves were generated for

different developmental age ranges (see below) using covariate-

TABLE 1 Subject demographics per age group per site

Site Mean age 7–12 12–19 19–30 30–55 55–75 75–90 Site total

ABIDE 17.2 � 7.7 145 (28) 248 (49) 126 (17) 42 (4) 1 (0) – 562 (98)

ADHD-200 11.6 � 3.3 535 (216) 381 (131) 33 (19) – – – 949 (366)

BLSA 67.8 � 12.4 – – 1 (0) 89 (47) 318 (195) 190 (85) 598 (327)

Cutting 12.6 � 5.0 348 (181) 136 (51) 88 (53) 3 (1) – – 575 (286)

Fcon-1,000 28.4 � 13.7 8 (2) 62 (27) 757 (443) 187 (82) 77 (42) 11 (8) 1,102 (604)

IXI 48.8 � 16.4 – – 85 (50) 217 (109) 201 (126) 20 (11) 523 (296)

NDAR 12.2 � 3.28 139 (69) 122 (62) 5 (2) – – – 266 (133)

NKI Rockland 35.3 � 21.0 11 (7) 25 (11) 34 (15) 45 (17) 16 (10) 9 (0) 140 (60)

OASIS 44.0 � 23.0 – 8 (5) 127 (71) 64 (38) 67 (28) 38 (7) 304 (149)

Age total 29.3 � 22.3 1,186 (503) 982 (336) 1,256 (670) 647 (298) 680 (401) 268 (111) 5,019 (2319)

Parentheses contain number of females.

FIGURE 3 Subjects per age group per site. Final subject inclusion

numbers after quality control steps show that each age bin was
represented by multiple sites, and each site was represented across
multiple age bins. See Table 1 for specific number of images per age
per site [Color figure can be viewed at wileyonlinelibrary.com]
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adjusted restricted cubic spline (C-RCS) regression (for full description

of method see Huo et al., 2016). Briefly, in RCS regression, cubic

splines are used to model nonlinear relationships between variables x

and y by deciding the connections between K knots. Here, knots were

defined at four equally spaced percentiles per age bin, which is an

appropriate number of control points for moderate to large sample

sizes (Harrell, 2015). Additionally, a linear constraint is introduced to

address the poor behavior of the cubic spline model in the tails, ensur-

ing that the fit is not influenced by edge effects (Harrell, 2015). Using

the same principle, C-RCS regression extends the RCS regression by

allowing traditional covariates and interaction effects consistent with

the general linear model approach. The model of gray matter volume

over age consequently included TICV-corrected network volume as

the dependent variable, and age, sex, and field strength as the inde-

pendent variables (see Supporting Information Table S1 C-RCS for

curve metrics). Model comparisons between the C-RCS model and an

intercept-only model show variable significance with age-dependent

differences, likely due to increased inter-subject variability in older

age groups (see Supporting Information Table S2 and Section 4). The

covariate-adjusted restricted cubic spline was chosen because (a) it is

a flexible fitting method that can represent a range of fits from linear

to cubic and is consequently uniquely suited for brain volume data,

which has notable variability in linearity across structures and devel-

opmental periods (as discussed in Hedman, van Haren, Schnack, Kahn,

and Hulshoff Pol (2012) and Sowell et al. (2003)), (b) the use of the

same model allows for cross-age comparisons, and (c) the use of the

model allows us to account for known error in the data (i.e., field

strength and sex), that is not appropriately accounted for in an

intercept-only model. Notably, these benefits are not reflected in F-

statistic model comparisons. Thus, while the C-RCS may not signifi-

cantly out-perform the null in certain networks at certain ages, a priori

knowledge strongly suggests it is the appropriate model fit for cross-

age comparisons. The primary concern of splines, that is, overfitting, is

addressed by the large number of subjects within each age bin (please

see Table 1).

In order to examine nonlinear differences across populations,

separate models were run for each developmental age group (also

accounting for sex and field strength). Modeling independent curves

for each age bin allowed for the independence assumption to be

met in the Wilcoxon rank sum comparison (described below), and

also acknowledged the cross-sectional nature of the data. For each

volumetric trajectory, the 95% CI was derived by deploying C-RCS

regression on 1,000 bootstrap samples (see Supporting Information

Table S1 for average upper and lower CI values). The primary inter-

est of the present study was to identify correlations between net-

work growth curves (i.e., the model fits of each network).

Consequently, within each age bin, pairwise correlations between

each network's C-RCS curve was determined, and hierarchical clus-

tering was performed to determine groups of networks that were

most closely correlated. The Silhouette clustering algorithm was

used to identify clusters of networks with the highest correlation

(Rousseeuw, 1987). The Silhouette algorithm identifies clusters with

maximum tightness within the cluster, and maximum separation

from other clusters. Specifically, the Silhouette algorithm iteratively

tests different partitions of a dendrogram and identifies the most

efficient partition. For instance, for an assumed k = 3 clusters, the

average distance between a single node (e.g., network) and all other

nodes in the same cluster is calculated (this is a measure of cohe-

sion, A). Then the average distance between the node and all points

in the nearest cluster is calculated (this is a measure of separation

from the closest other cluster, B). The Silhouette coefficient for a

single node is then defined as the differences between B and A,

divided by the max (A, B). This calculation is repeated for multiple k

values, and the value with the highest silhouette coefficient is

chosen.

2.6 | Modularity and organization metrics

The current literature on SCNs suggests that the relationship between

modularity and organization may reflect critical age-dependent

changes in gray matter. In the current article, modularity is defined as

the degree to which networks form preferred sub-groupings of similar

growth curve profiles. Specifically, for each age group, mean within-

cluster distance values and mean between-cluster distance values

were derived per network. The ratio of between: within distance was

then calculated and scaled from 0 to 1, with a higher between : within

distance ratio equal to higher modularity. Median network modularity

was then compared across age groups using Wilcoxon rank sum tests.

In one instance, the CB did not cluster with other networks

TABLE 2 Regions included in 13 a priori networks

Network name Regions

Visual Calcarine cortex

Lingual gyrus

Middle occipital gyrus

Auditory Posterior insula

Parietal operculum

Superior temporal gyrus

Transverse temporal gyrus

Sensorimotor Postcentral gyrus (medial)

Precentral gyrus (medial)

Postcentral gyrus (lateral)

Precentral gyrus (lateral)

Supplementary motor cortex

Cerebellum Cerebellum exterior

Vermis

Anterior cingulate Anterior cingulate cortex

Anterior default mode network Frontal pole

Medial frontal cortex

Medial frontal gyrus

Superior frontal gyrus (medial)

Superior frontal gyrus (lateral)

Posterior default mode network Angular gyrus

Posterior cingulate

Superior parietal lobule

Hippocampus

Entorhinal area

Regions defined from typical structural covariance networks identified as
consistent in Guo et al. (2015).
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(in 7–12 year olds), and this network's modularity value was excluded

from the analysis.1 The formation of sub-groups along the continuum

of modularity can either reflect organized or disorganized structural

processes. One critical dimension of neural organization and health is

the preservation of synchronization across homotopic brain regions

(e.g., lateral coordination; LC; Luo et al., 2015; Shen et al., 2015; Tang

et al., 2016; Wang et al., 2015). In this study, LC was defined as the

median homotopic network correlations, normalized by the median

inter-network correlations, with higher values signifying higher

LC. Values were additional scaled by the maximum LC across age

groups (e.g., values adjusted to 0–1 relative scale). Parcellation pat-

terns of networks into sub-groups is another dimension of whether

modularity is organized or disorganized. As stated above, parcellations

were defined using the Silhouette clustering algorithm, which iden-

tifies clusters independently from the mean inter-network modularity.

2.7 | Age bins

Age groups (and knots for lifetime curves) were determined based on

previously identified developmental shifts, specifically corresponding

with transitions between childhood (7–12), late adolescence (12–19),

young adulthood (19–30), middle adulthood (30–55), older adulthood

(55–75), and late life (75–90; age bins are inclusive of youngest age).

These age distinctions have been found to map onto developmental

shifts in brain growth trajectories. Whole brain volume increases dur-

ing childhood until early adolescents (~12 years old), followed by a

steady decrease in whole brain volume until young adulthood

(~18 years old); young adulthood (18 to ~30) is characterized by rela-

tive stability in brain volume, and a potential secondary wave of

growth (Hedman et al., 2012). In the fourth decade, there is a peak in

adult brain growth and white matter integrity (with some regional var-

iabilty; Hedman et al., 2012; Westlye et al., 2010b), followed by accel-

erating decline into older adulthood. Older adults (~60) demonstrate a

steady decline in brain volume, as well as a reduction in structural

covariance across brain regions (Alexander-Bloch et al., 2013; Hed-

man et al., 2012), and this decline continues into later life

(e.g., middle-old and oldest-old age groups: ~75 and older) (Resnick,

Pham, Kraut, Zonderman, & Davatzikos, 2003). In the current study,

we extended the older adult window to include 55–75, due to find-

ings that suggest certain cortical regions show a slightly earlier trajec-

tory shift (Sowell, Thompson, & Toga, 2004; Westlye et al., 2010a).

3 | RESULTS

Wilcoxon rank sum tests revealed significant differences in median

modularity at key points across the lifespan (see Table 3 and Figure 4).

This included significant modularity differences between childhood

and adolescence (z = 3.0732; p = .0021); young and middle adulthood

(z = 2.9744; p = .0029); and older adulthood and late life

(z = −2.6154; p = .0089). Childhood was marked by the highest

median modularity across networks, and middle adulthood marked by

the lowest median modularity. Shifts in modularity were further

characterized by the degree of lateral coordination (LC; see Table 3

and Figure 4) and parcellation patterns (see Figure 5). For a full list of

curve metrics see Supporting Information Table S1.

Childhood (7–11.9 years): In childhood, median inter-network

modularity was the highest across the lifespan, and significantly higher

than adolescents. Networks were organized into functionally and

structurally grouped parcellations, with high preservation of structural

relationships across homotopic networks (e.g., high LC). All networks

demonstrated decline across the age range, though the rate and shape

of this decline differed across network clusters:

• Cluster 1 was a DMN and sensorimotor cluster (including bilateral

sensorimotor, bilateral anterior, and posterior DMN, and right

visual networks). Networks showed a steep, nonlinear declined

across the entire age range, and this decline attenuated at

~9.5 years.

• Cluster 2 was a bilateral ACC cluster, which remained relatively

stable across the age group.

• Cluster 3 was a sensory cluster (including bilateral auditory and

left visual networks), which showed accelerating decline across

the age range.

• Cluster 4 consisted of the CB, which increased in volume until ~

8.7 years, then declined for the remainder of the age range.

Adolescence (12–18.9 years): Adolescence was marked by low

modularity, as well as an increase in LC from childhood. This pattern

was driven by homogenous decline (potentially due to pruning mecha-

nisms; see Section 4) across all networks. Average network decline

was the greatest across the lifespan (mean network GMV decline =

~40% lifetime decline), and, consistent with previous regional studies

(Hedman et al., 2012) the range and shape of decline differed primar-

ily across frontal versus nonfrontal structures:

• Cluster 1 consisted primarily of nonfrontal structures (bilateral

visual, bilateral auditory, posterior DMN), and right ACC. These

networks demonstrated linear decline across the age range.

• Cluster 2 consisted primarily of frontal structures and the spa-

tially proximal sensory parietal strip (bilateral sensorimotor,

bilateral anterior DMN, left ACC), and CB. These networks

showed nonlinear decline, including attenuation from ~13.5 to

15.5 years.

TABLE 3 Modularity and lateral coordination measures per age bin

Age Modularity LC (median) LC scaled

x p value z value

7–12 0.40 – – 3.83 0.62

12–19 0.13 .00 3.07 5.82 0.94

19–30 0.13 .31 −1.03 6.16 1.00

30–55 0.05 .00 2.97 1.57 0.25

55–75 0.09 .15 −1.44 2.75 0.45

75–90 0.20 .01 −2.62 1.12 0.18

Significance determined from Wilcoxin rank sum tests comparing the
medians of adjacent age groups. LC scores reported as median value
across networks and LC value scaled to maximum LC across age groups.

1Inclusion of the CB with a modularity value of 0 did not change the signifi-

cance of the age group comparisons.
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Young adulthood (19–29.9 years): The adolescent pattern of low

modularity and high LC continued into young adulthood, with notable

uniformity among network growth curves, including the highest LC

across the lifespan. Networks exhibited early increases until around

21 years (as seen in whole brain studies; see Hedman et al., 2012 for

overview), followed by decreases until 30. Networks were differenti-

ated by the rate and vertex of decline:

• Cluster 1 consisted of bilateral ACC, which demonstrated a rela-

tively stable trajectory across the age range, with a slight increase

until 21 years, followed by decline.

• Cluster 2 consisted of the majority of networks (including bilateral

auditory and sensorimotor networks, bilateral anterior and posterior

DMN, and the left visual network), which showed steep increases

in volume until ~21 years, followed by linear decline through 30;

• Cluster 3 included the right visual network and CB, which showed

increases in volume until ~22 years, followed by decline through 30.

Middle adulthood (30–54.9 years): Middle adulthood was marked

by a significant reduction in modularity, as well as a general reduction

in inter-network correlations and LC. While the curve variability was

significantly higher across all networks in middle adulthood compared

to earlier age groups, growth curves generally fell within two cluster-

ing patterns:

• Cluster 1 included bilateral auditory, bilateral ACC, CB networks,

as well as bilateral anterior DMN and right posterior DMN. These

networks demonstrated largely nonlinear decreases over the age

range, with several (CB, bilateral anterior DMN, right posterior

DMN, left ACC) showing attenuation between ~38 and 45 years,

before continued decline to 55 years.

• Cluster 2 consisted of bilateral visual and sensorimotor networks

and left posterior DMN, which showed decreases until ~38 years,

followed by attenuation or increases until 55.

Notably, middle adulthood marked the first segregation of net-

works related to the DMN in adulthood (e.g., left posterior DMN sep-

arated from anterior DMN and right posterior DMN), as well as

general separation of frontal-visual and frontal-parietal networks.

Older adulthood (55–74.9 years): Older adulthood exhibited a

continuation of low inter-network modularity, and was additionally

marked by low LC. Parcellations did not clearly reflect functional or

structural groupings. Growth curves were characterized by consider-

able heterogeneity, which could be indicative of increased inter-

individual variability (see Section 4). Within the context of this high

curve variability, networks could generally be described by one of four

growth curve patterns:

• Cluster 1 included anterior DMN and CB, which all decreased

until ~65 years, followed by increases until 75 years.

• Cluster 2 included bilateral auditory and ACC networks, which

showed relative stability across the age range, with each demon-

strating decreases between ~58 and 70 years.

• Cluster 3 included the right visual network and bilateral posterior

DMN. These networks each showed increases from ~60 to

70 years, followed by decline.

• Cluster 4 included left visual and bilateral sensorimotor networks,

which all exhibited decreases until 62 years, attenuation/increase

until 68 years, then decrease until 75 years.

Similar to middle adulthood, older adulthood reflected segrega-

tion of the DMN (e.g., anterior versus posterior DMN), as well as

FIGURE 4 Network covariance trajectories across the lifespannetwork covariance trajectories across the lifespan. (a) De-meaned GMV growth

curves per age bin for 13 networks. The network color legend is as follows: left visual (dark blue), right visual (cyan), left auditory (dark green),
right auditory (light green), left sensorimotor (dark purple), right sensorimotor (light purple), cerebellum (black), left anterior cingulate (dark yellow),
¬¬right anterior cingulate (light yellow), left anterior default mode network (DMN; red), right anterior DMN (pink), left posterior DMN (orange),
right posterior DMN (dark orange). (b) Box plots of inter-network modularity metrics per age bin. Box color represents the age bin's lateral
coordination (LC) measure (scaled to group maximum). Significant differences in modularity were seen between children and adolescence; young
and middle adults; and older adults and later life adults (indicated by asterisk [*]). See Table 3 for modularity and LC metrics, and Supporting
Information Table S1 for growth curve values [Color figure can be viewed at wileyonlinelibrary.com]
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separation of frontal-visual and frontal-parietal networks, as first seen

in middle adulthood.

Late life (75–90 years): Late life networks showed significantly

higher modularity than older adulthood, reflecting less clusters than

other adult age groups due to unified decline across the majority of

networks. Unlike the other age range with high modularity (childhood),

underlying inter-network coupling patterns in late life demonstrated

the lowest LC of the lifespan, suggesting underlying network disorgani-

zation in the decline. Each cluster showed unique growth trajectories:

• Cluster 1 included bilateral ACC, which showed relative stability

across the age range.

• Cluster 2 included all other networks, which demonstrated a

decreases across the age range. The point of shifting from stability

to decrease, and the rate of decrease, varied by network.

4 | DISCUSSION

Structural covariance of brain networks provides insight into the typi-

cal and pathological brain (Alexander-Bloch et al., 2013; Evans, 2013),

and allows for global markers of development and aging. The current

study used a big-data framework and novel fitting approach to exam-

ine, for the first time, characteristics of inter-network structural

covariance across the lifespan in typically developing and aging popu-

lations. We found that development and aging are characterized by

key changes in volumetric inter-network relationships. Specifically,

the degree to which network growth preferentially corresponded with

other networks' growth, that is, modularity, significantly shifted at key

developmental stages. Modularity changes were additionally charac-

terized by unique, age-related parcellation patterns and the degree of

homotopic coordination (LC), ultimately reflecting age-related alter-

ations in inter-network organizational efficiency. In particular, child-

hood was the period of highest efficiency, while middle adulthood

marked a drastic shift to decreased efficiency that continued through

older adulthood.

Previous developmental studies of regional covariance suggest

that brain organization shifts from localized topologies in childhood to

more distributed topologies in young adulthood (Fair et al., 2009). And

indeed, the findings in the current study demonstrate that this shift

can additionally be seen at the level of inter-network relationships.

Childhood showed preferred groupings between both spatially related

FIGURE 5 Network clustering patterns across the lifespannetwork hierarchical clustering patterns across the lifespan. Dendrograms demonstrate

different hierarchical clustering patterns of network trajectories per age group. Clusters were identified through the Silhouette algorithm and are
represented by different colors [Color figure can be viewed at wileyonlinelibrary.com]
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networks (e.g., anterior DMN and sensorimotor networks) and func-

tionally related networks (e.g., anterior and posterior DMN), with a

notable segregation between higher-level versus primary sensory net-

works (as seen in regional studies) (Khundrakpam et al., 2012). The

high inter-network correlation values within certain clusters could sig-

nify a unique age-related network configuration, for example, the cor-

relation between anterior and posterior nodes of the DMN could

indicate that the DMN is a single structural unit in this younger age

group instead of being segregated, as seen in older age groups (see

below). These findings mark childhood as having higher inter-network

“preference” within segregated clusters. This is as opposed to the sig-

nificant shift to lower (but still organized) modularity in adolescence

and young adulthood, marking more distributed growth relationships

across all networks.

The shift from childhood to adolescence is marked by a significant

transition into the most highly unified trajectories across the lifespan

(e.g., high LC). Adolescent networks showed the greatest decline of

the lifespan, and frontal decline was distinctly less linear than primary

sensory networks and posterior associative structures in the DMN

(Sowell et al., 2003). Because all networks were closely correlated in

their decline, modularity for the age range was significantly lower than

that seen in childhood, indicating that inter-network preferences were

overwhelmed by homogenous, global brain processes. These findings

are consistent with previous results that adolescence is marked by

global, controlled synaptic pruning processes (Arain et al., 2013),

which support reorganization of the brain into organized adult net-

work patterns (Zielinski et al., 2010). And indeed, young adulthood

saw a continuation of homogenous, organized growth across net-

works, with networks demonstrating a unified surge of growth from

19 to 21 followed by decline (Hedman et al., 2012).

As opposed to early life, patterns of volumetric decline in middle

adulthood were marked by a significant reduction of inter-network

modularity—a trend continued into older adulthood. The low modular-

ity in both middle and older adulthood was marked by low LC, and dis-

organized network clustering patterns. Cluster disorganization

included segregation of (a) networks related to the default mode, and

(b) frontal networks from occipital and parietal networks. Additionally,

during middle and older adulthood, the coordination between left and

right frontal networks (e.g., anterior DMN, ACC, and sensorimotor)

was maintained, while homotopic coordination of posterior structures

was not (e.g., visual and posterior DMN). These findings are consistent

with previous work showing decreased DMN integrity within aging

(Andrews-Hanna et al., 2007; Siman-Tov et al., 2016), and increased

isolation of frontal from other structures without reduced integrity of

homotopic frontal communication (Chen et al., 2011). More generally,

these results for middle and older adulthood add to functional evi-

dence that aging is marked by desegregation—that is, a decrease in

specific network coupling and an increase in inter-network communi-

cation (Chan et al., 2014; Chen et al., 2011; Siman-Tov et al., 2016).

These findings extend results in functional MRI studies on aging,

which suggest that the shift from intra- to inter-network communica-

tion reflects despecialization of function within brain areas and a

resulting compensatory inter-network “cross-talk” to support regions

with degraded functions (Brier et al., 2014; Chan et al., 2014). Specifi-

cally, patterns of desegregation, as measured by functional differences

in modularity, show negative associations with memory in aging (Chan

et al., 2014), and for some networks, have also been suggested to be

potential biomarkers for neurodegenerative diseases (Hohenfeld et al.,

2018). Future studies should use the present framework to examine

patterns of inter-network modularity in clinical populations (see

Section 5).

An additional dimension of the overall disorganization in middle

and older adulthood is high curve variability, which likely reflects, in

part, greater inter-subject variability across time points. In this con-

text, our results are consistent with a long history of both longitudinal

and cross-sectional cognitive literature that suggest older age groups

are the most heterogeneous populations across the lifespan, with

increased within- and between-subject variability (Hultsch et al.,

2002; Nelson et al., 1992). Though the influence of inter-subject vari-

ability is certainly a limitation of cross-sectional observations (see

Section 5), increased variability also reflects important changes in the

population norm of these age groups. As opposed to early and late

life, in which biological imperatives of growth and decline overwhelm

inter-individual differences (e.g., as reflected by our findings of global

volumetric decline with minimal preservation of homotopic or func-

tional connections) (Fotenos, Mintun, Snyder, Morris, & Buckner,

2008; Lemaitre et al., 2012; Resnick et al., 2003; Westlye et al.,

2010a) our results suggest that middle and older adulthood are devel-

opmental periods in which subpopulation differences could be most

influential, even within typical cohorts without cognitive impairment.

Our findings consequently point to specific, age-related patterns

of inter-network modularity and organization across the lifespan that

likely reflect both individual and population-level characteristics: the

organization of childhood network growth could be seen to reflect

both expected individual growth patterns as well as relative homoge-

neity at the population-level, as compared to later life in which the

disorganization seen in middle and older adulthood may reflect both

individual and population variability (see Section 5).

5 | LIMITATIONS AND FUTURE
DIRECTIONS

The current study has several limitations. In order to take advantage

of the big-data framework across the entire lifespan, specific site was

not included as a regressor. Controlling for study-related variance is a

key difficulty in big-data approaches (as discussed in Coupé, Cathe-

line, Lanuza, & Manjón, 2017). Because study correlates with age,

controlling for study would reduce the age effect. Additionally, con-

trolling for study reduces statistical power, effectively diminishing the

gain of combining studies to look at an unprecedented number of

images. However, we have taken the following steps to minimize

study effects on the present findings: (a) we used a segmentation

algorithm that is robust to study-related intensity differences (b) we

controlled for magnet strength, which is a primary contributor of

study-related differences in T1 images (Han et al., 2006), (c) we per-

formed manual and automated QC pipelines to ensure appropriate

segmentation of all images, (d) we ensured that each age bin is repre-

sented by a minimum of five studies, and (e) we ensured that each

study contributes to a minimum of three age bins. These steps are
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comparable to other big-data studies facing a similar problem (Coupé

et al., 2017). Notably, previous studies have found that the impact of

scanner manufacturer, magnet strength, and their interaction on gray

matter volume measurements is limited in big-data environments,

with the majority of variance explained by TICV, age, and sex (Potvin,

Dieumegarde, & Duchesne, 2017; Potvin, Mouiha, Dieumegarde, &

Duchesne, 2016). Second, the current study is a cross-sectional design

rather than longitudinal. Future longitudinal studies are needed to dis-

tinguish individual versus population patterns. Last, due to (a) the

cross-sectional nature of the data and (b) the need for independent

growth curves to meet assumption criteria in the statistical compari-

sons across age groups, the current study modeled growth curves

independently for each age bin. This results in noncontinuous curves

at the age bin edges (please see Supporting Information Figure S2),

and potential model fit differences based on differing age bin widths.

To minimize curve edge-effects, this study employed a restricted

cubic spline model, however in the ideal data scenario

(i.e., longitudinal data), brain growth would be treated continuously

across the lifespan.

This study is the first to comprehensively identify inter-network

covariance patterns across the lifespan. Future studies should extend

the current approach to measures of cortical thickness and surface

area, and use the presented metrics to examine neurobiologically vul-

nerable populations, such as those from low socioeconomic back-

grounds and those at risk for neurodegenerative disease. While the

current study aimed to quantitatively compare inter-network interac-

tions across networks known to be replicable within and across age

groups, future studies should (a) employ complimentary data-driven

approaches to replicate and extend the present findings, and

(b) examine interactions between intra- and inter-network relation-

ships using a region- rather than network-based parcellation. Addi-

tional longitudinal studies are also needed to specifically identify

individual- versus population-based trajectories. Through our novel

examination of structural network coordination, the current study

pushes toward a connectomics viewpoint of aging and development,

and sets the groundwork for identifying age-sensitive, system-level

biomarkers for disease states across the lifespan.
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