
Glaucoma is currently the second leading cause of blind-
ness in the United States, and affects millions worldwide. 
In 2010, approximately 2.22 million people were affected 
by open-angle glaucoma (OAG) in the United States, and 
more than 70 million people worldwide had glaucoma [1-4]. 
Glaucoma is a genetically heterogenous group of eye diseases 
that results in optic nerve damage and retinal ganglion cell 
(RGC) loss usually associated with elevated intraocular 
pressure (IOP) and vision loss. Unfortunately, most cases of 
glaucoma are asymptomatic until after sight is lost [5]. Glau-
coma damage is irreversible, and therapeutic interventions 
are effective only at early stages of the disease.

Pigmentary glaucoma (PG), a form of secondary open-
angle glaucoma, is the second most common form of glau-
coma in young adults. In this disease, pigment sloughs off 
the posterior iris and damages the drainage structure of the 

eye, which, in turn, attenuates or blocks the flow of aqueous 
humor [6]. In most cases, the resultant IOP increase leads to 
glaucoma, yet in some cases, the increase does not, indicating 
that additional factors, including environment, age, and 
genetics, may influence disease progression [7]. The exact 
pathogenesis of glaucoma is not fully understood. However, 
RGC damage, oxidative stress, ischemia and hypoxia, 
abnormal immunity and inflammatory reactions, and apop-
tosis have all been found to play a part in the progression of 
glaucoma [8-13].

The glycoprotein neuromedin B-associated (Gpnmb; 
Gene ID: 93695, OMIM: 604368) gene is a gene that is known 
to affect pigmentary glaucoma. Gpnmb is associated with 
iris pigment dispersion (IPD), which is the breakdown of the 
posterior iris pigment epithelium [6]. Mutations in Gpnmb 
and tyrosinase-related protein 1 (Tyrp1; Gene ID: 22178, 
OMIM: 115501) have been found to contribute to IPD and 
iris stromal atrophy (ISA) in DBA/2J (D2) mice [14]. D2 mice 
are homozygous for mutations in Gpnmb and Tyrp1, and have 
a higher chance of developing pigmentary glaucoma (PG) 
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Purpose: Glaucoma is characterized by optic nerve damage and retinal ganglion cell loss. The glycoprotein neuromedin 
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[15-17]. The eyes of D2 mice have no obvious abnormalities 
before 3 months of age. However, by 6 months, most D2 
mice begin to develop iris depigmentation, increased IOP, 
and damage to the optic nerve head (ONH) [18]. Because 
the progression of glaucoma in D2 mice is similar to that of 
humans, this strain has been used as a mouse model to study 
pigment dispersion syndrome (PDS) and PG [18]. Using these 
mice, Gpnmb has been found to interact with a large network 
of genes to affect the presentation of glaucoma [19]. Despite 
these findings, the direct downstream pathway through which 
Gpnmb contributes to glaucoma remains unknown.

The purpose of this investigation is to identify genes and 
pathways through which Gpnmb works to affect the glaucoma 
phenotype, using a systems genetics method and BXD mouse 
genetic reference population (GRP), one parental strain of 
which is D2 mouse. After expression quantitative trait 
locus (eQTL) mapping and genetic correlation analysis, we 
identified stanniocalcin 1 (Stc1) as a downstream candidate 
gene of Gpnmb with high variable expression among the 
BXD mice. The two parental strains of BXD GRP, D2 and 
B6 mice, express Gpnmb and Stc1 statistically significantly 
differently, which provides us with an opportunity to study 
expression variance of Gpnmb and Stc1 among the BXD 
population. Using retinal gene expression data of BXD mice, 
we identified a genetic network involving Gpnmb and Stc1, 
and explored pathways through which the two genes interact 
to affect the glaucoma-related phenotypes.

METHODS

Gene expression database access: GeneNetwork website is a 
public web source that houses phenotype and transcriptome 
data from various tissues of BXD RI mice, including the 
eye and the retina. The gene expression data used in this 
study can be accessed using the data set “Full HEI Retina 
Illumina V6.2 (Apr10) RankInv” that we generated through 
collaborative effort for a glaucoma study [20]. This data set 
uses data from 75 BXD strains, their parental strains B6 
and D2, and both reciprocal F1 hybrids between B6 and D2. 
Almost all mice were young adults of 60 to 90 days of age. All 
animals were housed with free access to standard laboratory 
chow and water, maintained on a 12 h:12 h light-dark cycle, 
and were killed via rapid cervical dislocation as described 
previously [21]. This study adheres to the ARVO Statement 
for Use of Animals in Research. All experimental protocols 
were approved by the Institutional Animal Care and Use 
Committee (IACUC) at the University of Tennessee Health 
Science Center (Memphis, TN). More detailed information on 
this data set, including individual mouse, tissue harvest, RNA 

extraction, microarray hybridization, data normalization, etc., 
can be found at GeneNetwork267.

Heritability calculations: The heritability of Gpnmb and 
Stc1 expression was calculated using broad sense heritability 
that compares the genetic variation between strains to the 
environmental variance within strains [22]. The formula used 
for heritability calculation is 0.5Vg / (0.5Vg + Ve), where 
Vg is genetic variance (variances of strain means), and Ve 
is environmental variance. The 0.5 factor in this ratio was 
applied to adjust for the twofold increase of additive genetic 
variance among inbred strains relative to outbred populations 
[23].

Expression QTL mapping: Expression QTL (eQTL) 
mapping was performed using the WebQTL module on our 
GeneNetwork website with our published methods [21,24,25]. 
Regression analysis was used to determine the relation 
between differences in an expressed trait and differences in 
alleles at markers across the genome. Simple interval mapping 
identified potential eQTLs that regulate Gpnmb and Stc1 
expression levels and estimated the statistical significance 
at each location using known genotype data for those sites. 
Composite interval mapping was also performed to control for 
genetic variance associated with major eQTLs, and therefore, 
identify any secondary eQTLs that may have been otherwise 
masked. Each analysis produced a likelihood ratio statistic 
(LRS) score, providing a quantitative measure of confidence 
of linkage between the observed phenotype—in this case, 
variation in the expression levels of Gpnmb and Stc1—and 
known genetic markers. The genome-wide significance for 
each eQTL was established using a permutation test that 
compared the LRS of our novel site with the LRS values for 
1,000–10,000 genetic permutations [26].

Downstream gene analysis: Downstream genes, or genes 
whose expressions are affected by differential expression 
of Gpnmb, were identified using multiple criteria. First, 
the expression of the candidate downstream gene should be 
significantly correlated with the expression of Gpnmb by 
evaluation in both retina and other tissues. The candidate 
gene should also have an expression level greater than 8 units 
in retina tissue. The candidate gene should have a significant 
trans-eQTL at the Gpnmb locus, located in the 10 Mb interval 
between 44 Mb and 54 Mb of Chromosome (Chr) 6 where 
the Gpnmb gene is located. The gene expression should be 
represented by probes that hybridize in exons or 3’-UTR 
region. The expression of the candidate gene should be highly 
correlated with eye related phenotypes. Finally, published 
literature must support the gene’s biological function in the 
retina or eye.

http://www.molvis.org/molvis/v25/222
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Gene expression correlation analysis: Genetic correlation 
analysis was performed by computing Pearson product-
moment correlations of the strain means between the 
expression of Gpnmb and the expression of all other 
transcripts across the mouse genome to produce a set of 
genetically correlated genes. Genes with an expression level 
greater than eight and a statistically significant correlation 
with Gpnmb (p<0.05) were selected for further analysis. 
Tissue correlation is an estimate of the similarity of expression 
of two genes across different tissues or organs from a single 
individual, which eliminates any genetic or environmental 
effect on the gene expression difference, and helps to find a 
true biologic connection between any pair of genes. Tissue 
correlation was performed by computing Spearman rank-
order correlations between the expression of Gpnmb and its 
downstream candidates across 20 more multiple different 
tissues. Literature correlation was performed by examining 
the correlation coefficient (r) value of genes already described 
using similar terminology in published papers. The Semantic 
Gene Organizer was used to perform literature correlation, 
thus further filtering for a biologic correlation between 
Gpnmb and other genes based on literature reports [27]. 
Genes with r >0.5 were considered to have a high literature 
correlation. Riken clones, intergenic sequences, predicted 
genes, and probes not associated with functional mouse 
genes were eliminated to create a list of genes statistically 
significantly correlated with Gpnmb. Later, this process was 
used with the identified Gpnmb downstream gene Stc1 to 
calculate its highly correlated genes. These computations 
were all performed using tools on GeneNetwork.

Phenotype correlation analysis: The GeneNetwork website 
contains extensive phenotypic data sets ranging from 
behavioral to morphological to pharmacological. We queried 
the BXD published phenotypes database in GeneNetwork for 
eye-related traits, and focused the analysis on the traits that 
were statistically significantly correlated with Gpnmb and 
Stc1 expression in the retina (p<0.05). Then, we conducted 
20,000 permutation tests as a more random and accurate 
measure of significance, and all traits that were no longer 
statistically significantly correlated after the permutation 
tests were eliminated.

Gene set enrichment analysis: To investigate Stc1 function 
and gene pathways through which Stc1 might play a 
role in retinal-related diseases, the top 500 genes with 
statistically significant genetic correlations (p<0.01) and 
literature correlations (r >0.58) with Stc1 were uploaded 
to the Webgestalt website for Gene Ontology (GO) and 
pathway analysis [28]. The p values generated from the 

hypergeometric test were automatically adjusted to account 
for multiple comparisons using the Benjamini and Hochberg 
correction [29]. The categories with an adjusted p value (adj 
P) of less than 0.05 indicated that the set of submitted genes 
were statistically significantly over-represented in those 
categories.

Gene network construction: The gene network was 
constructed and visualized using the Cytoscape utility 
through the Gene-set Cohesion Analysis Tool (GCAT). 
Nodes in the network represent genes, and edges between two 
nodes represent the cosine score of latent semantic indexing 
(LSI) that determines whether the functional coherence 
of the gene sets is larger than 0.6. The significance of the 
functional cohesion is evaluated by the observed number of 
gene relationships above a cosine threshold of 0.6 in the LSI 
model. The literature p value (LP) is calculated using Fisher’s 
exact test by comparing the cohesion of the given gene set to 
a random one [27].

Quantitative reverse transcription PCR: The expression 
levels of Gpnmb and Stc1 gene were verified with quantitative 
reverse transcription PCR (qRT-PCR). Retina tissue from 
D2 mice were harvested at 2–3 months (before the onset of 
glaucoma) and 6–7 months (after the onset of glaucoma) of 
age (≥3 samples per group). Total RNA was extracted with the 
RNeasy Mini Kit (Qiagen, Germantown, MD) following the 
manufacturer’s instructions. RNA concentration and purity 
were evaluated with NanoDrop (Thermo Scientific, Waltham, 
MA). The qRT-PCR reactions (20 μl total volume) were 
performed using the iTaq Universal SYBR Green One-Step 
Kit (Bio-Rad, Hercules, CA), including 4 μl RNA (20 ng/μl), 
1.125 μl primers (5 μM), 7.5 μl 2X SYBR Green RT–PCR 
Reaction Mix, 0.3 μl iScript Reverse Transcriptase, and 2.075 
μl Nuclease-free H2O. The RT step involved incubation at 
50 °C for 10 min. The PCR cycling conditions included 
an initial denaturation of 95 °C for 5 min followed by 40 
cycles of 95 °C for 10 s and 60 °C for 30 s. The qRT-PCR 
reaction was performed on the CFX Connect Real-Time 
System (Bio-Rad). The sequences of the PCR primers were 
as follows: Gpnmb, forward 5′-GCT GGT CTT CGG ATG 
AAA ATG A-3′, reverse 5′-CCA CAA AGG TGA TAT TGG 
AAC CC-3′; Stc1, forward 5′-ACG AGG CGG AAC AAA 
ATG ATT-3′, reverse 5′-TGC ACT TTA AGC TCT CTT TGA 
CA-3′; Gapdh forward 5′-GGA GCC AAA AGG GTC ATC 
AT-3′, reverse 5′-GTG ATG GCA TGG ACT GTG GT-3′. The 
relative expression of each gene was normalized to Gapdh by 
using the ΔΔ2Ct method, and data were presented as mean ± 
standard deviation (SD).

http://www.molvis.org/molvis/v25/222
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RESULTS

Gpnmb levels in the retinas of B6, D2, and BXD mice, and 
heritability: Gpnmb has highly variable expression among 
the BXD strains (Figure 1). The average expression across all 
BXD strains was 10.871±0.240 (mean ± standard error [SE]), 
with the parental B6 strain having the highest expression at 
15.074±0.381 and the parental D2 strain having one of the 
lowest expressions at 7.560±0.473, indicating a statistically 
significant difference between the parental strains (p<0.01). 
The expression levels of most BXD strains are between B6 
and D2 mice. The heritability of Gpnmb expression is 0.589, 
which indicates that genetic variability affects Gpnmb expres-
sion, and allows us to identify a locus that controls Gpnmb 
expression among BXD mice.

Gpnmb eQTL mapping and sequence variants: Simple 
interval mapping for Gpnmb revealed a statistically signifi-
cant eQTL with an LRS of 43.0 on chromosome 6 at 49.66 
megabases (Mb), which is close to where the Gpnmb gene 
itself is located chromosome 6 at 49.06 Mb (Figure 2). 
Composite interval mapping revealed no secondary locus 
that could modulate Gpnmb expression. This indicates that 
Gpnmb is cis-regulated, meaning that most of the variation 
in Gpnmb expression is caused by sequence variants in or 
near Gpnmb. Using our open access sequence data resources 
at GeneNetwork, we identified 37 single nucleotide poly-
morphisms (SNPs) in Gpnmb between the BXD parental 
strains (Table 1). Four SNPs are located in the coding region, 

including one nonsynonymous SNP, and the rest are located 
in the intron area. One or several of these SNPs are respon-
sible for Gpnmb expression differences in the BXD mice.

Stc1 is a downstream candidate target of Gpnmb: Genetic 
mapping showed 11 statistically significant trans-eQTLs that 
were located within 5 Mb of Gpnmb (chromosome 6 from 44 
to 54 Mb). After filtering with genetic correlation (p<0.05) 
and expression level (greater than 8), four genes were found 
to be statistically significantly correlated with Gpnmb and 
highly expressed in the retina. After further filtering with 
tissue correlation analysis, only Stc1 was found to be statisti-
cally significantly correlated with Gpnmb (p=0.0009, Figure 
3). To validate expression of Gpnmb and Stc1 in the retina, we 
performed qRT-PCR for D2 mice before and after the onset 
of glaucoma. The results showed that expression of Gpnmb 
in D2 mice was decreased by approximately 60% in 6- to 
7-month-old D2 mice when compared with 2- to 3-month-old 
D2 mice (p=0.039; Figure 4). For Stc1, the expression level 
decreased 20% in the 6- to 7-month-old D2 mice (p=0.059). 
In addition, correlation analysis revealed that the expression 
level of Stc1 was statistically significantly correlated with 
Gpnmb (p=0.044). Previous literature was consulted, and 
Stc1 was found to be the only gene with a biologic function 
connected to the retina [30]. Stc1 was chosen as the best 
downstream candidate gene of Gpnmb for further analysis.

Stc1 expression levels in the retinas of B6, D2, and BXD mice, 
and heritability: Stc1 has highly variable expression among 

Figure 1. Expression level of Gpnmb in the retina of the B6 and D2 parental strains, F1 hybrids, and 75 BXD strains. The expression values 
for each sample were calculated using rank-invariant normalization through the BeadStudio software, and then renormalized using modified 
Z-scores. The x-axis denotes the strain while the y-axis denotes the expression of the strain mean on a log2 scale. Each bar represents the 
mean expression values ± standard error of the mean (SEM).
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the BXD strains with the highest expression at 10.074±0.1480 
in BXD 83 and the lowest expression at 8.715±0.089 in 
BXD51, indicating a 2.7-fold change in expression range 
(Figure 5). The parental B6 strain had expression of 
10.074±0.1480, and the parental D2 strain had expression of 
9.250±0.153, meaning that there is a statistically significant 
difference in expression between the two parental strains 
(p<0.05). Heritability of Stc1 was calculated to be 0.31, 
which indicates that Stc1 is affected by genetic variability, 
and allows us to identify a locus for Stc1.

Stc1 eQTL mapping: Simple interval mapping for Stc1 
found a statistically significant eQTL with an LRS of 19.6 
(genome-wide p<0.05) on chromosome 6 at 48.92 Mb where 
the Gpnmb gene is located (Figure 6). The Stc1 gene itself 
is located on chromosome 14 at 69.04 Mb, which means 
that Stc1 has a trans-eQTL. Composite interval mapping 
showed no secondary locus that modulates Stc1 expression, 
suggesting that part of the expression variance in Stc1 is regu-
lated by the DNA variants around the Gpnmb locus.

Gene function enrichment: The top 500 probe sets were 
submitted to Webgestalt for gene function enrichment 
analysis. Of these probe sets, 26 could not be mapped to any 
Entrez gene ID or mapped to multiple gene IDs, resulting 
in 474 probe sets that could unambiguously map to 368 
unique gene IDs. These genes were used for GO and pathway 
analysis.

The most statistically signif icant enrichment 
category for biologic processes was “cellular process” 

(n=321, adjP=2.26e-29) that includes “cell death” 
(n=66, adjP=1.84e-10), “programmed cell death” 
(n=64, adjP=1.16e-10), and “apoptotic process” (n=64, 
adjP=7.23e-11). The other most important and statistically 
significant enrichment categories included “mitochondrion” 
(n=67, adjP=2.01e-10) and “peroxisome” (n=8, adjP=1.86e-02) 
for cellular component; and “oxidoreductase activity” (n=30, 
adjP=0.0001), “ATP binding” (n=58, adjP=9.86e-08), “kinase 
activity” (n=44, adjP=1.68e-09), and “MAP kinase phospha-
tase activity” (n=5, adjP=3.15e-05) for molecular function. 
The GO results of all statistically significant enriched catego-
ries are listed in Appendix 1. Gene pathway analysis resulted 
in 21 statistically significant pathways (false discovery 
rate [FDR] p<0.05, Table 2), most of which are related to 
the electron transport chain, the mitochondrion, apoptosis, 
oxidative stress, the metabolism, the immune response, and 
inflammation.

Gene network: To generate a Gpnmb and Stc1 coexpression 
network, and investigate a biologic relationship through 
which these two genes interact in the retina, we focused on 
the gene group that contained Gpnmb and Stc1 within the 
statistically significant enrichment. We found that Gpnmb 
and Stc1, as well as 27 other genes, are regulated by acti-
vator protein 1 (AP-1). We then uploaded them to GCAT for 
functional coherence analysis and gene network construc-
tion. These genes showed statistically significant functional 
cohesion with a literature p value of 3.267436e-16 (Figure 
7). The network graph indicated that the expression levels of 
Gpnmb and Stc1 are directly linked to each other. Multiple 

Figure 2. Genetic mapping of Gpnmb. A statistically significant expression quantitative trait locus (eQTL) was found at chromosome 6, 
which is within 1 Mb of the location of the Gpnmb gene itself (triangle), thus indicating that it is a cis-eQTL. The upper x-axis shows the 
chromosome, the lower x-axis shows the location in megabases, the left y-axis provides the likelihood ratio statistic (LRS) score in blue, 
and the right y-axis provides the additive effect. The red and green lines show the effect of the D or B allele on trait values, respectively. The 
pink (upper) horizontal line across the plot indicates the threshold for genome-wide statistical significance (p<0.05), and the gray (lower) 
horizontal line indicates a suggestive threshold (p<0.63).

http://www.molvis.org/molvis/v25/222
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resources, such as Chilibot, GeneCard, and PubMed, were 
used to study the function of each member in the Gpnmb 
and Stc1 coexpression network. In addition to Gpnmb and 
Stc1, some of genes in this network (Pex5 [Gene ID: 19305, 
OMIM: 600414], Rgs2 [Gene ID: 19735, OMIM: 600861], and 
Cd68 [Gene ID: 12514, OMIM: 153634]) are already known 

to be related to glaucoma. Most of the other genes are highly 
connected to apoptosis, oxidative stress, and mitochondria.

Phenotype correlation: The results showed that Gpnmb 
expression is statistically significantly correlated with the 
optic nerve cross-sectional area, photoreceptor density, and 

Table 1. The single nucleotide polymorphisms (SNPs) in Gpnmb.

SNP ID Chr Mb Alleles Location Function B6 D2
rs30410930 6 49.037092 C/T Intron non-coding C T
rs30802297 6 49.037483 G/A Intron non-coding G A
rs30067487 6 49.037502 T/C Intron non-coding T C
rs30116878 6 49.037659 T/C Intron non-coding T C
rs29872743 6 49.038953 G/T Intron non-coding G T
rs36282636 6 49.039072 C/T Intron non-coding C T
rs30214419 6 49.039074 A/T Intron non-coding A T
rs36887641 6 49.039302 A/G Intron non-coding A G
rs30905960 6 49.040254 C/T Intron non-coding C T
rs30068479 6 49.040837 A/G Intron non-coding A G
rs29982549 6 49.041336 A/T Intron non-coding A T
rs30759090 6 49.041901 T/C Intron non-coding T C
rs30507850 6 49.042050 G/A Intron non-coding G A
rs13478745 6 49.042801 G/A Exon 2 Nonsynonymous G A
rs30847773 6 49.043742 C/T Intron non-coding C T
rs30318156 6 49.044057 T/C Exon 3 Synonymous T C
rs30562316 6 49.044496 T/C Intron non-coding T C
rs30174757 6 49.044558 T/C Intron non-coding T C
rs30029717 6 49.045223 G/A Intron non-coding G A
rs30606480 6 49.045317 A/C Exon 4 Synonymous A C
rs38378746 6 49.045534 T/G Intron non-coding T G
rs30022295 6 49.046593 A/C Intron non-coding A C
rs30898406 6 49.048592 G/A Intron non-coding G A
rs30764819 6 49.050199 A/G Intron non-coding A G
rs30267325 6 49.051157 A/G Intron non-coding A G
rs38325869 6 49.052202 G/A Intron non-coding G A
rs30219902 6 49.052349 C/G Intron non-coding C G
rs30081162 6 49.053562 A/C Intron non-coding A C
rs36774657 6 49.054930 G/A Intron non-coding G A
rs30615648 6 49.055229 A/G Intron non-coding A G
rs30667356 6 49.055666 C/T Exon 10 Synonymous C T
rs30963924 6 49.055885 A/G Intron non-coding A G
rs30014223 6 49.056217 G/A Intron non-coding G A
rs30219354 6 49.056238 T/C Intron non-coding T C
rs37661404 6 49.056774 C/T Intron non-coding C T
rs30914405 6 49.056860 T/C Intron non-coding T C
rs38586314 6 49.057541 A/T Intron non-coding A T

http://www.molvis.org/molvis/v25/222
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Figure 3. Scatterplots of Gpnmb 
and Stc1  expression across 
multiple different tissues. Each 
spot represents one tissue. The 
abbreviations for each tissue are 
listed in Appendix 2. There is a 
statistically significant positive 
cor relat ion between Gpnmb 
and Stc1 expression (rho=0.536, 
p=0.00406, n=26).

Figure 4. mRNA expression of 
Gpnmb and Stc1 in the retina 
of D2 mice. Each bar shows the 
mean relative expression value ± 
standard deviation (SD) using the 
ΔΔ cT method. The blue bar (left 
for each gene) shows the expression 
level for 2- to 3-month-old D2 mice, 
and the orange bar (right for each 
gene) shows the expression level 
for 6- to 7-month-old D2 mice. The 
y-axis denotes the fold change in 
the Gpnmb and Stc1 genes relative 
to 2-month-old D2 mice.
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iris pigmentation. Stc1 expression is statistically significantly 

correlated with optic nerve density and iris pigmentation. 

Among these correlated phenotypes, the iris pigmentation 

phenotype (graded from 0 (lowest) to 4 (highest) of iris trans-

illumination) had a highly statistically significant negative 

correlation with the expression of Gpnmb and Stc1 (p<0.0005, 

Figure 8), indicating that Gpnmb and Stc1 play the same role 
in maintaining iris pigmentation.

DISCUSSION

Systems genetics is an approach to understanding the flow 
of biologic information that underlies complex traits [31]. 
This approach involves analysis of sets of causal interactions 

Figure 5. Expression level of Stc1 in the retina of the B6 and D2 parental strains, F1 hybrids, and 75 BXD strains. The expression value 
for each sample was calculated using the rank-invariant normalization method through BeadStudio software, and then renormalized using 
modified Z-scores. The x-axis denotes the strain; the y-axis denotes the expression of the strain mean on a log2 scale. Each bar represents 
the mean expression value ± standard error of the mean (SEM).

Figure 6. Genetic mapping of Stc1. A statistically significant expression quantitative trait locus (eQTL) was found at chromosome 6, which 
is different from the location of the Stc1 gene (indicated by a triangle, on chromosome 14), indicating that it is a trans-eQTL. The upper 
x-axis shows the chromosome, the lower x-axis shows the location in megabases, the left y-axis provides the likelihood ratio statistic (LRS) 
score in blue, and the right y-axis provides the additive effect. The red and green lines show the effect of the D or B allele on trait values, 
respectively. The pink (upper) horizontal line across the plot indicates the threshold for genome-wide statistical significance (p<0.05), and 
the gray (lower) horizontal line indicates a suggestive threshold (p<0.63).
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among DNA variants (such as SNPs), classic traits (such as 
IOP), and intermediate phenotypes (such as transcripts) in 
populations that vary for traits of interest. The BXD recombi-
nant inbred (RI) strains are the best mouse genetic reference 
population for a systems genetics study of glaucoma, because 
the parental strains, the D2 mouse and the B6 mouse, differ 
in the presentation of glaucoma. Their progeny have different 
phenotypes and gene expression, and provide a unique and 
valuable opportunity to define novel genes and molecular 
networks involved in glaucoma. In this study, we used the 
systems genetics method and BXD RI strains to analyze 
genes that are highly correlated with and lie downstream of 
Gpnmb, a gene involved with glaucoma. We found Stc1 to 
be highly correlated with Gpnmb, involved in the glaucoma 
disease process, and the best downstream candidate gene of 
Gpnmb. We present a genetic network for Stc1 that involves 
genes related to optic neuropathy, gene enrichment categories 
Stc1 plays a role in, and pathways through which Stc1 inter-
acts with other genes to affect glaucoma phenotypes.

Stanniocalcin-1, encoded by Stc1, is a glycoprotein found 
to have antioxidant and antiapoptotic properties. Stc1 inhibits 
the inflammatory cascade, induces antioxidant and anti-
apoptotic mechanisms, and reduces reactive oxygen species 
[32-35]. In glaucoma, these factors have been shown to reduce 
IOP and provide neuroprotection in human eyes [36,37], as 
well as prevent the ensuing apoptosis in retinal photorecep-
tors [38,39]. Stc1 delays RGC apoptosis in the rat model of 
intraorbital optic nerve transection and decreases oxidative 
stress by reducing the reactive oxygen species (ROS) in the 
eye [40].

After gene function enrichment analysis, one of the 
most statistically significant biologic processes found to be 
associated with Stc1 was “apoptotic process,” as well as its 
two related pathways “chemokine signaling pathway” and 
“apoptosis.” Apoptosis, the programmed death of a cell, is an 
important process in the development of the nervous system. 
Apoptosis also has been implicated in various neurodegenera-
tive diseases, such as glaucoma [41]. RGCs have been shown 

Table 2. Significant enriched genes pathways.

Pathway Name N FDR p value Genes in the pathway
TCA Cycle 7 0.0002 Pdk1 Fh1 Pdk4 Idh2 Pdk2 Sdhd Dld

MAPK signaling pathway 12 0.0031 Dusp6 Dusp10 Stmn1 Ppp5c Dusp4 Mapk6 Akt3 Map4k4 
Hspa1a Map3k12 Dusp1 Map3k5

Focal Adhesion 12 0.0037 Ppp1r12a Vegfc Tnxb Rhob Pak7 Araf Mapk6 Pak4 Flt1 Akt3 
Vegfb Itga9

One carbon metabolism and related 
pathways 6 0.0037 Gclc Cth Gsr Gss Chka Gnmt

Glycolysis and Gluconeogenesis 6 0.0037 Tpi1 Pfkm Pfkp Slc2a3 Dld Hk1
Amino Acid metabolism 9 0.0041 Fh1 Bcat1 Cth Gss Sdhd Glud1 Pdk4 Gsr Dld
Myometrial Relaxation and Contraction 
Pathways 9 0.0209 Rgs10 Ywhaz Rgs5 Camk2g Cald1 Rgs2 Prkd1 Igfbp2 Prkar1a

Glutathione and one carbon metabolism 4 0.0214 Gclc Cth Gsr Gss
Electron Transport Chain 6 0.0271 Slc25a4 Slc25a14 Atp5b Ndufs4 Atp5j Sdhd
Mitochondrial Gene Expression 3 0.0319 Pprc1 Tfam Nrf1
Chemokine signaling pathway 9 0.0319 Nfkbib Cxcl14 Cxcl16 Prkx Akt3 Adrbk1 Cx3cl1 Nfkbia Csk
Calcium Regulation in the Cardiac Cell 8 0.0319 Atp1b1 Rgs10 Ywhaz Rgs5 Camk2g Rgs2 Prkd1 Prkar1a
Glutathione metabolism 3 0.0319 Gclc Gsr Gss
Apoptosis 6 0.0403 Xiap Nfkbib Bcl2l2 Dffa Nfkbia Cycs

EGFR1 Signaling Pathway 10 0.0403 Pebp1 Ralbp1 Araf Ceacam1 Git1 Prkd1 Dusp1 Csk Tgif1 
Prkar1a

Insulin Signaling 8 0.0408 Mapk11 Mapk6 Pfkm Map4k4 Trib3 Gys1 Map3k12 Map3k5
Regulation of Actin Cytoskeleton 8 0.0408 Ppp1r12a Pak7 Mapk6 Pak4 Limk1 Gsn Git1 Csk
Translation Factors 4 0.0408 Eif2b1 Eef1a2 Eif1a Eef2
Oxidative Stress 3 0.0408 Gclc Gsr Txn2
Integrin-mediated cell adhesion 6 0.041 Akt3 Araf Mapk6 Pak4 Csk Itga9
B Cell Receptor Signaling Pathway 9 0.041 Dusp6 Plekha1 Dusp4 Pdk2 Cd81 Hnrnpk Prkd1 Nfkbia Csk
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to die via apoptosis in experimental glaucoma, and after the 
axon of the nerve is severed, as defined by light microscopy 
[42]. Further investigations have shown that elevated IOP in 
the extracellular matrix of the retina is strongly correlated 
with RGC apoptosis in glaucoma [43]. The expression of 
apoptosis and inflammation-related genes, such as Il18 (Gene 
ID: 16173, OMIM: 600953), NF-κB (Gene ID: 18033, OMIM: 
164011), Mapk1 (Gene ID: 26413, OMIM: 176948), Mmp-2 
(Gene ID: 17390, OMIM: 120360), Timp-1 (Gene ID: 21857, 
OMIM: 305370), and apoptotic signaling components, has 
been found to be elevated in the DBA/2J glaucoma mouse 
model [44]. The present GO and pathway results support the 
role of Stc1 in apoptosis, and most likely in glaucoma.

One of the most statistically significant cellular compo-
nents associated with Stc1 was “mitochondrion.” Neurons, 
which have a high-energy requirement, are dependent on 
mitochondria for not only their source of energy but also 
for calcium signaling and apoptosis. IOP elevation has also 

been linked to mitochondrial damage in the optic nerve head 
through mitochondrial fission and cristae depletion, although 
currently it is unknown whether IOP elevation leads to mito-
chondrial alterations [45]. When there is a mitochondrial 
malfunction, free radicals are produced in excess, which can 
lead to oxidative stress, common in glaucomatous tissues. 
This oxidative damage can damage cellular macromolecules, 
resulting in neuronal degeneration and RGC death [46,47]. 
Oxidative DNA damage has also been found to be statistically 
significantly increased in patients with glaucoma [48]. Further 
support for mitochondrial and oxidative stress involvement in 
Stc1 was shown in the present pathway analysis, where we 
found the “electron transport chain,” “mitochondrial gene 
expression,” and “oxidative stress” are statistically significant 
pathways.

Transcription factor analysis found AP-1 regulates 
Gpnmb and Stc1 gene expression. To study the interac-
tion of Gpnmb and Stc1, we constructed a Gpnmb and Stc1 

Figure 7. Stc1 genetic network. The Stc1 genetic network was created using the Gene-set Cohesion Analysis Tool as described in the Methods 
section. These genes may be functionally related. Gene symbols are located at the nodes in circles, and the lines interconnecting the nodes 
are based on literature correlations. The literature p value for these genes is 3.267436e-16.
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coexpression network based on the group of genes targeted 
by AP-1. The AP-1 family of transcription factors consists 
of homo- or heterodimers encoded by the fos and jun gene 
families. AP-1 regulates cell growth and differentiation, and 
is affected by the oxidative state of the cell [49]. AP-1 has 
been suggested to play a role in apoptosis, although the exact 
mechanism is not clear [50-52]. Considering the relationship 
AP-1 has with Gpnmb and Stc1 and with oxidative stress and 
apoptosis, AP-1 may affect the pathogenesis of glaucoma 
through the regulation of Gpnmb and other genes that interact 
with Gpnmb in this gene network.

In addition to Gpnmb, we found three genes (Pex5, Rgs2, 
and Cd68) in the gene network are highly correlated with 
glaucoma based on previous literature reports. Peroxisome 
biogenesis factor 5, encoded by Pex5, plays an essential role 
in peroxisomal protein import. The Pex5-knockout mouse 
model has peroxisomal metabolism defects, leading to pleo-
morphic mitochondria and a marked increase in ROS [53]. 
Zellweger syndrome spectrum is a syndrome in which there 
are no functional peroxisomes due to deletions or mutations 
in PEX (Gene ID: 5830, OMIM: 600414) genes [54]. Patients 
with Zellweger syndrome may exhibit characteristics such 
as craniofacial dysmorphia, neonatal seizures, and ocular 
anomalies, like cataracts, pigmentary retinopathy, and glau-
coma [55,56].

Regulator of G protein signaling 2, encoded by Rgs2, acts 
as a GTPase activating protein. Rgs2 is widely expressed in 
the rat retina, particularly in the ganglion cell layer [57]. Mice 
with null Rgs2 expression have also been associated with 
lower IOP and enhanced RGC survival [58]. This is possibly 
because Rgs2 is a negative regulator of Gαq, which affects the 
constriction of smooth muscle [59-61]. Mice with null Rgs2 
also had increased width in the Schlemm’s canal, which is 
close to a possible outflow pathway for aqueous humor in 
patients with open-angle glaucoma [62]. However, the exact 
mechanism through which Rgs2 affects IOP is not clear.

Cd68 encodes cluster of differentiation 68, a protein 
highly expressed in macrophages, and has been used as a 
marker for phagocytic amoeboid microglia in axonal injury 
[63,64]. Normally, Cd68 is not present in the optic nerve head. 
However, in glaucoma, Cd68 has been found to be present in 
microglia, indicating that there is phagocytic activity at the 
ONH and inflammatory activity in the stroma of the iris and 
ciliary body [65,66].

Several of the genes in the present gene network are also 
highly correlated with apoptosis, oxidative stress, and mito-
chondria based on previous literature. Il24 (Gene ID: 93672, 
OMIM: 604136) and Mt3 (Gene ID: 17751, OMIM: 139255) 
are associated with oxidative stress, Mpv17 (Gene ID: 17527, 
OMIM: 137960) is a mitochondrial protein, and Eef1a2 (Gene 
ID: 13628, OMIM: 602959) has antiapoptotic effects.

Figure 8. Scatterplots of correlation between iris transillumination and expression of Gpnmb and Stc1 among BXD strains. Each spot 
represents each BXD strain or their parental strain. There are statistically significant negative correlations between the iris transillumination 
score and the expression of Gpnmb (A) and Stc1 (B; p<0.0005).
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Interleukin 24 (IL-24), encoded by Il24, is a proinflam-
matory cytokine in the IL-20 subfamily of interleukins [67]. 
Il24 has proapoptotic characteristics in cancer cells [68,69]. 
Il24 expression has been found to be expressed in the retina 
of DBA/2J mice [70]. Il24 also induces the production of Il6, 
which is upregulated in the trabecular meshwork by oxidative 
stress, elevated IOP, and optic nerve head injury [71-73]. Mt3 
encodes metallothionein 3, which is a protein that regulates 
zinc levels in the central nervous system in response to the 
oxidative status of the cell [74,75]. Under oxidative stress, 
zinc levels in the cytosol and lysosomes rise, resulting in 
increased cell death [76]. Mpv17 codes for a mitochondrial 
inner membrane protein, and its absence or malfunction has 
been found to cause oxidative phosphorylation depletion 
[77]. Mpv17 has also been implicated in mitochondrial DNA 
(mtDNA) depletion syndromes and oxidative phosphorylation 
activity in yeast [78,79]. Eukaryotic translation elongation 
factor 1 alpha 2 (Eef1a2) has been shown to have antiapop-
totic effects [80-82].

Because these genes have been associated with either 
glaucoma or one of the many factors that affect the glau-
coma phenotype, they may be associated with the glaucoma 
phenotype. However, further studies are needed to clarify the 
relationship between Gpnmb, Stc1, and these genes.

Conclusion: In summary, the present systems genetics 
analysis suggested that Stc1 could be a downstream candidate 
gene for Gpnmb. The gene function enrichment analysis of 
Gpnmb and Stc1 covariant genes suggests that Gpnmb may 
interact with Stc1 and other genes in the network to develop 
glaucoma pathogenesis through mechanisms of apoptosis and 
oxidative stress. However, further investigation is needed to 
elucidate the relationship among Gpnmb, Stc1, and the genes 
of the proposed genetic network.

APPENDIX 1. THE GENE ONTOLOGY RESULTS 
OF ALL SIGNIFICANT ENRICHED CATEGORIES.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. THE ABBREVIATIONS FOR EACH 
TISSUE IN FIGURE 3.

To access the data, click or select the words “Appendix 2.”
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