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Abstract

Drug-induced liver injury (DILI) presents unique challenges for consumers, clinicians, and 

regulators. It is the most common cause of acute liver failure in the US. It is also one of the most 

common reasons for termination of new drugs during pre-clinical testing and withdrawal of new 

drugs post-marketing. DILI is generally divided into two forms: intrinsic and idiosyncratic. Many 

of the challenges with DILI are due in large part to poor understanding of the mechanisms of 

toxicity. Although useful models of intrinsic DILI are available, they are frequently misused. 

Modeling idiosyncratic DILI presents greater challenges, but promising new models have recently 

been developed. The purpose of this manuscript is to provide a critical review of the most popular 

animal models of DILI, and to discuss the future of DILI research.
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INTRODUCTION

Drug-induced liver injury (DILI) is a problem that affects consumers, clinicians, 

pharmaceutical companies, and regulators. For consumers, it is a marginal but ever-present 

risk. For clinicians, it is difficult to diagnose and can be difficult to treat. And for the 

pharmaceutical industry and regulators, it is an obstacle that must be avoided in order to 

bring a new product to the market and keep it there. DILI is the single most common cause 

of acute liver failure (ALF) in the US. It has been reported that DILI is responsible for 
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approximately 60% of all ALF cases [1], but that is likely an underestimate; other studies 

have consistently demonstrated that 10-20% of ALF cases of indeterminate etiology are 

actually due to DILI [2–4]. DILI is also one of the most common reasons for post-marketing 

withdrawal of drugs and for new black box warnings throughout the world [5–7]

DILI is usually divided into two types that are commonly referred to as “intrinsic” and 

“idiosyncratic.” Although there is no universal definition of either, intrinsic DILI is typically 

said to be dose-dependent and predictable. The toxicity is attributed to chemical properties 

of the drug rather than some unique aspect of the drug consumer’s biology. On the other 

hand, idiosyncratic DILI (IDILI) is often described as non-dose-dependent (i.e. occurs at 

low doses), unpredictable, and rare (though the definition of “rare” also varies considerably). 

It is thought to be determined in large part by genetic variation. In reality, these definitions 

probably represent two ends of a spectrum. This is clear because the probability of IDILI 

increases with increasing daily dose [8–10] and the prevalence (and therefore predictability) 

of toxicity among users of IDILI-causing agents varies from drug to drug. Furthermore, 

there is some evidence that biological variation can also influence intrinsic hepatotoxicity 

[11–13].

The models used to study DILI are important. The challenges presented by DILI are due in 

part to our poor understanding of the mechanisms that drive it. Without knowledge of the 

mechanisms, it is difficult to develop ways to predict and avoid it. And in order to 

understand the causes, we need research models that can reproduce it. However, 

development of appropriate models has been onerous. It has been pointed out that adverse 

drug reactions that are idiosyncratic in humans are also idiosyncratic in mice [14], and even 

use of intrinsic hepatotoxicants in animals suffers from pitfalls that must be avoided. While 

novel in vitro models of DILI with promise for pre-clinical prediction of hepatotoxicity have 

been introduced, they lack important factors like a complete immune system and cross-talk 

with other organs. It seems unlikely that they will fully replace animals for research or drug 

development. In this manuscript, we review the major animal models of DILI and describe 

promising recent advances. The attributes of ideal DILI models are listed in Table 1, with 

examples of each.

MODELS OF INTRINSIC DILI

Animal models of intrinsic DILI are straightforward with regard to technique. In most cases, 

one can simply treat the animals with a large dose of the drug of interest to cause 

hepatotoxicity. However, the proper use of these models requires a basic understanding of 

the mechanisms of toxicity in each one. The most common models of intrinsic 

hepatotoxicity are listed in Table 2. By far, the two most common models in intrinsic DILI 

research are acetaminophen (APAP) and carbon tetrachloride (CCl4).

Acetaminophen.

APAP is the most commonly used model of intrinsic DILI. It is also the most clinically 

relevant [15], as APAP overdose is the primary cause of acute liver failure in several 

countries [1]. As a result, the mechanisms of APAP hepatotoxicity have been well studied, 

though important gaps remain. The toxicity is initiated by conversion of APAP to an 
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electrophile thought to be N-acetyl-p-benzoquinone imine (NAPQI) (Figure 1). That 

conversion is catalyzed by cytochrome P450 enzymes. NAPQI then binds to sulfhydryl 

groups on glutathione and proteins. Depletion of GSH makes the cells more susceptible to 

oxidative stress. The effects of protein binding are less clear, but there is mounting evidence 

that mitochondrial proteins are the critical targets [16,17]. For example, N-acetyl-m-

aminophenol (AMAP), an isomer of APAP, does not bind to mitochondrial proteins nor 

cause toxicity in mouse hepatocytes, but does both in human hepatocytes [17]. The protein 

binding appears to cause inhibition of mitochondrial respiration during APAP toxicity [18] 

and mitochondrial oxidative stress develops [19–22]. It is thought that the initial oxidative 

stress activates redox-sensitive MAP kinases that converge on the c-Jun N-terminal kinases 

1/2 (Jnk) [23–26], and phospho-Jnk then translocates to mitochondria where it exacerbates 

the oxidative stress by further inhibiting mitochondrial respiration [27–29]. Although recent 

data have cast doubt on the Jnk hypothesis [30], the weight of the evidence supports it [31]. 

Other kinases, such as the receptor interacting protein kinases (Ripk) 1 and 3 have also been 

demonstrated to be important [32–34]. However, the detailed mechanisms of the 

involvement of these kinases in APAP toxicity remain to be investigated; a recent study even 

questioned the relevance of Ripk 3 [35]. Eventually, loss of the mitochondrial membrane 

potential occurs [36], which causes swelling and rupture of mitochondrial membranes with 

release of endonucleases [37]. The endonucleases then translocate to the nucleus and cleave 

nuclear DNA [37,38]. The result is oncotic necrosis [16,39,40].

Mice are the preferred animal for studies of APAP overdose. Early studies involved multiple 

species, including rats [41,42], guinea pigs [41], cats [43] and hamsters [44]. However, it is 

now clear that mice are the best available model [45]. The doses of APAP that cause toxicity 

in mice and humans are similar; both species develop injury at doses ≥150 mg/kg, while the 

other species that have been tested are either much more resistant or much more susceptible 

[41,43,45]. More importantly, the mechanisms of toxicity appear to be the same in mice and 

humans [15]. There is strong evidence for glutathione depletion [40,46,47], protein binding 

[2,47,48], mitochondrial damage [16,17,40,47], oxidative stress [40], DNA fragmentation 

[16,49] and Jnk activation [47] in humans, like mice. On the other hand, rats have less 

mitochondrial protein binding than mice, despite receiving much higher doses [45], and 

there is no evidence of mitochondrial damage or oxidative stress in rats [45]. Conveniently, 

mice are generally easier to work with than other species, and numerous gene knock-out 

mice and transgenic substrains of mice are available for research purposes. One minor 

difference between humans and mice is the time course of liver injury; hepatotoxicity 

develops somewhat faster in mice, peaking around 12-24 h compared to 24-72 h in humans 

[16,40]

Typically, the mice are fasted for 12-16 h before treatment with 200-300 mg/kg APAP. The 

primary purpose of fasting is to reduce variation of hepatic GSH levels due to nutritional 

status; it ensures that all the animals have a similar baseline level of glutathione for 

glutathionylation and glycogen for glucuronidation. However, fasting is not required if 

higher doses of APAP (400-600 mg/kg) are given. Whether or not fasting the animals makes 

the model less clinically relevant is debatable. However, almost all research to date that has 

included a comparison of toxicity or regeneration mechanisms between mice and humans 

have used fasted mice and found that the mechanisms are similar between species, even in 
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metabolomics experiments where one might expect fasting to alter the results [16,50–53]. 

One exception might be when studying autophagy. Fasting induces autophagy and may 

mask potential effects of pharmacological interventions. Thus, studies that showed the 

hepatoprotective effects of removing damaged mitochondria [54] or protein adducts [55] by 

autophagy used fed mice.

Several issues must be addressed when using the mouse model of APAP overdose. First, any 

intervention that reduces P450 expression, inhibits P450 activity, or otherwise reduces 

protein binding will also prevent or reduce the liver injury (Figure 1). Many drugs initially 

thought to protect against APAP through novel mechanisms actually inhibit APAP 

bioactivation [56–58]. Drug vehicles must also be considered. A classic example is dimethyl 

sulfoxide (DMSO), which is well known to inhibit Cyps [56,59–61]. To avoid inhibition of 

APAP bioactivation, interventions should be given at least 1.5 h after a dose of ≤ 300 mg/kg 

APAP. Anytime pre- or co-treatment is used, it is important to include vehicle controls, and 

to assess the effect of the drug(s) and vehicle(s) on either hepatic GSH depletion or protein 

binding.

A related issue is pre-conditioning. Any intervention that puts stress on hepatocytes prior to 

APAP treatment can induce expression of antioxidant genes that protect against toxicity 

(Figure 1). This phenomenon has been documented with both pharmacologic [62] and 

genetic interventions [63,64]. For example, liver-specific KO of autophagy genes causes 

chronic liver injury and repair that activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 

[63]. The increased Nrf2 activity in the liver results in higher baseline GSH levels and 

thereby protects against APAP overdose [63]. Another example is the use of neutropenia-

inducing antibodies 24 h before APAP treatment, which protects against APAP 

hepatotoxicity [52,65]. However, this protection is not caused by neutropenia as 

hypothesized but by causing a preconditioning effect due to the phagocytosis of the 

antibody-tagged, inactivated neutrophils by Kupffer cells, which triggers the extensive 

induction of defense genes including metallothionein [66]. Metallothionein protects against 

APAP overdose by assisting in the scavenging of NAPQI [67]. Thus, anytime an intervention 

or genotype protects against APAP hepatotoxicity, it is important to verify that it is not due 

to a pre-conditioning effect.

An additional consideration is the mouse strain used for the experiments. There is 

considerable variation in the extent of liver injury caused by APAP across strains [68]. 

Common inbred strains used in APAP research are C57Bl/6J, C57Bl/6N, and C3HeB/FeJ. 

Interestingly, C57Bl/6J mice carry a spontaneous mutation in the nicotinamide nucleotide 

transhydrogenase (Nnt) gene that results in loss of its activity. Normally, Nnt maintains high 

concentrations of NADPH in the mitochondrial matrix, which is important for several 

reactions including the reduction of glutathione disulfide (GSSG) back to the reduced form. 

However, under conditions when the mitochondrial electron transport chain is impaired, the 

enzyme works in the opposite direction, i.e. Nnt functions to generate more NADH for use 

in the electron transport chain, which leads to reduction of NADPH levels and consequently 

lower antioxidant capacity in the mitochondria [69]. In the case of APAP, this means that the 

push to feed more electrons into the transport chain leads to more reactive oxygen formation 

in combination with the impaired antioxidant defense. This explains why C57Bl/6N mice 
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with functional Nnt are more susceptible to APAP toxicity than C57Bl/6J mice [70,71]. 

C3H/HeJ mice carry a spontaneous mutation in the toll-like receptor 4 (Tlr4) gene, which 

makes them less responsive to endotoxin. The C3H/HeJ mice are also less susceptible to 

APAP toxicity than other C3H substrains, which led one group to propose that Tlr4 is an 

important mediator of the injury [72]. Although there is no doubt that the extensive necrosis 

observed after APAP overdose leads to release of damage-associated molecular patterns, 

which are ligands for a variety of pattern recognition receptors and trigger the transcriptional 

activation of cytokines and chemokines in the liver [73–75], that interpretation of the data 

may be incorrect. This sterile formation of inflammatory mediators does cause the 

recruitment of neutrophils and monocyte-derived macrophages into the liver. However, the 

function of these inflammatory cells is controversial. There is experimental evidence both 

for and against a direct exaggerating effect of neutrophils and monocytes on APAP-induced 

liver injury [73–75], but the preponderance of evidence appears to support the idea that these 

inflammatory cells are recruited to remove necrotic cells and prepare the liver for recovery 

[74,75]. These animal data are supported by evidence that monocytes [76] and neutrophils 

[53] are pro-regenerative after APAP overdose in humans.

Carbon tetrachloride.

CCl4 is not a drug, but high doses (≥1 mL/kg) do cause reproducible acute liver injury that 

resembles intrinsic DILI. After APAP, CCl4 is probably the most common model of 

xenobiotic-induced acute liver injury. The effects of CCl4 on the liver are complex and there 

is debate over which are most important for its hepatotoxicity [77]. However, it is clear that 

the toxicity is dependent on the P450-catalyzed metabolism to the reactive metabolite 

trichloromethyl radical (CCl3·) (Figure 2). Early studies revealed that CCl4-induced necrosis 

is limited to the centrilobular area where P450 expression is greatest, that haloalkanes with 

stronger carbon-halogen bonds that are difficult to break are not hepatotoxic, that 14C from 

radiolabeled CCl4 accumulates in the endoplasmic reticulum where P450 activity is greatest, 

and that young rats with low P450 expression are resistant to CCl4-induced liver injury [78]. 

More direct approaches to test the involvement of P450s have since become available and 

also support that hypothesis [77,79]. Importantly, CCl3· can alkylate proteins, nucleic acids 

and lipids, altering their function. Major effects include reduced protein synthesis, steatosis, 

and altered calcium homeostasis [77]. CCl3· also reacts with molecular oxygen to form 

trichloromethylperoxy radical (CCl3OO·). In addition to binding to macromolecules like 

CCl3·, CCl3OO· can extract hydrogen from polyunsaturated fatty acids and thereby initiate 

the chain reaction known as lipid peroxidation (LPO). It appears that both alkylation and 

LPO are required for the hepatotoxicity of CCl4 [77]. Like APAP, acute CCl4 hepatotoxicity 

involves mitochondrial damage and mitochondrial DNA depletion in addition to LPO [79].

Rats are likely the best animals for studies of CCl4 hepatotoxicity when resemblance to 

humans is important. Although the rat is the least susceptible rodent species [80], there is 

evidence that metabolism of CCl4 is lower in both rats and humans than in other species [81] 

and it has been observed that the histopathology of CCl4 toxicity in rats is like that in 

humans [82]. Nevertheless, mice are often used for convenience and because of the 

availability of gene knock-out mice and transgenic substrains.

McGill and Jaeschke Page 5

Biochim Biophys Acta Mol Basis Dis. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Many considerations for the APAP hepatotoxicity model of DILI are the same for CCl4. 

Again, any intervention that alters P450 expression or activity will likely affect the injury 

(Figure 2). The importance of P450-mediated bioactivation of CCl4 has been directly 

demonstrated using P450 inhibitors in multiple studies [79,83]. Thus, as for APAP, we 

recommend post-treatment when using any pharmacologic interventions. It has also been 

demonstrated that Nrf2 is activated in mouse liver tissue after acute CCl4 treatment [84] and 

that it protects against CCl4 [85]. Thus, it is likely that preconditioning effects that further 

upregulate antioxidant genes would protect (Figure 2). Finally, major differences between 

mouse sub-strains have also been reported for CCl4-induced liver injury. For example, 

C57Bl/6N mice develop more severe injury, but also recover much faster due to differences 

in the response of macrophages [86].

One application of CCl4 that sets it apart from APAP is that it can also be used to model 

chronic liver disease (CLD), such as alcohol associated liver diseases and fatty liver 

diseases. Lower doses (0.5 – 0.8 mL/kg) given twice per week over the course of 2-4 weeks 

will cause persistent liver injury with inflammation and fibrosis. Any intervention strategy, 

especially plant extracts with unknown composition, used in the chronic model of CCl4-

induced toxicity has to be tested for its potential effects on P450-dependent metabolism. 

CCl4 is also often included as a second “hit” in two-hit models of CLD. Although most 

alcoholics and obese patients develop fatty liver, a minority progress to fibrosis or cirrhosis. 

The two-hit hypothesis of CLD is that fatty liver is merely the first hit, and one or more 

additional insults are required to drive disease progression [87]. Thus, CCl4 treatment is 

often mixed with other treatments as the second hit [87–90]. A promising novel model of 

non-alcoholic steatohepatitis (NASH) was recently developed using this approach. When 

C57Bl/6J mice were fed a high-fat Western diet combined with once per week exposure to a 

low dose of CCl4 (0.2 mL/kg) they developed steatosis and late-stage fibrosis by 12 weeks, 

with progression to hepatocellular carcinoma (HCC) by 24 weeks [90,91]. This appears to 

be the first mouse model to reproduce nearly all the histopathological and transcriptomic 

features of human NASH [90]

Other drugs and xenobiotics.

Thioacetamide (TAA) induces hepatotoxicity in mice and rats at doses ≥100 mg/kg. It is 

converted to the metabolites TAA S-oxide and S,S-dioxide by cytochrome P450 enzymes 

[92–94] and the S,S-dioxide initiates toxicity by binding to lipids and proteins. Few studies 

have directly addressed species differences in TAA hepatotoxicity, but values for serum ALT 

reported in the literature are typically much higher for mice than rats despite treatment with 

similar doses. Very few studies have investigated the pathophysiology of TAA 

hepatotoxicity, so not much is known about it. Other poorly studied model hepatotoxicants 

are furosemide, bromobenzene, and allyl alcohol. Similar to APAP, CCl4 and TAA, these 

drugs are converted to reactive metabolites that bind to proteins [95–98] or can induce lipid 

peroxidation [99] to cause hepatocyte necrosis. Finally, there are other xenobiotics that 

induce liver injury in rodents, but are not models of DILI per se. For example, the 

combination of endotoxin and an inhibitor of gene expression causes apoptotic death [100], 

which does not appear to be a common characteristic of intrinsic DILI [16,101].
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Summary.

APAP is the archetype of intrinsic DILI, and APAP overdose in mice is by far the most 

common model. CCl4 is also popular, and has the advantage of being useful for studies of 

chronic DILI and fibrosis. However, consideration of the basic mechanisms of toxicity is 

important when using either APAP or CCl4. Reactive metabolite formation and protein 

binding are common features of almost all available animal models of intrinsic DILI. Some 

form of oxidative stress and mitochondrial damage are also involved in both the APAP and 

CCl4 models, and in several less common intrinsic DILI models [102–104]. Thus, intrinsic 

DILI appears to involve reactive metabolites, oxidative stress and mitochondrial damage in 

most cases.

MODELS OF IDIOSYNCRATIC DILI

The study of IDILI in animals poses greater technical challenges. Achieving an adverse 

reaction to a drug that is known to cause IDILI in humans typically requires a pre-treatment 

or genetic alteration designed to pre-dispose the animals to injury. Of course, any such pre-

treatment has the potential to affect the clinical relevance of the model. The three major 

approaches that have been used so far involve either induction of inflammation, suppression 

of immune tolerance, or genetic manipulation of mitochondrial function. These models are 

summarized in Table 3.

Inflammagen model.

In the inflammagen model, animals are either pre-treated, co-treated, or post-treated with 

bacterial lipopolysaccharides (LPS) in order to induce inflammation. The model was based 

on observations made as far back as the 1940s, when it was discovered that pre-treatment 

with antibiotics reduces the hepatotoxicity of CCl4 [105]. Similar reports led to the 

hypothesis that IDILI is due in part to variation in exposure of humans to LPS [106]. That 

hypothesis has evolved to the idea that any randomly occurring inflammatory stimulus can 

precipitate IDILI. The first direct evidence to support that idea came from experiments with 

chlorpromazine (CPZ), a tricyclic antipsychotic. CPZ is now rarely used but was once a 

common cause of drug-induced liver disease. Therapeutic doses cause liver function 

impairment and elevated serum alkaline phosphatase (ALP) in approximately 40% of all 

users [107,108], and liver disease in approximately 1% [108]. However, extensive efforts for 

decades to develop an animal model of CPZ hepatotoxicity brought little success. Finally, 

Buchweitz et al. [109] were able to reproduce the clinical chemistry of human CPZ 

hepatotoxicity in rats by adding a 2 h pretreatment with LPS. Since then, the inflammagen 

model has been used to induce reproducible liver injury in rodents using relatively low doses 

of several other drugs that cause IDILI in humans including diclofenac [110], halothane 

[111], amiodarone [112], ranitidine [113] and trovafloxacin [114].

The human relevance of the inflammagen model is probably limited. One issue is that the 

timing of LPS treatment is important. Using this model, some drugs cause liver injury when 

LPS is administered as a pre-treatment [109,113], while others require very late post-

treatment [112]. Such exact timing of increased LPS exposure seems unrealistic in humans. 

Uetrecht and Naisbitt [115] have described other major problems. First, the time from 
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initiation of therapy to IDILI for a given drug is usually similar across patients. If exposure 

to LPS was a precipitating factor then one would expect that timing to be random because 

not all patients on a particular drug would encounter high levels of LPS after the same time 

period. Instead, the delay in injury is probably the time required to mount an adaptive 

immune response to a hapten or some other epitope created as a result of the drug [116]. 

Second, liver injury in the inflammagen model appears to be driven by an innate immune 

response, as it primarily involves neutrophils [113] The best example to illustrate that comes 

from APAP toxicity where the mechanism of APAP toxicity alone can be compared with the 

injury induced by LPS+APAP. Although an APAP dose close to the threshold of toxicity 

(150 mg/kg) can be aggravated with LPS pre-treatment [117], the time course of the injury is 

completely different. The delayed injury in the LPS+APAP experiment is consistent with a 

late neutrophil-mediated injury, which does not occur with APAP alone [118]. Thus, the LPS

+drug toxicity is mainly a neutrophil-mediated toxicity, which is not typical for IDILI. In 

humans, IDILI is driven by lymphocytes. Third, sensitivity to toll-like receptor ligands 

including LPS falls precipitously after initial exposure, which likely limits their effects [9]. 

Finally, intestinal permeability is increased in patients with inflammatory bowel disease and 

they have elevated serum endotoxin values as a result [119], yet there is currently no 

evidence for increased risk of IDILI among patients with inflammatory diseases.

Suppression of immune tolerance (“Uetrecht-Pohl model”).

A recently developed approach to model IDILI in animals is to suppress immune tolerance 

in the liver (Figure 3). This approach is based on Temple’s corollary, which states that all 

drugs that cause serious IDILI in a few patients also cause much higher incidences of mild 

liver injury that spontaneously resolves despite continued treatment. The fact that most 

patients adapt to the initial mild injury strongly suggests that immune tolerance develops and 

prevents progression to liver failure. That led to the hypothesis that breakage of immune 

tolerance is necessary to develop a complete IDILI model. Consistent with that, Metushi et 

al. [120] observed that the idiosyncratic hepatotoxicant amodiaquine causes delayed-onset 

mild liver injury in female C57Bl/6J mice that spontaneously resolves, and that resolution 

occurred after an increase in programmed cell death 1 protein (Pd-1) positive T cells in the 

liver. Importantly, Pd-1 is critical for development of immune tolerance.

The authors later discovered that the injury appeared to be worse in Pd-1 KO (Pd-1−/−) mice 

[121], and that co-treatment of Pd-1−/− mice with an antibody against cytotoxic T-

lymphocyte-associated protein 4 (CTLA4) on regulatory T cells prevented injury resolution 

[121]. At the same time, Chakraborty et al. [122] used a similar approach to delay resolution 

of halothane hepatotoxicity. Importantly, histology in both studies more closely resembled 

that of human IDILI than previous models [121,122]. Finally, a recent follow-up study 

demonstrated that the Pd-1−/−-anti-CTLA4 mouse model can also reproduce troglitazone 

and tolcapone IDILI, and can distinguish between hepatotoxic and non-hepatoxic drugs of 

the same class [14].

Despite the success of the Uetrecht-Pohl model to date, there are potential problems. First, it 

is a relatively new approach and requires further validation with other IDILI-causing drugs. 

Second, although there is evidence of sustained liver injury in this model, true liver failure 
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has not yet been reported with the model. Finally, the strategies used to break immune 

tolerance in mice are extreme; it is unlikely to be so severe in humans, so other factors may 

need to be considered. Nevertheless, the available data are promising.

Subclinical mitochondriopathy.

Although there is widespread agreement that IDILI involves the adaptive immune system, it 

has been noted that associations with HLA variants are weak and cannot fully explain IDILI 

risk in patients [116]. As a result, it has been suggested that non-immune-mediated 

mechanisms may also be important. Interestingly, Ong et al. [123] reported that mice with 

partial deficiency of the mitochondrial superoxide dismutase 2 (Sod2+/−) developed mild 

liver injury as indicated by both serum ALT and histology after treatment with 30 mg/kg/day 

troglitazone for four weeks but WT mice did not. That result led to the hypothesis that some 

IDILI can be explained by increased susceptibility of patients with subclinical mitochondrial 

dysfunction. However, attempts to reproduce those results have had mixed success. Another 

group reported that the increase in ALT after chronic troglitazone treatment did not differ 

between WT and Sod2+/− mice [124]. In addition, attempts to mimic the troglitazone study 

with other drugs have resulted in only limited evidence for liver injury [125–127]. As a 

result, the Sod2+/− model has fallen out of favor. Associations between SOD2 variants and 

IDILI in humans have been discovered [128], but those variants have not been reported in 

more recent genome-wide association studies [129].

Summary.

Of the currently available animal models for IDILI, the Uetrecht-Pohl model appears to be 

the most similar to humans. Although early results look promising, challenges remain. There 

is still no complete model of serious IDILI with development of liver failure. Furthermore, 

although the Uetrecht-Pohl model suggests that loss of immune tolerance is likely an 

important part of the mechanisms of IDILI, we do not know what would cause that in 

humans. It is also possible that other, as yet unknown mechanisms play a role. An additional 

issue with all of the available models is that they have largely been designed with 

hepatocellular IDILI in mind. These models should also be validated for modeling of 

cholestatic and mixed IDILI.

DIFFERENCES IN DRUG METABOLISM BETWEEN ANIMALS AND HUMANS

Drug metabolism, and especially cytochrome P450-mediated metabolism, should be a major 

consideration when working with any model of DILI. It should be clear from our discussion 

of intrinsic DILI models that many depend upon metabolism to form a reactive metabolite. 

The prevailing view of IDILI is that it too depends upon reactive metabolites, which bind to 

proteins and create neoantigens that elicit an immune response (though other mechanisms 

have also been proposed) [116,130]. Importantly, there are dramatic species differences in 

metabolism. Although the common experimental models (mice, rats, dogs, and monkeys) all 

express homologs of the major P450s in humans, not all homologs have the same substrate 

specificity. In fact, CYP2E1 is the only human P450 that is functionally conserved across 

species [131]. Generally, mice bear the greatest resemblance in overall P450 function to 

humans among common research species, while rats are the most strikingly different [131]. 
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Rats tend to have low P450 activity compared to other species, which may explain why they 

are less susceptible to some hepatotoxicants. Differences in expression or function of other 

enzymes can also be important. For example, dogs are poor acetylators because they lack N-

acetyltransferase (Nat) genes [132] and the high incidence of idiosyncratic sulfonamide 

toxicity in dogs may be a result of that [133], while cats are poor glucuronidators and are 

highly susceptible to APAP hepatotoxicity because they lack functional Ugt1a6 [134]. 

Overall, it is critical to consider species differences in drug metabolism when using animal 

models of DILI.

CONCLUSIONS

DILI is a major clinical and regulatory problem. Many of the challenges presented by DILI 

are due to poor understanding of the mechanisms of toxicity caused by different drugs. 

Although reasonably good models of intrinsic DILI exist, they are often misused. A 

thorough understanding of what is known about the basic mechanisms of injury caused by 

intrinsic hepatotoxicants is necessary to ensure proper use. While IDILI is more difficult to 

reproduce in animals, the Uetrecht-Pohl model involving breakage of immune tolerance 

appears to be a major step forward. Overall, substantial progress is being made in our 

understanding of DILI using animal models, but considerable work remains to be done.
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Highlights

- Drug-induced liver injury (DILI) is important clinically and during drug 

development

- Intrinsic and idiosyncratic DILI are the two principal categories if DILI

- Most relevant models for intrinsic DILI are acetaminophen overdose and 

CCL4

- Idiosyncratic DILI models are less well developed but new ideas are being 

tested

- Review provides critical discussion on validated and newly emerging models 

of DILI
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Figure 1. Mechanisms of Acetaminophen Hepatotoxicity.
Acetaminophen (APAP) hepatotoxicity begins with formation of a reactive metabolite 

(NAPQI) that binds to proteins. Binding to mitochondrial proteins causes mitochondrial 

dysfunction and oxidative stress. The initial reactive oxygen species (ROS) activate kinases 

like the c-Jun N-terminal kinases 1/2 (Jnk), which then exacerbates the mitochondrial 

oxidative stress. Eventually, the mitochondrial permeability transition (MPT) occurs and 

mitochondrial polarization and ATP production are lost. The mitochondrial matrix swell and 

the outer membranes rupture releasing endonucleases (EndoG and AIF) that translocate to 

the nucleus and fragment nuclear DNA.
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Figure 2. Mechanisms of Carbon Tetrachloride Hepatotoxicity.
Carbon tetrachloride (CCl4) is converted to a radical (CCl3·) that binds to proteins, DNA and 

lipids. This causes mitochondrial damage and oxidative stress. CCl3· can also react with O2 

to form CCl3OO·, which initiates the lipid peroxidation (LPO) chain reaction that damages 

cell membranes.
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Figure 3. Importance of Immune Tolerance in Idiosyncratic DILI.
In WT C57Bl/6 mice, daily treatment with idiosyncratic hepatotoxicants causes delayed-

onset transient liver injury. In the Uetrecht-Pohl model, various strategies are used to reduce 

regulation of the adaptive immune system and therefore prevent development of immune 

tolerance, and those mice experience ongoing liver injury. Results from that model have 

demonstrated that immune tolerance is a likely explanation for the transient nature of most 

IDILI in humans; loss of tolerance may explain why only some cases of IDILI are severe.
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Table 1.

Attributes of an ideal model of drug-induced liver injury.

Attribute Description Example(s)

Clinical resemblance to human DILI Doses, time course and/or pathology are similar APAP overdose, Uetrecht-Pohl model, 
mitochondriopathy model

Mechanistic resemblance to human DILI Pathophysiology is similar APAP overdose, Uetrecht-Pohl model?

Experimental convenience Animals develop injury in days to weeks All current models

Biochim Biophys Acta Mol Basis Dis. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McGill and Jaeschke Page 24

Table 2.

Major animal models of intrinsic drug-induced liver injury

Drug Favored Species Typical Dose Strengths Weaknesses

Acetaminophen Mouse 200-600 mg/kg Easy to use, clinically 
relevant Potential interference with metabolism

CCl4 Rat, Mouse 1-2 mL/kg (10-20 mmol/kg) Easy to use, can also 
model chronic DILI

Limited clinical relevance; potential 
interference with metabolism

Thioacetamide Mouse, Rat 100-300 mg/kg Easy to use Limited clinical relevance; potential 
interference with metabolism

Furosemide Mouse 200-500 mg/kg Easy to use Limited clinical relevance; potential 
interference with metabolism

Bromobenzene Mouse, Rat 0.5-1 mL/kg (5-10 
mmol/kg) Easy to use Limited clinical relevance; potential 

interference with metabolism

Allyl alcohol Mouse, Rat 30-100 mg/kg Easy to use Limited clinical relevance; potential 
interference with metabolism
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Table 3.

Major animal models of idiosyncratic drug-induced liver injury

Model Strategy Strengths Weaknesses

Inflammagen model LPS co-administration Easy to use Poor resemblance to human IDILI

Uetrecht-Pohl model Compromised immune tolerance Time course and pathology 
resemble human IDILI No liver failure

Subclinical mitochondriopathy Compromised ROS defense Time course resembles human 
IDILI Poor reproducibility
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