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Abstract

The (pro)renin receptor (PRR) is a multifunctional protein that is expressed in multiple organs. 

Binding of prorenin/renin to the PRR activates angiotensin-II dependent and independent 

pathways. The PRR is also involved in autophagy and Wnt/ß catenin signaling, functions that are 

not contingent on prorenin binding. Emerging evidence suggests that the PRR plays an important 

role in blood pressure regulation and glucose and lipid metabolism. Herein, we review PRR 

function in health and disease, with particular emphasis on hypertension and the metabolic 

syndrome.
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The renin angiotensin system (RAS) plays a vital role in the maintenance of blood pressure 

(BP) and sodium homeostasis. In this system, circulating angiotensinogen is cleaved 

sequentially by renin and angiotensin converting enzyme to generate angiotensin-II (Ang-II) 

which then modulates BP through a multitude of effects including vasoconstriction, 

activation of the sympathetic nervous system, increased aldosterone synthesis, and 

antinatriuresis 1. A number of organs contain their own RAS, wherein Ang-II can exert 

highly localized effects 2. Additional components of the RAS have now been identified 3; 

amongst these, the (pro)renin receptor (PRR) has received much attention 4. Substantial 

efforts have been made to understand the localization, regulation and function of the PRR 

both at a molecular and system level. Further, the recent development of PRR antagonists 5,6 

has advanced our understanding of the complex functions of this pleiotropic protein. Herein, 

we review current knowledge on the biological roles of the PRR, focusing on its 

involvement in hypertension and the metabolic syndrome.
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Basic biology of the (pro)renin receptor

The PRR, encoded by the ATP6AP2 gene on the X chromosome, was first cloned in 2002 4 

and is highly conserved across species 7. The full-length 350-amino acid protein localizes to 

the plasma membrane and encompasses a large extracellular domain that can be cleaved to 

form the soluble PRR (sPRR) and a smaller transmembrane and cytoplasmic domain (M8.9) 
8 (Figure 1). The PRR has been localized to several organs including the kidney, heart, 

vascular smooth, brain, adipose tissue, liver, eye and placenta 4.

The PRR serves a multitude of functions that depend, at least in part, on whether it is intact 

or cleaved into soluble and membrane/cytoplasmic components (Figure 1). Binding of 

prorenin to full-length PRR induces non-proteolytic activation of prorenin-mediated 

angiotensinogen cleavage, while renin bound to the PRR has four-fold higher catalytic 

efficiency as compared to unbound renin 4. The soluble fragment (sPRR) also binds and 

activates prorenin and renin. Independent of Ang-II generation, prorenin/renin binding to 

membrane-bound full-length PRR activates intra-cellular signaling pathways such as p38 

MAPK and ERK1/2 4,9-11. PRR (M8.9) can function as an accessory subunit of the vacuolar 

H+-ATPase and is involved in lysosomal acidification 12; this function of the PRR (M8.9) 

appears to be independent of prorenin/renin binding 13. More recently, the PRR has been 

reported to be involved in the Wnt/ß catenin signaling cascade with an essential role in 

embryonic development, cell differentiation and metabolism 14.

Challenges in studying the (pro)renin receptor

Establishing the physiological role of the PRR has been challenging since global or cell-

specific deletion of PRR often causes early lethality or organ malformation associated with 

abnormal lysosomal acidification 7,15-18. Cardiomyocyte-specific PRR ablation results in 

lethal cardiac failure within 3 weeks after birth 15. Podocyte- specific PRR knockout (KO) 

mice develop severe proteinuria and die of renal failure in the first month after birth 16,17. 

Collecting duct (CD) specific PRR KO mice have pronounced apoptosis, marked renal 

hypoplasia, and a malformed CD system 19. Loss of neuronal or adipose tissue PRR does 

not appear to affect organ structure or function 20-22, suggesting that the lysosomal function 

of the PRR is tissue-specific. A recent study attempted to induce global PRR inactivation in 

adult mice using ROSA26-creERT2; although this model was not efficient in targeting brain, 

kidney, aorta or white adipose tissue, the inducible PRR KO mice displayed early lethality, 

marked weight loss, hypoglycemia and hypercholesterolemia associated with pathologic 

changes in the colon, bone marrow and liver 18.

Antagonists that block prorenin from the binding to the PRR have also been developed 5,6. 

The first PRR blocker was directed toward the handle region peptide (HRP) and prevented 

the binding of prorenin to the PRR; despite initial promising results 5, HRP has now fallen 

out of favor due to partial agonistic properties 23. A newer agent, PRO20, acts as a 

competitive antagonist, is identical to the first 20 amino acids of the prorenin segment and 

contains all of the PRR binding sites 6. As discussed later, several groups have validated the 

specificity of PRO20 in preventing prorenin-mediated PRR function 6,24,25.
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Despite the challenges using gene targeting and PRR antagonism, as discussed in the 

following sections, substantial progress has been made in uncovering the physiological and 

pathophysiological roles of the PRR.

Role of the (pro)renin receptor in blood pressure regulation

Kidney

The PRR has been localized to mesangial cells, podocytes, proximal tubule, distal 

convoluted tubule, the luminal membrane of intercalated cells, and principal cells with the 

highest renal expression in intercalated cells 17,26,27. The CD PRR may be particularly 

important since prorenin is luminally secreted by the CD where it may act on the luminal 

PRR to stimulate sodium reabsorption and elevate blood pressure (BP) 28. Relevant to this, 

renal medullary PRR expression is enhanced in hypertensive rats (Ang-II infusion and 2-

kidney and 1 clip Goldblatt hypertension) 29,30. Renal medullary infusion of PRO20 reduced 

the hypertensive response and renal injury to Ang-II infusion in rats 25. Similarly, infusion of 

PRR shRNA in the renal medulla decreased expression of the epithelial sodium channel 

(ENaC) in rats (although the effect on BP was not examined) 31. In order to delineate the 

role of nephron PRR in BP regulation, we developed an inducible renal tubule PRR 

knockout (KO) mouse 32 to avoid the deleterious effects of PRR deletion on organ 

development. Renal tubule PRR KO mice had similar BP as controls under varying sodium 

intake but had an attenuated hypertensive response with reduced renal ENaC expression 

following Ang-II infusion 33. Further, prorenin stimulated ENaC activity in acutely isolated 

cortical CD in control mice but not in renal tubule PRR KO mice 33. Two other mouse 

models with CD specific PRR deletion recapitulated the protective effects of PRR deletion 

on Ang-II induced hypertension and ENaC expression 34,35. In contrast, Trepiccione et al 

observed no differences in BP, sodium excretion or ENaC expression following Ang-II 

infusion in their nephron wide PRR KO mouse model compared to controls 36. Instead, the 

authors observed reduced ability to excrete an acid load, blunted vacuolar H+-ATPase 

activity and expression, and increased renal medullary lysosomal protein and 

autophagosome markers 36. One explanation for the discordant findings may be related to 

the high dose of Ang-II used to induce hypertension (1000 ng/kg/min in the latter study vs 

300-600 ng/kg/min in others) as well as the timing of PRR deletion (prenatal in the 

Trepiccione study versus during adulthood in other studies). Renal tubular PRR also 

modulates water reabsorption through Ang-II dependent and independent mechanisms 
32,36-38. Recent studies have shown that the PRR regulates vasopressin-stimulated AQP2 

expression via activation of prostaglandin EP4 receptor 38 and the Wnt/β-catenin pathway 
37.

A fundamental question is if the intercalated and/or principal cell PRR modulates renal 

sodium and water reabsorption. To address this, we developed mice with principal or 

intercalated cell specific deletion of the PRR 39. Although loss of the PRR selectively in 

intercalated cells resulted in lower body weight, there was no effect on renal histology, 

medullary ENaC or aquaporin-2 expression, urine concentrating ability, or prorenin-

stimulated ENaC activity by isolated CD. In contrast, principal cell specific PRR deletion 

reduced ENaC and AQP2 expression in the renal medulla, decreased urine concentrating 
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ability, and abolished prorenin-stimulated ENaC activity in isolated CD. Thus, these studies 

indicate that principal, but not intercalated, cell PRR modulates renal sodium and water 

transport.

The macula densa PRR also appears to regulate BP and systemic renin release 40. Using a 

combination of cell culture and in-vivo studies, Riquier-Brison et al demonstrated that the 

macula densa PRR amplifies renin/prorenin-stimulated renin release via ERK1/2 signaling 

in a short-loop feed forward mechanism 40. Consistent with this, mice with macula densa 

specific PRR ablation have reduced BP and plasma renin levels; these effects were more 

prominent following treatment with low salt diet and renin-angiotensin system (RAS) 

blockers 40.

The renal PRR may also contribute to development of hypertension in kidney disease. Mice 

heterozygous for PRR deletion in nephron progenitor cells (homozygous deletion leads to 

early neonatal death) have fewer glomeruli, altered glomerular basement membrane 

ultrastructure, and develop hypertension at 2 months of age 41, suggesting that early loss of 

PRR may be involved in developmental programming of hypertension. Recently, Xu et al 

found increased renal PRR expression, activation of the intra-renal RAS, and salt sensitive 

hypertension in rats fed a high fructose diet; treatment with PRO20 reduced high fructose 

induced sodium retention, BP and intra-renal RAS activation 42. Polycystic kidney disease is 

associated with early onset of hypertension; an animal model of polycystic kidney disease 

had increased renin expression in cysts and mis-localization of the PRR from the luminal 

membrane of intercalated cells to the basolateral membrane of principal cells 43. However, 

despite growing evidence for the renal PRR in BP regulation and renal function, some 

inconsistencies exist. Overexpression of the PRR under the control of cytomegalovirus early 

enhances/chicken ß-actin (CAG) promoter (expressed in embryonic stem cells) in mice does 

not alter BP or albuminuria despite a 25-80-fold increase in renal PRR expression 44. 

Conversely, transgenic rats with ubiquitous human PRR overexpression remain 

normotensive despite proteinuria and progressive nephropathy 45. Taken together, these 

studies raise the possibility that while general PRR overexpression may not affect BP, 

specific renal cell (particularly the CD) PRR is involved in BP regulation particularly under 

pathophysiological conditions (Figure 2).

Cardiovascular system

Cardiac myocyte PRR is closely linked to the vacuolar H+-ATPase as well as the ryanodine 

receptor 46. Cardiac PRR expression is increased in diabetes 46, myocardial infarction 47 and 

heart failure 48. In addition, high sodium intake and severe sodium restriction modulate 

cardiac PRR expression 49. Rats fed a high salt diet (8.9% NaCl) had elevated BP and 

cardiac fibrosis associated with enhanced cardiac expression of prorenin/renin and the PRR 
49. Similarly, very low salt intake (0.01% sodium) in rats increased cardiac expression of 

prorenin/renin and the PRR, and accelerated cardiac and perivascular fibrosis despite normal 

blood pressure 50.

The in vivo role of cardiac PRR in hypertension and cardiac function has been difficult to 

determine since, as mentioned above, constitutive deletion of the PRR in the cardiomyocytes 

leads to lethal heart failure as a result of impaired lysosomal function 15. Global or cardio-
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specific overexpression of the PRR did not alter BP or cardiac structure or function at 

baseline 45,47 or in response to stress and ischemic injury 47. Similarly, mice with 

constitutive overexpression of PRR under the control of CAG promoter had no changes in 

BP or cardiac function despite a 400-fold increase in cardiac PRR expression 44. In contrast, 

over-expression of PRR in adult rat hearts via adenovirus mediated gene delivery for 2 

weeks caused reduced left ventricular ejection fraction and resulted in Ang-II independent 

activation of cell signaling pathways 51. Taken together, these studies suggest that either the 

cardiac PRR does not play a role in BP regulation or compensatory mechanisms counter any 

effects exerted by the increased PRR expression (Figure 2).

The PRR is also found in vascular smooth cells where it localizes to the cell surface and 

interacts with the vacuolar H+-ATPase 52. Vascular smooth muscle cell specific loss of PRR 

in mice caused non-atherogenic sclerosis of the abdominal aorta in the face of unchanged 

BP 52. Rats with vascular smooth cell-specific overexpression of the human PRR develop 

hypertension and tachycardia at 6 months of age 53. Vascular smooth cell PRR also mediates 

prorenin-stimulated smooth muscle migration in cultured aorta 54, induction of 

inflammatory mediators such as plasminogen activator inhibitor- 1, and activation of 

ERK1/2 signaling pathways 54. Thus, the vascular smooth cell PRR, seemingly more than 

the cardiac PRR, may play a role in BP regulation; such an effect occurs via both Ang-II 

dependent and -independent pathways (Figure 2).

Brain

The central nervous system PRR may play a vital role in the local RAS, particularly given 

that brain renin levels are thought to be too low to generate significant local Ang-II 55. 

Within the brain, the PRR has been localized to the supraoptic nucleus, nucleus of the 

solitary tract, the subfornical organ (SFO) and the paraventricular nucleus, all of which are 

vital regulators of cardiovascular function and volume homeostasis. As in other tissues, 

binding of prorenin/renin to the neuronal PRR enhances Ang-II synthesis and activates 

intracellular signaling pathways such as ERK1/2 56.

The role of the brain PRR in hypertension has been studied extensively over the last several 

years 56 (Figure 2). Supraoptic nuclear specific knock-down of the PRR in spontaneously 

hypertensive rats attenuated age-related increases in BP 57. Intracerebroventricular (ICV) 

infusion of PRR shRNA in mice overexpressing both human renin and angiotensinogen 

reduced BP, lowered cardiac and vasomotor sympathetic tone, and improved baroreflex 

sensitivity 58. These findings suggested that brain Ang-II was generated by PRR; to test this 

hypothesis, Li et al generated neuron-specific PRR KO mice and observed reduced brain 

Ang-II levels and an attenuated hypertensive response to ICV infusion of mouse prorenin 20. 

Further, neuron-specific PRR deletion or ICV infusion of PRO20 diminished 

deoxycorticosterone acetate-salt-induced neuronal PRR expression, Ang-II formation and 

hypertension 6,20. Post-mortem analysis of human brain tissues showed higher neuronal 

PRR expression in the SFO in hypertensive vs. normotensive patients, and this significantly 

correlated with BP 59. Finally, recent studies have demonstrated that the neuronal PRR 

exerts Ang-II independent functions by stimulating sympathetic outflow via reactive oxygen 
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species and inducible nitric oxide synthase signaling along with activation of ERK/NADPH 

oxidase 4 pathways 60.

As mentioned earlier, unlike PRR deletion in other organs, neuronal PRR deletion or 

pharmacological blockade with PRO20 within the brain does not detectably alter lysosomal 

function, metabolism or survival 6,20 since the neuronal PRR does not appear to modulate 

vacuolar H+-ATPase activity or the Wnt/β-catenin signaling pathway. This relatively unique 

feature of the neuronal PRR may be helpful in developing novel PRR antagonists that 

specifically block prorenin dependent functions.

Adipose tissue

Adipose tissue is increasingly recognized as an endocrine organ and expresses many 

components of the RAS, including the PRR 61. Adipose tissue PRR expression increases 

with obesity 62-64 and, similar to other tissues, binding of renin/prorenin to adipocyte PRR 

results in Ang-II generation as well as ERK1/2 activation 62-64. Using constitutive 

adipocyte-specific PRR deletion, Wu et al observed elevated systolic BP and increased 

plasma sPRR levels in KO compared to control mice under varying fat intake without 

observable differences in systemic RAS components 21 (Figure 2). The increase in sPRR, 

which may have contributed to the observed hypertension, was unexpected. Notably, these 

mice had aberrant glucose and lipid homeostasis, so it is possible that sPRR production by 

other organs or sPRR metabolism was secondarily affected. As discussed in more detail 

below, adipocyte PRR is also an important modulator of glucose and lipid homeostasis and 

may contribute to insulin resistance in obesity 62-64.

Placenta

The placenta PRR may regulate BP although the evidence is limited. Among gestational 

tissues (amnion, chorion, decidua and placenta), the PRR is most highly expressed in the 

placenta where it is thought to play a role in prorenin-stimulated prostaglandin synthesis 65.

The first study to describe an association between placental RAS and pre-eclampsia noted a 

2-fold increase in plasma and placental prorenin levels and increased placental PRR 

immunostaining in a rat model of pre-eclampsia 66. This study also reported increased 

plasma prorenin levels in preeclamptic women compared to normotensive pregnant women 
66. A subsequent study found higher placental PRR expression and plasma sPRR levels in 

preeclamptic women; systolic BP positively correlated with placental PRR but not plasma 

sPRR 67. Although plasma prorenin/renin levels were not measured, these findings raise the 

possibility of placental PRR-mediated RAS activation in preeclampsia. Recently, Suggule et 

al examined maternal blood samples for prorenin, renin and sPRR in a group of 

preeclamptic, diabetic and healthy pregnant women 68. While no differences were observed 

in plasma prorenin or renin levels among the study groups, plasma sPRR levels were 

increased in diabetic pregnancies but not preeclamptic pregnancies. These findings raise 

several questions about the role of placental PRR in altered BP regulation (Figure 2), 

including the source of the plasma sPRR in healthy and complicated pregnancies, whether 

plasma sPRR is an indicator of local RAS activation within the placenta, and the biological 

function of the placental PRR.
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Clinical studies

Single nucleotide polymorphisms (SNPs) in the ATP6AP2 gene have been linked to BP and 

vascular disease. Using linkage-disequilibrium analyses, Hirose et al identified three SNPs 

in the ATP6AP2 gene (located in the promoter region, intron 5 and the 3’ untranslated 

region) and examined the association with BP in a Japanese cohort of 1100 participants 69. 

T-allele carriers of the IVS5+169C > T polymorphism (found in intron 5) had higher 

ambulatory BP in men but not women 69. These results were replicated in a separate study of 

Caucasian men where higher office and ambulatory systolic BP was observed in T-allele 

than C-allele carriers 70. In contrast, the association of lacunar infarction and left ventricular 

hypertrophy was higher in women with the +1513A>G polymorphism (located in the 3’ 

translated region) with no difference in prevalence of lacunar infarction or left ventricular 

hypertrophy among the three SNPs in men 71. While these studies lend credence to the 

notion that the PRR contributes to BP regulation and cardiovascular disease, they need to be 

validated in larger clinical studies as well as determining the phenotypic effects of these 

mutations. ATP6AP2 gene mutations have also been associated with X-linked mental 

retardation, epilepsy and parkinsonism 72-74 but these SNPs are limited to single families of 

2-7 affected individuals.

Alterations in plasma sPRR levels may be associated with hypertension as well as other 

cardiovascular and renal conditions. Plasma sPRR levels did not change with age, sex, 

posture, hormonal status or circadian rhythm, but are 25% lower in black than white 

participants 75. Plasma sPRR levels increase as the severity of kidney disease worsens 76,77. 

High serum sPRR levels have been described in hemodialysis patients and are associated 

with atherosclerosis risk 78. Plasma sPRR levels are elevated in patients with chronic heart 

failure with reduced ejection fraction and are even greater in patients with concomitant heart 

failure and renal dysfunction 79. Finally, elevated plasma sPRR levels occur in pre-eclampsia 
67 and obstructive sleep apnea 80. Thus, plasma sPRR levels may be of pathological 

significance and/or could be of value as a biomarker in the development and progression of 

kidney and cardiovascular disease. A summary of all current experimental and clinical 

studies of the PRR in BP regulation is described in Table 1.

Role of the (pro)renin receptor in glucose and lipid metabolism

Diabetes and insulin resistance

Soon after the discovery of the PRR, a decoy peptide termed ‘handle region peptide’ (HRP) 

was developed to block prorenin binding to the PRR 5. Early studies demonstrated that HRP 

markedly inhibited the development of diabetic nephropathy and reduced renal Ang-I and 

Ang-II levels in streptozotocin (STZ) induced Type 1 diabetic rats despite no changes in 

body weight, hyperglycemia and BP 5. Subsequently, HRP treatment was reported to be 

protective against development of diabetic nephropathy in Type 1 and 2 diabetic rodent 

models 81-8384,85 and in reversing established diabetic nephropathy in STZ-induced diabetes 
86. However, recent studies have shown that HRP increases inflammatory markers and 

cardiac fibrosis in diabetes 23,87 and may even have partial agonistic effects, questioning the 

specificity of HRP with regards to PRR function 88. Still, enhanced PRR expression is 

reported in whole kidney extracts in diabetic rats 83,89 and cultured renal cell lines exposed 
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to high glucose 27,90,91. This is of particular significance since intrarenal, and particularly 

CD, prorenin/renin levels are markedly elevated in diabetes 92 and may contribute to the 

development of diabetic nephropathy via interaction with the renal PRR.

Other studies have provided indirect evidence for enhanced renal medullary PRR expression 

in insulin resistance. Mice with a null mutation of the carcinoembryonic antigen-related cell 

adhesion molecule 1 (Ceacam 1) had insulin resistance, visceral obesity and postprandial 

hyperglycemia associated with increased expression of medullary PRR and activation of 

tubular RAS components 93; all of these abnormalities were exacerbated by high fat intake 
94. The same group demonstrated that high fat intake per se augments renal medullary PRR 

expression and Ang-II levels leading to hypertension, while renal tubular PRR KO mice 

were protected from high-fat diet induced hypertension 95. Thus, the renal PRR might play a 

role in the development and progression of renal injury in diabetes and insulin resistance.

Several studies have examined the role of adipocyte PRR in obesity and insulin resistance. 

Mice fed a high fat diet for 10 weeks had increased adipose tissue PRR expression without 

changes in heart, kidney and liver PRR levels 64. HRP treatment decreased weight gain, 

adipose tissue and circulating leptin levels, adipocyte inflammatory markers, plasma glucose 

and insulin, and triglyceride levels in obese mice 64. These effects appear to be due to 

redistribution of fat storage by increased adipogenesis, decreased lipogenesis and activation 

of triglyceride/free fatty acid cycling, resulting in reduced visceral adipose tissue and 

increased subcutaneous fat deposition 96. Consistent with the above studies, PRR mRNA 

was modestly increased in subcutaneous fat obtained from insulin resistant obese women 

compared to insulin sensitive obese women 64.

Recently, adipose tissue-specific PRR KO mice have been developed which show lower 

body weights compared to controls 21,22. When adipose tissue PRR is deleted using the 

adipocyte protein 2-Cre (which reportedly reduces PRR gene expression by 50-80%), 

hemizygous male KO mice have lower total fat mass, higher total lean mass and increased 

basal metabolic rate 22. Male KO mice and high fat-fed female KO mice had lower plasma 

insulin levels compared to WT mice although glucose tolerance test results were similar 

between KO and control mice. Further, circulating adiponectin levels were elevated in both 

male and female mice with no differences in circulating lipids or systemic renin levels 22. In 

contrast, adipocyte PRR deletion induced by adiponectin-Cre (with higher gene targeting 

efficiency) results in elevated plasma insulin levels likely due to hepatic steatosis and 

impaired insulin clearance 21; these mice also demonstrate improved insulin sensitivity 

under high fat intake 21. Collectively, these studies highlight the importance of adipose tissue 

PRR in obesity and insulin resistance. Further studies are needed to determine the molecular 

mechanisms involved in adipocyte PRR modulation of insulin signaling, particularly under 

diabetic conditions.

Finally, PRR expression is described in both human and mouse pancreatic islet cells and can 

modulate GLP1R signaling and insulin processing to affect insulin secretion 97. 

Additionally, PRR expression was reduced in islet cells from human diabetics compared to 

healthy controls, raising the possibility of a role for the PRR in insulin processing and/or 

secretion.
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Lipid homeostasis

A novel, Ang-II independent function attributed to the PRR is regulation of lipoprotein 

metabolism. In a series of elegantly designed studies, Lu et al identified sortilin-1 (SORT1) 

as a key PRR interacting protein by mapping the PRR-interactome in HEK293 cells 98. They 

determined that the PRR was a post-transcriptional regulator of SORT1 that in turn 

modulates low-density lipoprotein (LDL) metabolism. In cultured hepatocytes, knock-down 

of the PRR reduced SORT1 and LDL receptor abundance leading to severely attenuated 

cellular LDL uptake which could be reversed by treatment with lysosomotropic agents such 

as bafilomycin A1 98, suggesting that PRR regulation of LDL receptor and SORT1 was 

independent of vacuolar H+-ATPase activity. The authors then demonstrated that mice 

injected with antisense oligonucleotides specifically targeting hepatic PRR had increased 

plasma LDL levels with an unexpected decrease in plasma triglyceride levels on a normal fat 

diet and during early stages of high fat intake 99. Further, hepatic PRR knock-down 

attenuated diet-induced obesity and hepatosteatosis in chronic high fat diet fed mice and 

reduced both plasma cholesterol and triglyceride levels in LDL-receptor deficient mice 

regardless of fat intake 99. These effects appear to be mediated via reduced lipid synthesis 

and increased fatty acid oxidation via acetyl-CoA carboxylase and pyruvate dehydrogenase.

Similarly, a recent study described an association between missense mutations in the 

extracellular domain of the PRR with a ‘congenital glycosylation disorder’ manifested by 

liver disease, immunodeficiency and psychomotor impairment in humans 100. The authors 

studied this in a mouse model with liver-specific knockdown of PRR and proposed that the 

clinical symptoms of the glycosylation disorder were likely due to impaired vacuolar H+-

ATPase assembly leading to defects in autophagy 100. Taken together, these studies highlight 

a novel role of the PRR in lipid metabolism and liver function.

Clinical studies

Limited clinical data exists on the role of the PRR in glucose and lipid metabolism. 

Mutations in the ATP6AP2 gene were associated with disorders of glycosylation and 

autophagy in a small group of patients 100,101. Elevated plasma sPRR levels were described 

in several studies of gestational diabetes mellitus 68,102,103 yet plasma sPRR levels in 

diabetic patients were similar to those in healthy controls 75. Ongoing research on the tissue-

specific role of the PRR in glucose and lipid metabolism will help clarify these conflicting 

results and determine if the PRR is a reasonable therapeutic target. Table 2 summarizes 

current evidence for the PRR in glucose and lipid metabolism.

Role of the (pro)renin receptor in fibrosis

As described earlier, the PRR is involved in the Wnt/β-catenin signaling pathway and plays 

an important role in kidney development and cell differentiation. New research suggests that 

PRR activation of Wnt/β-catenin signaling could contribute to renal fibrosis 104. Renal PRR 

expression is up-regulated in mice with chronic kidney disease following unilateral ureteral 

obstruction, adriamycin-induced renal injury or following chronic Ang-II infusion 104. In 

these conditions, the renal PRR, via activation of the Wnt/β-catenin pathway, enhances 

expression of downstream profibrotic markers such as fibronectin, plasminogen activator 
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inhibitor 1 and α– smooth muscle actin (α-SMA). Consistent with this, PRR 

immunostaining was markedly enhanced in human kidney biopsy specimens with diabetic 

nephropathy, membranous nephropathy or lupus nephritis compared to control normal 

kidney biopsies 104. While PRR activation of the Wnt/β-catenin signaling was independent 

of prorenin in the above study 104, others report that prorenin treatment in cultured renal 

tubular epithelial cells, albeit at higher doses than seen in vivo, enhances expression of the 

PRR, vacuolar H+-ATPase and profibrotic markers 105,106. Further, inhibition of the PRR or 

vacuolar H+-ATPase activity partially reduced prorenin-induced fibronectin and α-SMA 

expression, suggesting that prorenin, via the PRR, promotes renal fibrosis 105. However, 

mice with constitutive global overexpression of PRR did not manifest cardiac or renal 

fibrosis despite marked increases in renal and cardiac PRR expression 44. Interpretation of 

these findings is difficult; however, the bulk of evidence suggests that the PRR, at least under 

some conditions, may play a pro-fibrotic role.

Perspectives and future studies

The PRR exerts a multitude of effects involving numerous tissues; these have physiological 

and pathophysiological consequences. The PRR may be of pathological significance in 

hypertension, metabolic syndrome, diabetes and other disorders. While clearly additional 

studies are necessary, it is instructive to speculate on what our current knowledge of the PRR 

might imply with regard to clinical relevance and, in particular, its utility as a clinical marker 

and/or therapeutic target. Several studies raise the interesting possibility of using sPRR as a 

clinical marker; however, it remains to be seen whether circulating and/or urinary sPRR, 

possibly together with prorenin, will have prognostic or diagnostic utility. With regard to 

therapeutic potential, it is first important to distinguish targeting PRR from effects elicited 

by other RAS antagonists: angiotensin receptor blockers, angiotensin converting enzyme 

inhibitors or direct renin inhibitors. None of these agents interfere with prorenin or renin 

binding to, or activating of, the PRR, i.e., the Ang-II independent effects of the PRR would 

not be targeted. Since Ang-II independent effects of PRR activation include stimulation of 

profibrogenic pathways and, as described herein, targeting the PRR reduces end organ 

pathology independent of targeting Ang-II, it is appropriate to further investigate the 

potential for using PRR antagonists in disease. However, such agents would have to block 

prorenin/renin-stimulated PRR signaling without interfering with PRR modulation of the 

vacuolar H+-ATPase. Since PRR regulation of the vacuolar H+-ATPase is independent of 

prorenin/renin, such agents may be possible; clearly, much additional work is needed in this 

area.
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Figure 1. 
Basic biology of the (pro)renin receptor (PRR). (A) Simplified schematic of the PRR 

protein; (B) Prorenin/renin dependent PRR function; and (C) Prorenin/renin independent 

PRR function. Binding of the prorenin to the full length or sPRR induces non-proteolytic 

activation of prorenin to cleave angiotensinogen while binding of renin to full length or 

sPRR increases catalytic efficiency. Independent of Ang-II, binding of prorenin/renin to the 

PRR activates intra-cellular signaling pathways. AGT – angiotensinogen; Ang-I – 

angiotensin-I; Ang-II – angiotensin-II; PRR – (pro)renin receptor; sPRR – soluble (pro)renin 

receptor; p38MAPK – mitogen activated prorenin kinase; ERK1/2 – extracellular signal-

regulated kinase; PI3K – phosphoinositide 3-kinase; PLZF – promyelocytic leukemia zinc 

finger; Wnt/ß catenin.
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Figure 2. 
Organ specific functions of the (pro)renin receptor (PRR).VSMC – vascular smooth muscle 

cells.
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