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Abstract

Purpose: The complex and varied presentation of myalgic encephalomyelitis/chronic fatigue 

syndrome (ME/CFS) has made it difficult to diagnose, study, and treat. Its symptoms and likely 

etiology involve multiple components of endocrine and immune regulation including the 

hypothalamic-pituitary-adrenal, the hypothalamic-pituitary-gonadal axis, and their interactive 

oversight of immune function. We propose that the persistence of ME/CFS may involve changes in 

the regulatory interactions across these physiological axes. We also propose that the robustness of 

this new pathogenic equilibrium may at least in part explain the limited success of conventional 

single-target therapies.

*To whom correspondence should be addressed: gordon.broderick@rochesterregional.org, Medical Office Building Rm. 590, 
Rochester General Hospital, 1425 Portland Avenue, Rochester, NY 14621.
Author’s Contributions
MM and KC developed and evaluated the mathematical model, conducted the analyses, prepared graphics and drafted the initial 
manuscript. GB oversaw the design of the mathematical tools and the analyses and co-wrote the initial manuscript. TJAC reviewed the 
design of the methods, consulted on the methodology, co-wrote and edited the manuscript. MA oversaw the collection, filtering and 
normalization of the raw data. FC and EGB oversaw study coordination, recruitment and processing of all subjects. MAF designed the 
study, oversaw all laboratory assessments, sample collection and processing as well as contributing directly to the interpretation of the 
results. NGK designed the study, directed all clinical and scientific aspects of the overall study contributing directly to the study design 
and the interpretation of results. All authors have read and approved the final manuscript

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Mandatory Disclaimer
The opinions and assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting 
the views of the Department of Defense.

Appendix A. Supplementary material
Figures A1–A5

HHS Public Access
Author manuscript
Clin Ther. Author manuscript; available in PMC 2020 April 01.

Published in final edited form as:
Clin Ther. 2019 April ; 41(4): 656–674.e4. doi:10.1016/j.clinthera.2019.03.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods: We constructed a comprehensive model of female endocrine-immune signaling 

consisting 28 markers linked by 214 documented regulatory interactions. This detailed model was 

then constrained to adhere to experimental measurements in a subset of 17 candidate immune 

markers measured in peripheral blood of ME/CFS subjects and healthy controls before, during, 

and after a maximal exercise challenge. A set of 26 competing numerical models satisfied this data 

to within 5% error.

Findings: Mechanistically informed predictions of endocrine immune markers that were either 

unmeasured or exhibited high subject-to-subject variability pointed to possible context-specific 

overexpression in ME/CFS at rest of CRH, CXCL8, estrogen, FSH, GNRH1, IL-23, and 

luteinizing hormone, and under-expression of ACTH, cortisol, IFNγ, IL-10, IL-17, and IL-1α. 

Simulations of rintatolimod and rituximab treatment predicted a shift in the repertoire of available 

endocrine-immune regulatory regimes. Rintatolimod was predicted to make available substantial 

remission in a significant subset of subjects, in particular those with low IL-1α, IL-17, and 

cortisol, intermediate progesterone and FSH, and high estrogen levels. Rituximab treatment was 

predicted to support partial remission in a smaller subset of ME/CFS subjects specifically those 

with low norepinephrine, IL-1α, CXCL8, and cortisol, intermediate, intermediate FSH and 

GNRH1, and elevated expression of TNFa, LH, IL-12, and B cell activation.

Implications: Applying a rigorous filter of known signaling mechanisms to experimentally 

measured immune marker expression in ME/CFS has highlighted potentially new context-specific 

markers of illness. These novel endocrine and immune markers may offer useful candidates in 

delineating new subtypes of ME/CFS and may inform on refinements to the inclusion criteria, and 

instrumentation of new and ongoing trials involving rintatolimod and rituximab treatment 

protocols.
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INTRODUCTION

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disorder 

where a key presenting feature consists of a state of persistent debilitating fatigue lasting 

more than six months. Though diagnostic criteria have evolved from early case definitions1 

characteristic features commonly include pathological fatigue and malaise that are worsened 

after exertion, cognitive dysfunction, immune dysfunction, unrefreshing sleep, pain, 

autonomic dysfunction, neuroendocrine and immune symptoms2. Although this would point 

to a multifactorial etiology involving hormonal, neurological, and immunological factors, 

initial efforts at biomarker identification were focused on immune dysregulation3,4, perhaps 

owing to the significant occurrence of infectious illness as correlate of onset3,5.

In general, stress has a dysregulating influence on hormonal systems with consequences for 

metabolism and reproductive function in women. In addition to the systems described above, 

the immune system has also been implicated in the etiology of ME/CFS6,7. In healthy 

subjects, close coordination between the hypothalamic-pituitary-gonadal (HPG) and immune 
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systems has been described, giving rise to regular fluctuations over the course of the 

menstrual cycle as well as acute variations in response to HPG activation8,9. The primary 

stress response axis, the hypothalamic-pituitary-adrenal (HPA) axis, can be stimulated by 

peripheral inflammatory responses to infection or trauma resulting in the sympathetic 

activation of a positive feedback loop whereby hypothalamic inflammatory signaling drives 

and is sustained by local production of IL-1β, IL-6, and TNFα10. Indeed, ME/CFS has 

frequently been observed to follow infection by Epstein-Barr virus, in which context it tends 

to be associated with chronic dysregulation of inflammatory cytokine production3. 

Rintatolimod (ampligen), a specific activator of inflammatory mediator toll-like receptor 3 

(TLR3) has been deployed in ME/CFS treatment for decades, with varying efficacy11,12. 

With immune B cells serving as a reservoir for latent EBV infection, B cell depletion by 

Rituximab has also been deployed in clinical trials and has seen some success in treating 

ME/CFS13. Combined with observations of deficient Epstein-Barr virus-specific B cell 

responses in ME/CFS patients14, this suggests that dysregulated B cell function and 

persistent latent viral infection may be significant contributing factors to ME/CFS. However, 

efforts to identify specific markers of B cell dysfunction have been inconsistent, with various 

reports of altered maturation15, serum B cell activating factor13, and conflicting results of 

gene expression studies7,16. Nonetheless, a general neuro-immune model of ME/CFS has 

been proposed, where an initial infection may lead to chronic peripheral immune activation 

and sustained neuroinflammation, with cyclic fluctuations in T cell balance contributing to 

observed patterns of relapse and remission17.

Since women are at higher risk of ME/CFS than men5,18, it is thought that female sex 

hormones play an important role in the onset, persistence, and symptom burden of this 

illness19. Despite evidence of sex-specific differences in susceptibility and response to 

infection by pathogens20 and autoimmunity21, the potential role of cross-talk between sex 

hormone regulation and oversight of immune function in ME/CFS has not been well 

explored. The same may be said of immune crosstalk with metabolic hormones22 in 

ME/CFS with the possible exception of recent work implicating dysregulation of leptin23,24 

in illness severity. Indeed, stress hormone regulation has arguably been the main focus of 

endocrine involvement in ME/CFS and has been relatively well documented25. 

Unfortunately, these components have been studied largely in isolation with limited 

consideration of their regulatory interactions with adjacent and overlapping systems.

To explore the potential for altered co-regulation of endocrine and immune axes as a 

mediator of ME/CFS and its persistence, our group had assembled a basic computational 

model of regulatory logic coordinating the principal feedforward and feedback actions of the 

hypothalamus-pituitary-adrenal (HPA) axis, the hypothalamus-pituitary-gonadal (HPG) axis, 

and the innate and adaptive branches of the peripheral immune system. We found that even 

this coarse-grained model could support multiple steady states, two of which were proximal 

to immune marker profiles exhibited by ME/CFS subjects26,27. Though useful in 

demonstrating the potential involvement of endocrine-immune co-regulatory control in 

supporting the persistence of this condition, these first models remained coarse in resolution. 

This work extends our initial proof of concept study with the assembly of a more detailed 

endocrine-immune circuitry where regulatory dynamics are supported by a more 

sophisticated logic that captures the actions of low and high affinity receptor signaling as 
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well as competing influences of weak versus strong mediators. These effects are adjusted to 

directly align model predictions with experimental measurements of immune markers 

sampled in peripheral blood at 8 points in time before, during, and after a maximal exercise 

challenge. Instead of broad immune functional sets, individual cytokines are now networked 

with a more detailed model of sex, stress and metabolic hormones through regulatory 

interactions extracted from the published scientific literature using automated natural 

language processing (NLP). This literature-informed model of endocrine-immune regulatory 

logic aligned supported experimentally observed immune responses to maximal exercise 

within 5% error in 26 competing candidate models. The regulatory constraints imposed by 

these competing model circuits predicted widespread dysregulation of endocrine function in 

ME/CFS patients at rest, characterized by blunted HPA regulation, HPG overactivation, and 

an immune profile dominated by IL-8 and IL-23. Together, these patterns may contribute to 

the pathologies experienced by ME/CFS patients. Simulations based on this family of 

models mimicking the effects of TLR3 activation and B cell depletion suggest that these 

interventions may in fact alter the repertoire of stable regulatory behaviors in favor of a more 

robust normal regulation or in the case of the latter even render ME/CFS dynamically 

unstable outright.

PATIENTS AND METHODS

Participants

A total of 88 female subjects (43 with ME/CFS and 45 healthy controls (HC)) were selected 

without exclusion for ethnicity from the patient population of the Institute for Neuroimmune 

Medicine at Nova Southeastern University (NSU), directed by Nancy Klimas, M.D. All 

subjects signed an informed consent approved by the Institutional Review Board of Nova 

Southeastern University, Fort Lauderdale, FL. Included subjects presented with acute onset 

and with an illness duration of at least 4 years. ME/CFS was diagnosed according to current 

research case definitions1,28: fatigue of greater than 6 months duration and at least 4 of 8 

symptoms including exercise-induced relapse, myalgia, arthralgia, headache of a new and 

different type, nonrestorative sleep, cognitive complaints, sore throat, and tender lymph 

nodes. All ME/CFS study subjects presented with a SF-36 summary physical score (PCS) 

below the 50th percentile, based on population norms. Heathy controls (HC) were self-

defined as sedentary (no regular exercise program, sedentary employment), and matched to 

ME/CFS cases by age (+/−5 years), race/ethnicity, and BMI (+/−5).

Study Design—Subjects were challenged with a supervised symptom-limited maximum 

graded exercise test (GXT) performed under the McArdle protocol on a fully-automated Life 

Fitness cycle Model 95Ri and the Oxycon Mobile ergospirometry testing device. Subjects 

pedaled at an initial output of 60 W for 2 minutes, followed by an increase of 30 W every 2 

minutes. This was continued until one of the following endpoints: 1) maximal oxygen 

consumption (VO2max) was reached; 2) respiratory exchange ratio > 1.15; 3) the subject 

discontinued the challenge. Blood samples (8 mL) were collected before the test after a 30-

minute rest period, at maximal effort, and at 10, 20, 30, and 60 minutes post-stress, with 

additional blood draw at approximately 12 hours and 24 hours post-stress. Peripheral blood 
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mononuclear cells (PBMC) were isolated by Ficoll-Paque extraction and stored in liquid 

nitrogen; plasma was stored at −80C.

Assessments—PBMC samples from each timepoint were analyzed by flow cytometry on 

a Beckman/Coulter FC500 using commercially available antibodies to record frequencies of 

B cell (CD19+) and NK cell (CD3-CD56+) populations. Plasma concentrations of IFNγ, 

IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-13, IL-15 IL-17, IL-23, and TNFα were measured 

by Q-Plex multiplex ELISA (Quansys Biosciences, Logan, Utah). Details of the protocol 

and assay variability have been reported previously by our group3,29. Finally, serum samples 

were analyzed for concentrations of the predominant estrogen estradiol (E2) and 

progesterone by immunoelectro-chemiluminescence (IECL) assays on a Roche Cobas 6000 

analyzer (Roche Diagnostics, Basel, Switzerland), following all manufacturer’s instructions 

for instrument maintenance and assay calibration and test procedures with inter-assay CV’s 

that are consistently <4%.

Statistical Analysis

Differences in marker expression were tested for significant effects of condition, timepoint, 

and condition-time interactions by 2-way ANOVA; raw F test null probability p values were 

adjusted for multiple comparisons by the Benjamini-Hochberg procedure with a false 

discovery rate of 0.05 in R version 3.4.230. Continuous measurements were converted to 

discrete values using a variational Bayesian update scheme for expectation maximization of 

Gaussian mixture models31,32. The full set of measurements for each marker was used to 

define the most representative number of discrete activation levels (e.g. whether the cytokine 

measured behaved according to binary or multi-valued logic). Each variable was then 

summarized by taking the median of inverse hyperbolic sine (arcsinh)-transformed values 

for HC and ME/CFS patients at each timepoint. These summarized values were discretized 

by k-means clustering using the previously-defined maximum activation levels to determine 

the number of clusters: the discretized values for entities which were found to vary 

significantly by ANOVA were used as input trajectories for model parameterization. 

Predicted behaviors for network entities were analyzed after parameterization. ANOVA was 

performed on predicted trajectories excluding the start state values; the start states were 

compared separately by Wilcoxon rank-sum test. Figures were prepared using the ggplot2 

package in R33. Graph topological metrics (e.g. betweenness centrality) were calculated 

using MATLAB.

Mechanistic Modeling of Endocrine-immune Signaling

The model assembled and reported previously by our group27 has been extended in this 

work to include additional regulators (nodes) of HPG and HPA axis function, as well as 

regulators of the HPT axis and a much more detailed description of the immune signaling. 

Regulatory interactions (edges) between these entities were drawn from the Pathway Studio 

(Elsevier, Amsterdam NL) knowledge database, a repository extracted from the published 

scientific literature using the MedScan34 natural language processing engine. Edges were 

verified independently using our implementation of a Bayesian sentiment analysis 

classifier35. Disagreements between MedScan and this platform were reviewed and 

adjudicated by the authors.
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The scope of the validated regulatory network was further constrained to focus on regulators 

directly involved in feedforward and feedback control. Nodes with no outgoing edges (sink 

nodes) were removed with the exception of B cells and NK cells since experimental 

measurements of these immune cell populations were available. Direct regulatory 

associations which duplicated the actions of a sequence of indirect associations were also 

removed to promote parsimony. For example, while the Pathway Studio database contained 

many associations directly linking physiological stress to a range of immune mediators, 

these actions were more accurately accounted for by representing these as downstream 

effects of HPA axis regulation. Redundant regulatory actions such as these were removed 

after careful consideration of the references supporting them.

Endocrine Regulatory Logic

As mentioned above dysregulation of the HPA stress response axis has long been associated 

with ME/CFS. Indeed, a simple computational model of HPA function previously reported 

by our group readily supported an alternate stable resting state characterized by persistently 

low levels of circulating cortisol36. This basic model was extended in subsequent work and 

remains the central representation of stress response circuitry used here. The three main 

elements of the HPA (CRH, ACTH, and CORT) are represented in the network model, with 

stress included as an input signal. Norepinephrine and dopamine are also included as highly-

connected elements of the stress response. Stress also acts on the HPG axis through 

norepinephrine release into the ovaries, and also inhibits the release of GnRH, luteinizing 

hormone, estrogen, and progesterone37. Findings such as these support the existence of 

complex co-regulatory interactions between the stress response axis and reproductive 

hormone regulation. Estrogen for example has been shown to increase corticotropin 

secretion in both female monkeys and rats37, supporting a feedback loop between the HPG 

and HPA axes. In this work we retain key components of the female HPG axis (estrogen, 

FSH, GNRH1, LH, and progesterone) used in the basic model reported previously27 and 

have augmented this with more detailed representation of cross-axis regulatory interactions 

with adjacent systems such as the HPA axis. We have shown in related work that this 

representation of the HPG axis is capable of recapitulating the regular oscillations 

characteristic of the menstrual cycle when simulated with ternary logic38.

Immune Regulatory Logic

Highly-connected immune markers implicated in ME/CFS were selected for inclusion in the 

current model in addition to peripheral blood markers for which experimental measurements 

were available in this study population. Specifically, these immune markers included the 

cytokines IFNγ, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-13, IL-15, IL-17, IL-23, and 

TNFα. Since evidence of dysregulated B cell14 and NK cell function39 has been reported in 

ME/CFS, these cell populations were also included in the model.

Model Parameterization and Simulation of Regulatory Dynamics

The biological signaling model is represented as a directed and weighted graph, where an 

edge represents the regulatory action of one node onto another and where a positive or 

negative edge polarity indicates a stimulatory or inhibitory mode of action respectively. 

Network parameters describing signal activation thresholds and the weighted contextual 
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response of each marker node to all combinations of its input mediators were derived 

according to a discrete logical formalism40–43. These parameters were derived by 

constraining the model to satisfy a set of qualitative (e.g. steady states) and quantitative 

observations (experimental data). As is the case in this work, the complexity of the 

regulatory network models often exceeds that of the available data both in terms of the 

amount of data and the breadth of the markers surveyed. Here we address the issue of 

insufficient and incomplete data by translating the parameterization problem into a 

constraint satisfaction problem38 which we solved using OR-tools (Google), an open-source 

library of algorithms for operations research44. Constraint satisfaction has proven to be an 

efficient problem solving technology employed by the Artificial Intelligence community to 

efficiently solve large combinatorial problems45. In our identification of parameter sets we 

enforced adherence of model predictions to experimental data, and also constrained the 

model to support specific clinically observed behaviors. Specifically, we assumed that 

measurements taken at rest (T0) represented a stable steady state in both ME/CFS patients 

and healthy controls, and that the trajectory of response to exercise should accommodate a 

return to this stable resting state in control subjects after 24 hours; the ME/CFS patient 

trajectory was not similarly constrained. Additionally, the ME/CFS steady state was 

constrained to align with an under-expression of cortisol and overexpression of estrogen as 

previously reported27.

RESULTS

Regulatory Network Structure and Parameterization

A survey of published literature on elements of the HPA, HPG, and immune systems 

implicated in ME/CFS identified 28 biological markers, including hormones, 

neurotransmitters, cytokines, and cell populations, with physiological stress as an input 

stimulus. Automated text mining of the Pathway Studio literature database and validation of 

statements about regulatory interactions between these entities identified 214 interactions 

(Figure 1). The structure of this regulatory circuit model was supported by a total of 21,146 

references, with a median of 16.0 references and a mean of 58.9 references supporting each 

interaction (Appendix A, Figure A1). Based on expert adjudication of divergence in 

interpretation with a competing Bayesian text mining engine, approximately 4% of edge 

polarities assigned by Pathway Studio’s MedScan were judged to be an incorrect 

interpretation of the supporting text. The connection density of our network model (27.3%) 

is in line with reported estimates of connectivity in protein signaling networks46. 

Betweenness centrality for individual mediator nodes in the network was highly variable, 

with TNFα, IL-1β, IL-10, and progesterone each occurring in >50% of shortest paths, 

highlighting the latter as highly influential regulators in this model (Appendix A, Figure 

A2).

Marker Differential Expression and Discretization

As described in the previous section ME/CFS (n=43) and healthy control (n=45) subjects 

were challenged with a graded maximal exercise test with serial blood samples collected at 8 

time points before during and after challenge. Plasma levels of inflammatory cytokines and 

the abundance of immune cell subpopulations are depicted in Appendix A, Figure A3. A 2-
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way ANOVA supported significant effects for condition (ME/CFS vs HC) and/or timepoint 

in IL-1β, IL-2, IL-4, IL-5, IL-6, IL-13, IL-5, and NK cells (Table 1). Continuous expression 

values for these 8 exercise responsive and/or condition sensitive markers were converted into 

discrete activation levels using a variational Bayesian gaussian estimation31,32. This number 

of discrete states was then used to support a k-means clustering of the median expression at 

each time point for both conditions, producing discretized exercise response trajectories for 

each group (Appendix A, Figure A4). Thus, the response trajectories transformed to discrete 

values offer qualitative representations of the continuous measurements shown in Figure A3, 

and serve as constraints in a logical modeling formalism. Markers in the numerical model 

for which experimental measurements were not found to vary significantly were left 

unconstrained or “free” during parameterization.

Model Parameterization and Alignment with Exercise Response Trajectories—
These discrete state response trajectories, in conjunction with the regulatory network 

structure (Figure 1), served to establish a set of constraints from which regulatory logic 

parameters were derived in accordance with methods described in our previous work38. As 

mentioned above, the resolution offered by this group size supported the detection of 

statistically significant variations in 8 of the 17 measured immune markers. Measurements 

for this subset of 8 immune markers served to define constraints for the parameter estimation 

problem. Specifically, allowable parameter sets supported model predictions of the 

expression of these 8 markers which exactly matched their expression at rest in both 

ME/CFS and healthy control while also deviating as little as possible from values measured 

longitudinally during the course of the exercise challenge. In addition to this and 

independently from the data, qualitative interpretations from the literature of high estrogen 

and low cortisol levels were applied to constrain the ME/CFS condition at rest only. We 

found 26 parameter sets which accommodated the available exercise response data to within 

5% error in addition to exactly matching the resting steady state discrete expression profiles 

for ME/CFS and healthy control subjects. The values predicted by these top 26 models for 

the measured immune markers are shown in Figure 2A, demonstrating close adherence to 

the discretized experimental data. This suggests that the set of candidate mechanisms 

embodied in the endocrine-immune circuity model offer a framework for accurately 

reproducing the immune response to exercise in this cohort of subjects.

Validation of Predicted Sex Hormone Expression

As a separate segment of this same dataset, the HPG hormones estrogen (estradiol) and 

progesterone were measured in the same 43 ME/CFS patients and 45 healthy controls at 4 of 

the 8 time points (T0, T1, T2 and T3) but were not used to constrain parameter identification 

for the model (Appendix A, Figure A5). While a requirement for elevated estrogen levels 

was applied to describe ME/CFS at rest, this constraint was informed by a qualitative 

interpretation of the literature and not from the data. Moreover, the remainder of the estrogen 

response trajectory was unconstrained in ME/CFS, as was the entirety of the estrogen 

response trajectory in the healthy control group. Parameter selection was completely 

uninformed by any prior knowledge or experimental measurement of progesterone levels in 

either subject group. As such, these hormone measurements may be tested against the 

immunologically-informed predictions from the network model as a validation step. In a 2-
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way ANOVA of estrogen and progesterone measurements over time, we found significant 

variation in estrogen according to health condition with elevated levels in ME/CFS patients 

throughout the exercise response (p=0.002), with t tests at each independent timepoint 

consistently showing a marginally significant increase in ME/CFS patients (p<0.1) for this 

hormone. A 2-way ANOVA of progesterone measurements indicated a marginally 

significant difference in progesterone levels across groups (p=0.070), however individual t 

tests at each independent timepoint did not support these differences at this level of 

resolution. Nonetheless, the mechanistically predicted response trajectories in Figure 2 are 

not inconsistent with the hormone measurements shown in Figure A5. The model predicted 

constitutively upregulated estrogen levels in ME/CFS subjects throughout the course of 

exercise challenge and recovery, while progesterone was predicted to be elevated only 

transiently during recovery. Progesterone is of special interest, because our simulations 

predicted the greatest differences between ME/CFS and measurements in healthy subjects at 

timepoints immediately following peak exercise stress (T1+10, T1+20, T1+30, T1+60). 

Though predictions of progesterone expression show good alignment with experimental 

measurements made at time points T0, T1, T2 and T3, no experimental data was available 

for further validation of this significant transient response.

Predicting Variations in Exercise Response

These putative mechanisms were then used to mechanistically filter the measured responses 

serving to constrain model parameters. This same mechanistic framework was used to 

predict expected values for unmeasured markers and markers with high within-group 

variability that were not used to constrain parameter optimization (Figure 2B). Such 

predictions may highlight new potentially significant and mechanistically consistent 

differences in endocrine and immune response to exercise in ME/CFS subjects. Based on 

results from a 2-way ANOVA, a number of predicted trajectories for these unmeasured or 

high heterogeneity markers diverged significantly across time according to illness condition 

(time × condition interaction) suggesting an alternate regulation of these markers in response 

to physiological stress in ME/CFS. Specifically, these markers were ACTH, cortisol, 

estrogen, GNRH1, IL-17, IL-23, LH, and TNFα. Additionally, IL-1α, B cell activation, 

CRH, and dopamine levels were predicted to vary across condition but independently of 

time.

Predicting Novel Endocrine-immune Markers of ME/CFS at Rest

A basic hypothesis in his work has been that ME/CFS presents as a new regulatory setpoint 

for an alternative homeostatic state. To further understand what these setpoints might be for 

novel endocrine and immune markers non-parametric Wilcoxon rank-sum tests were applied 

to the differences in the predicted steady-state expression of all unmeasured markers as well 

as high heterogeneity markers using all 26 competing numerical models. Because of the 

number of comparisons, the Benjamini-Hochberg correction was applied to these Wilcoxon 

tests. Endocrine mediators predicted to be constitutively overexpressed in ME/CFS at rest 

were CRH, estrogen, FSH, GNRH1, and LH as well as immune mediators CXCL8 and 

IL-23. Constitutively downregulated entities were the stress hormones ACTH and cortisol as 

well as immune cytokines IFNγ, IL-10, IL-17, and IL-1α (Figure 3).
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Although a group-wise comparison of average expression at rest in ME/CFS did not achieve 

statistical significance in the experimental data (Table 1) for IL-8, IFNγ, IL-10, IL-17, 

IL-1α, and IL-23, it is important to note that conventional univariate statistical tests do not 

account for the broader co-regulatory context. Indeed, the model-predicted values for these 

markers are necessarily in compliance with documented immune regulatory mechanisms. 

The different models may thus represent subtle differences in regulatory logic that may be 

characteristic of different patient subpopulations and this divergence from group-wise 

univariate test results may indicate that these markers are especially sensitive to the within-

group heterogeneity of this illness.

Simulating the Therapeutic Disruption of ME/CFS

Several pharmaceutical agents have been recently assessed in clinical trials for the treatment 

of ME/CFS. Among the most prominent are the B cell depleting CD20 antibody 

rituximab15,47 and the specific TLR3 agonist rintatolimod, which promotes innate 

inflammatory cytokine production and NK cell activation11,12,48,49. We simulated these 

courses of treatment in ME/CFS subjects across the family of 26 data-compliant models. 

Interventions were modeled as fixing the biological targeting the network models to lower or 

higher values depending on the particular mode of action of the drug. The endocrine-

immune network response was then simulated over a horizon of up to 100 transition events 

to observe whether immune and endocrine profiles evolve towards a new stable steady state, 

preferably one that more closely resembles normal healthy equilibrium. The similarity of the 

new predicted steady state to the both the healthy and ME/CFS resting states was expressed 

as the Euclidean distance, normalized by betweenness centrality of each endocrine and 

immune marker (Appendix A, Figurer A2) such that matching key mediators (e.g. TNFα, 

IL-1β, or progesterone) was favored over alignment with less influential markers (e.g. IL-13 

or IL-23). In an attempt to canvas a broad range of conditions, 200,000 simulations were 

conducted by selecting a random initial state from the complete set of states supported by 

the regulatory circuitry (on the order of 1011 states). We conducted these simulations under 

conditions of 0%, 1%, and 5% random noise to estimate the robustness of these solutions to 

biological variability.

Rituximab was modeled as inhibition of B cells, IFNγ, and IL-4, since B cells have been 

reported to produce these cytokines in the context of autoimmunity50; rintatolimod was 

modeled as induction of IL-12 and TNFα48,51. Results of these simulations are depicted in 

Figure 4. In the absence of any drug, healthy and pathological steady states were reached 

with roughly equivalent frequencies; increasing noise tended to make all attractors less 

available. Rintatolimod was predicted to sharply upset the attractor landscape, destabilizing 

most of the available attractors but retaining both healthy and ME/CFS states. Simulated 

rituximab treatment destabilized both healthy and ME/CFS attractors. However, the 

remaining attractors tended to be closer to normal health than to ME/CFS, indicating a 

potential reduced pathology relative to the untreated ME/CFS state. The outcome of these 

simulations is summarized in Table 2. Models predicting the most favorable response to 

treatment were surveyed to assess the degree of agreement between their respective 

predictions of endocrine-immune profile for ME/CFS at rest (Figure 5) to highlight profiles 

likely to be characteristic of good candidates for rituximab or rintatolimod treatment. 10 of 
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the 26 models supported a return to the healthy homeostasis reference state under 

rintatolimod treatment, and 3 models supported return to an attractor with a Euclidean 

distance from health of less than 50 under rituximab treatment. These subsets of candidate 

models predicted that rintatolimod is most likely to benefit patients with low IL-1α, IL-17, 

and cortisol, intermediate progesterone and FSH, and high estrogen. The 3 out of 26 models 

supporting a favorable response to rituximab described an ME/CFS state characterized by 

low norepinephrine, IL-1α, CXCL8, and cortisol, intermediate, intermediate FSH and 

GNRH1, and high TNF, LH, IL-12, and B cell activation.

DISCUSSION

In this work we assemble a network model of 28 endocrine and immune markers linked by 

214 regulatory signaling mechanisms documented in the literature including those elements 

reported to be involved in ME/CFS pathology. We found 26 competing parameter sets which 

allowed this regulatory circuit to exactly reproduce the expression profile measured at rest in 

8 characteristic immune markers for both the ME/CFS and healthy control conditions as 

well as align with the exercise response dynamics of both groups to with 5% error. It is 

important to note that the complexity of the regulatory model exceeds the coverage 

supported by the available data. In this case, measurements for important hormones were 

unavailable and the range of conditions was limited to exercise challenge of a specific type. 

This results in a parameter identification problem that is highly under-constrained or where 

many model solutions exist that satisfy the data equally well. As such, the 26 candidate 

models examined here represent only a small fraction of all possible solutions. However, 

they are all equally consistent with the available data, and if they are assumed to comprise a 

representative fraction of all the valid models, certain qualitative conclusions may still be 

drawn. The finding that a single circuit model of endocrine-immune regulation can support 

both the healthy and ME/CFS phenotypes is in itself significant. This suggests that ME/CFS 

may consist of altered regulatory function without permanent damage to the underlying 

regulatory circuitry, such that substantial remission may be achievable. This finding, which 

is here supported by longitudinal exercise-response data applied to a much more detailed 

model of endocrine-immune function, remains consistent with earlier work by our group 

using a much coarser grained representation and resting state data only27. Another important 

contribution is the explicit application of signaling network based on known documented 

mechanisms directly in our analysis of experimental data to reinforce the coordinated and 

context-specific interdependency of immune and endocrine markers. For example, enforcing 

documented co-regulatory structure to the 8 exercise responsive markers identified in this 

data and described above confirmed elevated expression in ME/CFS at rest of IL-1β, IL-4, 

IL-5 and IL-6 as reported previously by our group4. However, the model and data in this 

work also suggest elevated IL-2 and IL-13, previously reported as unchanged and reduced in 

expression respectively in resting ME/CFS subjects. Interestingly, closer examination of this 

earlier data revealed that although increased group size (n=40 ME/CFS, 59 HC) supported a 

statistically significant difference, the fold change in median expression of these markers 

was very weak (~1.1, 1.2 respectively). In this same previous work, relatively high 

intragroup variability in cytokine expression was observed (Median absolute deviation / 

median > 0.50), especially in the ME/CFS group. Conventional univariate statistical tests are 
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ill-suited to this situation, and more complex variants that formally account for the 

interdependencies between markers and control for context are required. Here, rather than 

attempt to extract this interdependency structure from the data using regression-based 

approaches, we applied known documented signaling mechanisms to this end. Indeed, 

controlling in the context of documented regulatory mechanisms suggests here that IL-10, 

IL-17 and IFN-γ expression, previously reported as unchanged on average between groups4, 

may in fact be lower in ME/CFS subjects at rest in the context of joint marker expression. 

Controlling for co-regulated expression also predicts depressed levels of IL-1α and elevated 

levels of IL-2, IL-8, IL-23 and TNF-α in ME/CFS at rest, differences that were either 

undetected or contrary to reported median expression changes using conventional group-

wise statistics.

Of note in this work this co-regulatory context is expanded beyond the immune system to 

include endocrine mediators. This is of special significance for an illness which 

disproportionately affects one sex over the other as regular variations over the course of the 

menstrual cycle profoundly influence immune function8. Not surprisingly, dysregulation of 

the HPA and HPG axes, specifically overexpression of estrogen, FSH, GNRH1, and LH in 

ME/CFS subjects, is predicted based on the regulatory circuit model presented here. These 

hormones are important regulators of the menstrual cycle, which is known to be 

dysregulated in women with ME/CFS52. These results highlight the importance of 

considering cyclic fluctuations in hormonal regulation when considering complex metabolic 

disorders such as ME/CFS, especially in women. Interestingly, one case of ME/CFS 

associated with membranous dysmenorrhea spontaneously resolved after the discontinuation 

of hormonal contraceptive treatment53. Despite this observation, other studies have failed to 

find significant group-wise changes in sex hormones in ME/CFS54,55. Once again however, 

these results are based on group-wise average expression and are not controlled in the 

context of co-expression in other markers.

Taken together these mechanistically adherent differences suggest a general overactivation 

of the HPG axis and inactivation of the HPA axis in ME/CFS with a heightened sensitivity to 

inflammatory stimuli. IL-1β, IL-6 and TNF-α (all predicted in this work to be elevated in 

ME/CFS) are drivers of sterile inflammation, especially in the brain56,57. The predicted 

upregulation of CXCL8 and IL-23 could also be taken as an indication of increased 

inflammation in the brain, as both of these cytokines are associated with pathological 

neuroinflammation58–60. GNRH1 agonists and recombinant FSH administered as a fertility 

treatment have been found to exacerbate multiple sclerosis (MS), increasing blood-brain 

barrier permeability to peripheral blood mononuclear cells and a greater abundance of cells 

producing IL-8. Progesterone and estrogen levels were also increased in these patients61. 

Thus, HPG dysregulation may increase blood-brain barrier permeability, allowing 

infiltration of immune cells into the brain to establish or sustain a low-grade 

neuroinflammatory profile as put forward by Morris and Maes17. Indeed, white-matter 

lesions have long been reported in connection with ME/CFS62,63. More recent studies have 

found abnormalities in cerebrospinal fluid independent of psychiatric diagnoses64–66, 

consistent with neuroinflammation.
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The origin of this neuroinflammatory dysregulation is unclear, with many competing 

hypotheses being proposed. Epstein-Barr and hepatitis viral infections have been implicated 

as potential causes14,67, with evidence that these viruses can persistently inhibit innate and 

adaptive immunity. Mitochondrial dysfunction has also been identified in ME/CFS 

patients68, and the extracellular release of mitochondrial DNA in the hypothalamus has been 

proposed as an initiator of neuroinflammation via mast cell activation69. These activated 

mast cells may then go on to establish a self-sustaining positive feedback of 

neuroinflammation and autoimmunity70–72, with further complex interactions with other 

endocrine systems73,74. Our approach is independent of any assumptions about the ultimate 

underlying cause of ME/CFS. Observed patterns of immune dysregulation in the study 

cohort are sufficient for us to project concomitant differences in the HPA and HPG axes 

informed by known regulatory relationships between these systems. In future work we hope 

to extend the network model to include more-explicit representation of other cell types and 

systems implicated in ME/CFS pathology such as mitochondrial metabolism and mast cells.

While efforts to treat ME/CFS have often focused on therapeutic modulation of immune 

mediators, these trials have met with mixed results. Rituximab has been effective in only a 

subset of patients, with no clear explanation for its mechanism of action47. Likewise, 

rintatolimod (Ampligen) is sometimes effective11,12, but a means of identifying good 

candidates for this course of treatment remains similarly elusive. The mechanistic effects of 

rintatolimod in vivo have not been very well defined. While the latter has been found to 

delay T cell depletion in the context of HIV infection75, data regarding its influence on 

systemic cytokine production are sparse, especially as divergent responses have been 

described in primates and rodents76. Our simulations did not predict a complete rescue in 

most cases as a result of either rintatolimod or rituximab therapy. While rintatolimod 

treatment was predicted to reach a target healthy remission state in some cases, these 

represented only a small fraction of all simulations. Rituximab treatment was not predicted 

to deliver remission to a target healthy state, but instead to reduce the availability of highly 

pathological steady states. These simulations offer a possible explanation for the wide 

variability in the reported efficacy of these drugs in clinical trials. In general, rintatolimod is 

predicted to destabilize most attractors, but does not necessarily disrupt the ME/CFS state, 

indicating that rintatolimod may either induce a more-or-less complete remission or have no 

appreciable effect. Rituximab, on the other hand, is more likely to support alternate stable 

resting states which are more similar to health than the initial ME/CFS pathological state, 

resulting in a partial remission. These outcomes are highly dependent on both the initial 

endocrine-immune profile and regulatory tone represented here by different candidate 

models. Indeed, predicted treatment-responsive endocrine-immune expression profiles 

supported by these different models agree unanimously in only a select few markers. This 

result is not surprising given that ME/CFS is diagnosed based on adherence to a broad set of 

physiological symptoms and the occurrence of multiple disease phenotypes in experimental 

studies of ME/CFS has been highlighted as a significant challenge77. Variability in the 

efficacy of different treatments is likely to be a consequence of this heterogeneity within 

study populations. Indeed, our analysis of the family of competing models which equally 

satisfied the experimental data suggested that inclusion criteria in further studies of 
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rintatolimod and rituximab could be informed by subject stratification based on differences 

in the simultaneous co-expression patterns of cortisol, FSH, progesterone and estrogen.

5. Conclusions

Computer simulations based on a literature-informed mechanistic model of endocrine-

immune co-regulatory dynamics tuned to experimental exercise data support a potential 

etiology for ME/CFS where sustained HPG overactivation may permits the initiation and 

maintenance of peripheral inflammation potentially leading to low-grade 

neuroinflammation. The partial efficacy of rituximab and rintatolimod treatment are both 

predicted to alter the landscape of available steady states such that pathological states are 

less available. Results suggest that future studies of ME/CFS and related clinical trials in 

women should consider the impact of the menstrual cycle on other endocrine and immune 

regulatory processes. Measurements of HPA and HPG hormones, especially cortisol, ACTH, 

estrogen, GNRH, and LH, may be of considerable value in developing rigorous biomarkers 

for ME/CFS diagnosis and delineating treatment-responsive subgroups.
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Highlights

• Variations in immune function and dysregulation of sex hormones in ME/CFS 

are mutually informative

• Existing drugs including e.g. rintatolimod and rituximab may serve to 

destabilize pathological attractors such as ME/CFS

• Different endocrine and immune profiles may support distinct patient 

subtypes and inform on therapeutic response in rintatolimod and rituximab 

treatment
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Figure 1. 
Proposed regulatory model of endocrine signaling pathways and molecules implicated in 

ME/CFS, incorporating elements of the HPA, HPG, and immune systems. The model 

comprises 28 entities and 214 regulatory edges.
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Figure 2. 
Predicted trajectories for all network entities across 26 top-performing solutions; subjects 

underwent maximum stress at T1. A) Predicted trajectories for measured and constrained 

immune entities showing adherence to data. B) Putative trajectories for unconstrained 

entities. Lines depict LOESS curves with 95% confidence intervals (points are jittered to 

show relative frequency; * indicates p<0.05 for both ME/CFS condition and its interaction 

with time, BH-corrected ANOVA).
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Figure 3. 
Frequencies of predicted values for unmeasured entities in ME/CFS and HC at rest over 26 

solutions with minimal error (* p<0.05, BH-corrected Wilcoxon test).
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Figure 4. 
Results of simulated drug treatments. Each attractor is represented by a point, sized 

according to the number of simulations reaching it. Axes represent the Euclidean distance of 

each attractor from the Health and ME/CFS states multiplied by the betweenness centrality 

of each entity. Points above the diagonal are more similar to Health than to ME/CFS (less 

pathological); points below the diagonal are more similar to ME/CFS than to Health (more 

pathological).
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Figure 5. 
Predicted ME/CFS states associated with favorable response to treatment by A) rintatolimod 

or B) rituximab. The subset of models found to reach states with a distance-from-health of 0 

(rintatolimod) or less than 50 (rituximab) under drug treatment were canvassed for their 

predictions of resting ME/CFS values for unconstrained network entities.
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Table 1.

A 2-way ANOVA of each measured variable as a function of condition (ME/CFS vs healthy control), 

timepoint, and interactions. Variables with at least one significant effect were constrained; others were left 

free.

Variable Condition Time Condition × Time Constrained (Y/N)

IL-lα 0.413 0.171 0.643 N

IL-1β 0.017 0.173 0.722 Y

IL-2 <0.001 0.523 0.899 Y

IL-4 <0.001 0.585 0.550 Y

IL-5 0.002 0.088 0.293 Y

IL-6 <0.001 0.433 0.035 Y

IL-8 0.481 0.760 0.869 N

IL-10 0.673 0.984 0.231 N

IL-12 0.825 0.588 0.580 N

IL-13 <0.001 0.403 0.009 Y

IL-15 0.041 0.337 0.343 Y

IL-17 0.257 0.802 0.627 N

IL-23 0.462 0.963 0.991 N

IFNγ 0.298 0.918 0.967 N

TNFα 0.584 0.244 0.894 N

B cell 0.672 0.369 0.991 N

NK cell <0.001 <0.001 0.285 Y
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Table 2.

Results of surveys on the basins of attraction. The number of simulations ending in a Healthy or ME/CFS 

attractor (Euclidean distance of 0) is indicated, along with the simulations ending in the Healthy attractor as a 

fraction of simulations ending in Health or ME/CFS. *Since simulated rituximab treatment rendered the 

Healthy and ME/CFS attractors unavailable, a distance cutoff of 50 was used.

Noise Drug Healthy ME/CFS Fraction

0% noise No drug 33031 509 0.985

0% noise Rintatolimod 2584 385 0.867

0% noise Rituximab* 4065 0 NA

1% noise No drug 47291 13128 0.783

1% noise Rintatolimod 11152 7723 0.591

1% noise Rituximab* 28963 0 NA

5% noise No drug 9604 2641 0.784

5% noise Rintatolimod 4462 1397 0.762

5% noise Rituximab* 8695 0 NA
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