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Abstract. A glioma grading method using conventional structural magnetic resonance image (MRI) and
molecular data from patients is proposed. The noninvasive grading of glioma tumors is obtained using multiple
radiomic texture features including dynamic texture analysis, multifractal detrended fluctuation analysis, and
multiresolution fractal Brownian motion in structural MRI. The proposed method is evaluated using two multi-
center MRI datasets: (1) the brain tumor segmentation (BRATS-2017) challenge for high-grade versus low-grade
(LG) and (2) the cancer imaging archive (TCIA) repository for glioblastoma (GBM) versus LG glioma grading.
The grading performance using MRI is compared with that of digital pathology (DP) images in the cancer genome
atlas (TCGA) data repository. The results show that the mean area under the receiver operating characteristic
curve (AUC) is 0.88 for the BRATS dataset. The classification of tumor grades using MRI and DP images in
TCIA/TCGA yields mean AUC of 0.90 and 0.93, respectively. This work further proposes and compares tumor
grading performance using molecular alterations (IDH1/2 mutations) along with MRI and DP data, following the
most recent World Health Organization grading criteria, respectively. The overall grading performance demon-
strates the efficacy of the proposed noninvasive glioma grading approach using structural MRI. © 2019 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.2.024501]
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1 Introduction
Gliomas are the most common forms of primary neoplasm in the
central nervous system (CNS) that originate from resident glial
cells. Recently, molecular alterations have been incorporated in
the 2016 World Health Organization (WHO)1 grading system,
which has led to a major restructuring of glioma classification.
The important molecular alterations include the isocitrate dehy-
drogenase (IDH1/2), ATRX, and/or TP53 genes, and chromoso-
mal 1p/19p codeletion.1 IDH mutations occurring in either the
IDH1 or IDH2 genes are very significant and well-described in
gliomas. Classifying gliomas based on their IDH status (mutated
versus wildtype) creates clinically distinct survival groups. IDH-
wildtype gliomas behave more aggressively when compared
with their IDH-mutant counterparts.2 The alpha thalassemia/
mental retardation syndrome X-linked gene, known as ATRX,
can also be mutated in IDH-mutant gliomas and is likewise
associated with a significantly better prognosis.3 The scale rede-
fines the four grades (I–IV) of gliomas depending on recurrence
rate, aggressiveness, infiltration, and molecular alterations. The
stratification of glioblastoma (GBM)/low grade (LG) or a more
general high grade (HG)/LG classification at the time of initial
radiologic examination may facilitate an early and effective
treatment planning. LG gliomas (grades I and II), such as LG
astrocytomas and oligodendrogliomas, account for 10%4 of pri-
mary brain tumors and are usually slow growing but infiltrative.
HG gliomas (grades III and IV) show increased cell prolifer-
ation and account for ∼60% to 75%4 of the glioma cohorts.
Specifically, GBM (grade IV) is the most malignant and rapidly

growing primary CNS neoplasm. In practice, tumor biopsy or
resection is carried out to accurately classify and grade these
gliomas in order to determine treatment strategies and predict
overall prognosis. However, standard clinical practice of biopsy/
resection and then pathologic assessment and classification of
tumors involve subjectivity, interobserver variability, and may
not extract adequate tissue samples within the tumor vicinity.5

These limitations may be lessened by an objective, noninvasive,
and comprehensive imaging of the tumor area followed by an
automatic stratification of the tumor grading.

Few noninvasive and computer-aided techniques have been
proposed in the literature for glioma grading and the assessment
of tumor malignancy. Among the recent studies, Weber et al.6

have used spectroscopy and perfusion images to capture the
heterogeneous property of brain neoplasms for classifying
GBMs frommetastases and CNS lymphomas. In a similar study,
Provenzale et al.7 have used apparent diffusion coefficients from
the diffusion tensor imaging to classify brain primary neoplasms
from abscesses and lymphomas. Furthermore, Wang et al.8 have
classified malignant and benign brain neoplasms using spectros-
copy images with conventional MRI. Researchers9 have also
used conventional MRI and perfusion imaging derived relative
cerebral blood volume (rCBV) for HG/LG classification.
Zacharaki et al.5 have extracted shape-based and Gabor-like
texton10 features from perfusion and conventional MRI for
tumor grading. Caulo et al.11 have accounted the heterogeneity
of lesions in conventional and advanced (perfusion, diffusion,
and spectroscopy) MRI for glioma grading, such as HG/LG.
Although previous studies are useful, the large-scale application
of these methods may not be feasible due to limited availability
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of advanced MRI modalities (e.g., perfusion, diffusion, spec-
troscopy, and others) for tumor grading.

We propose a noninvasive glioma grading method using
structural MRI that is commonly acquired in clinical practice.
The grading performance of the proposed method using struc-
tural MRI is compared with that of digital pathology (DP)
images. The contributions of this work are as follows. First,
we propose one of the first methods in the literature using con-
ventional structural MRI-based radiomics that shows potential
for noninvasive tumor grading. The proposed method alleviates
a few limitations of our prior studies,12,13 such as the method is
fully automated, and feature extraction is performed from the
whole 3-D tumor volume rather than from a single MRI slice.
Second, we introduce methods for glioma grading using both
radiomics and molecular information following the recent WHO
grading criteria. Finally, in order to understand the efficacy of
different patient data types in grading, tumor classification is
compared across radiomic, histopathology, and molecular data,
respectively.

The rest of the article is organized as follows: complete meth-
odology, datasets, mathematical models of different texture
analysis and feature extraction techniques, classification are dis-
cussed in Sec. 2. Section 3 discusses the implementation details
and experiments performed at different steps in this grading
work. Section 4 shows the grading results using different data-
sets. Discussion on the grading results is discussed in Sec. 5.
Finally, Sec. 6 provides the concluding remarks and future work.

2 Methodology
The overall flow diagram of the proposed method for grading in
MRI, DP with a combination of the molecular information, is
shown in Fig. 1. A detailed description of each step of Fig. 1
is given.

2.1 Data

MR images are collected from two separate multicenter datasets:
285 patients from the BRATS-201714,15 and 58 patients from
the TCIA for HG/LG and GBM/LG grading, respectively.
Histopathology images are collected from the TCGA DP
database. Note that the 58 patients from the TCIA are selected
such that they have corresponding histopathology images and
molecular information in the TCGA dataset. Since MR images
in the BRATS dataset are already skull-stripped and coregis-
tered, we perform these preprocessing steps only on the TCIA
dataset. The inhomogeneity in MRI intensity is corrected
through channel-wise histogram matching with the images of
a randomly selected patient as reference. In this study, three
MRI modalities: T1c, T2, and FLAIR images are used as
they are commonly available in both datasets. Finally, additional
MR images from another 30 patients in the BRATS-2013 dataset
are used to train the tumor segmentation classifier. The available

grading labels (HG/LG) for the BRATS-2017 dataset and
(GBM/LG) for the TCIA dataset are used for training and evalu-
ating the classifier models.

2.2 Tumor Segmentation and Texture Feature
Extraction in MRI

The method uses three commonly available MRI modalities:
T1c, T2, and FLAIR. Following standard steps of MRI prepro-
cessing, an automatic segmentation13 method is employed to
segment the tumors. The proposed features are then extracted
from MRI slices of the segmented tumor region. A complete
flow diagram for MRI grading is shown in Fig. 2.

2.2.1 Automatic tumor segmentation

In the first step, we employ our texture feature-based automatic
brain tumor segmentation (BTS) technique,13 which has demon-
strated excellent performance in multiple global tissue segmen-
tation challenges (e.g., ranked third in BRATS-2013,16 ranked
fourth in both BRATS-2014 and ISLES-201517 competitions,
respectively). In this work, we perform a multiclass (necrosis,
edema, active tumor, and nontumor) abnormal tissue segmenta-
tion task. The segmented 3-D tumor volume is used as the region
of interest (RoI) for extracting the proposed grading features.

2.2.2 Feature extraction from segmented tumor RoI

Several texture features, including multiresolution fractal
Brownian motion (mBm), multifractal detrended fluctuation
analysis (MFDFA), and 3-D dynamic texture (DT) features, are
extracted from the bounded region of segmented tumor. The
underlying mathematical model and algorithm for extracting
these texture features are described below.

Multiresolution mBm texture feature extraction: The multi-
resolution fractal features are derived from the analysis of mBm
process and have been effectively used in the detection and seg-
mentation of brain lesions16–18 and then adapted to this study on
tumor grading. The mBm process is a nonstationary zero-mean
Gaussian random process and is defined as xðatÞ ¼ aHðtÞxðtÞ,
where xðtÞ is the mBm process with a scaling factor a and
the time varying Hurst index, HðtÞ. In the mBm process,
HðtÞ effectively captures the spatially varying heterogeneous
texture of brain tissues by multiresolution wavelet decomposi-
tion. The covariance function for a 2-D mBm process of an
image is given as follows:

Segment
tumor in MRI
and cell nuclei
in DP image

Input
Data

(MRI/
DP/

IDH1/2)

Extract features
e.g. texture in
MRI, nuclei

shape in DP, and
IHD1/2 mutant

information

Classifiy
corresponding

features for
grading of
MRI, DP

Tumor
grades:

(HG/LG or
GBM/LG)

Fig. 1 Simplified flow diagram of our proposed method for grading in
MRI, DP images with a combination of the molecular information.

 Input images:
T1c, T2, FLAIR Segmented tumor volume

Feature extraction 
(DT, MFDFA, and 

mBm) 

Feature fusion Classification 
Grading Scores:

AUC, Accuracy, 
Sensitivity etc. 

Fig. 2 Automatic segmentation and classification steps for classifying
tumor grades using structural MRI with texture-based radiomic
features.
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EQ-TARGET;temp:intralink-;e001;63;752Eðzð~uÞzð~vÞÞ ¼ σ2~u
2
½j~uj2Hð~uÞ þ j~vj2Hð~vÞ − j~u − ~vj2Hð~uÞ�; (1)

where zð~uÞ is the mBm process, ~u denotes the vector position
ðux; uyÞ of a point in the process, σ2~u is the variance, and Hð~uÞ is
the Hurst index for a 2-D signal. After a series of mathematical
derivations, the expectation of the squared magnitude of wavelet
coefficients EfjWzð~b; aÞj2g is given by

EQ-TARGET;temp:intralink-;e002;63;660EfjWzð~b; aÞj2g ¼ 1

M þ N

XN−1

x¼0

XM−1

y¼0

jWzð~b; aÞj2: (2)

Here, a is the scaling factor and ~b is the 2-D translation
vector of the wavelet basis. Also, N and M are the dimensions
of the image. The Hurst index for 2-D image is calculated as
follows:

EQ-TARGET;temp:intralink-;e003;63;5642Hð~uÞ ¼ lim
a→0þ

log
��

1
MþN

�P
N−1
x¼0

P
M−1
y¼0 jWzð~b; aÞj2

�
log a

: (3)

Finally, the fractal dimension (FD) is obtained as follows:

EQ-TARGET;temp:intralink-;e004;63;504FD ¼ Eþ 1 −HðuÞ; (4)

where E is the Euclidean dimension (E ¼ 2 for 2-D images).
The detailed mathematical derivations of the mBm process
and FD feature extraction algorithm for segmentation can be
found in Refs. 18 and 19. However, unlike in the segmentation
task,18–20 the feature is extracted without dividing the input
images into subimages. The FD feature is extracted from each
2-D slice images in the RoI and the maximum value is used for
grading. Arguably, the maximum, minimum, mean, and median
may be potential feature values, however, the minimum texture
feature values mostly come from the peripheral slices that carry
small tumor areas. The mean value, on the other hand, introdu-
ces averaging artifact and reduces the discriminating attributes
among the tumor grades. Both minimum and mean features too
have shown insignificant attributes for tumor grading classifica-
tion. In comparison with maximum and median values, we find
that the maximum values offer the most discriminating proper-
ties as the maximum values appear in the middle slices, where
the tumor cross-section appears larger.

MFDFA feature extraction: The MFDFA is a multifractal
process that is used to investigate the long-range dependency in
a random sequence or image. The method is successfully used in
time-series analysis,21 predicting gold price fluctuations22 and
detecting microcalcification in mammogram images.23 In this
study, we introduce MFDFA in an application of grading tumor
in structural MRI. MFDFA is the multifractal process of the
detrended fluctuation analysis (DFA). For a given subimage of
size s-by-s, the DFA is defined by the equation below:

EQ-TARGET;temp:intralink-;e005;63;176Fðv; w; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s2
Xs

k1

Xs

k2

½Uv;wði; jÞ − Ũv;wði; jÞ�2
s

; (5)

where Fðv; w; sÞ is the detrended fluctuation of the subimage,
which is indexed by ðv; wÞ of the original image. Uv;wði; jÞ
denotes the cumulative sum and ~Uv;wði; jÞ is the fitted surface
of the cumulative sum and 1⩽ði; jÞ⩽s. The q’th order fluc-
tuation of each subimage is given by Eq. (6) and is determined

for values of q ¼ ð−6;−4;−2;2; 4;6Þ. Based on the L’
Hospital’s rule, Eq. (7) is used for q ¼ 0. The sum of all fluc-
tuations is averaged over total number of subimages as follows:

EQ-TARGET;temp:intralink-;e006;326;719FqðsÞ ¼
1

T

�X
y

X
x
½Fðv; w; sÞ�q

�1
q

(6)

and

EQ-TARGET;temp:intralink-;e007;326;665F0ðsÞ ¼ exp

�
1

T

X
y

X
x

ln ½Fðv; w; sÞ�q
�
; (7)

where T is the total number of subimages. The Hurst index,
hðqÞ, is given by the slope of the log–log plot of FqðsÞ versus
s in Eq. (8). An image has self-similarity, if the log–log plot
of FqðsÞ versus s indicates the power law scaling with a linear
relation:

EQ-TARGET;temp:intralink-;e008;326;567FqðsÞ ∼ shðqÞ: (8)

The dependence of τðqÞ on the scaling exponents q and hðqÞ
in Eq. (9) is the necessary condition for multifractal images:

EQ-TARGET;temp:intralink-;e009;326;514τðqÞ ¼ q × hðqÞ − E; (9)

where E ¼ 2 is the Euclidean dimension of 2-D image. The
Hölder exponent, α ¼ τ 0ðqÞ,4 is used to find the singularity
spectrum,24 and fðαÞ is defined as the Hölder function as below:

EQ-TARGET;temp:intralink-;e010;326;450fðαÞ ¼ qα − τðqÞ: (10)

In this work, the MFDFA process measures the fluctuations
(roughness of the surface) in an image at multiple ranges (scales)
to estimate the Hurst index at different resolutions. Finally, the
maximum and minimum values of the Hurst index, hðqÞ, maxi-
mum of Hölder function fðαÞ, and the corresponding α values
are used as the features following the above analysis. Figure 3
shows the algorithm for feature extraction using MFDFA.

DT feature extraction: The DT, also known as the temporal
texture, can be viewed as a continuously varying stream of
images, which has resemblance with a fountain with continuous
gushing water or a chimney with slowly puffing smoke. The
study of DT is an active research area in the field of DTediting,25

pattern recognition,26 segmentation, and image registration.
This DT analysis for conventional MRI is an application. Our

Fig. 3 Algorithm of feature extraction using MFDFA.
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proposed model assumes that the 2-D images of a MR sequence
in the tumor volume or RoI inherit continuously varying proper-
ties of a DT. Since tumors of different grades vary in their
aggressiveness, the rate of continuously varying characteristics
of MR image sequences may exhibit useful attributes for tumor
grading. We adopt the linear dynamic system (LDS) method,27

where the parameters of state equations are used as the DT
descriptor. In this work, we adopt an open loop LDS28 system
for DT analysis. In the DT analysis, the mean value of
a sequence of input images fItgNt¼1 is subtracted and then
the subtracted images are concatenated to column vectors as
observation vectors, yt. The singular value decomposition
(SVD) is performed to map the observation vectors fytgNt¼1

to the hidden states, fx̂gNt¼1 following Eq. (11). These hidden
states are actually the principal components of the observation
vectors:
EQ-TARGET;temp:intralink-;e011;63;574½U; S; V� ¼ SVDðyt − ytÞ;

xt ¼ S × V 0;

x̂t←xt;

C ¼ U; (11)

where the observation matrix yt is of size m × n and U, S, V are
of size m × n, m ×m, and n × n, respectively. We have empiri-
cally found that the top 50% of the principal components opti-
mize the grading performance for both MRI datasets. Hence, the
reduced hidden states are used to fit a LDS through the mapping
function, ŷt ¼ Cx̂t. The system parameters are estimated using
Eq. (12):

EQ-TARGET;temp:intralink-;e012;63;419x̂ti ¼ Ax̂ti−1 þ vt; where vt ∼ Nð0; σvÞ: (12)

Equation (12) suggests that a hidden vector corresponding to
the hidden states can be mapped linearly to its next hidden vec-
tor if the system is a dynamic process. The state parameter A is
found through as below:

EQ-TARGET;temp:intralink-;e013;326;752A ¼ x̂ti × x̂ti−1 : (13)

The Eigen values λ of matrix A describe the pole location of
the dynamic system and are used as discriminating features for
tumor grading.

2.3 Cell Nuclei Segmentation and Shape Feature
Extraction in Digital Pathology Images

The method outlined in Ref. 29 is used for automatic glioma
grading from DP images. A simplified block diagram for grad-
ing using DP images is shown in Fig. 4. In this paper, we use all
available tissue slide images instead of using a single image per
patient as in Ref. 29. Further, a pathologist has outlined the RoI
that includes the active tumor region in each image for sub-
sequent processing. The steps of the grading method are briefly
discussed here while the details can be found in Ref. 29. The
geometric features, including area, major axis length, and perim-
eter, are subsequently extracted from each nucleus. The shape
features of cell nuclei are extracted from the DP images, which
are different from the texture features obtained from the MR
images. The nuclei in LG are predominantly circular with
smaller morphologic characteristics, whereas nuclei in GBM
are mostly elongated with irregular size. The prevalence of
these irregular shaped nuclei (see Fig. 5) is different in GBM
(WHO grade IV) and LG (WHO grades I and II) images and
can be used as one of the grading characteristics. Note that sim-
ilar grading criteria can be applied for HG (WHO grades III and
IV) and LG classification. Intuitively, the classification of HG
versus LG is more challenging than GBM versus LG as grade-
III (HG) and grade-II (LG) often appear similar in images. In
this work, we collected all the features from each nucleus for
individual patients and clustered them into five classes using
the k-means algorithm. The cluster centroids are sorted accord-
ing to the Euclidean distance from the origin and are used in
the subsequent classification steps.

2.4 Molecular Alterations Features

The molecular distribution of IDH1/2 and ATRX mutations is
obtained from the TCGA data portal. However, the ATRX infor-
mation is not available for all our target 58 patients. Hence,
we use only the IDH1/2 mutant information as a feature in the
grading classification models developed using MRI and DP
image features.

Segment
cell

nuclei

Input:
tissue
slide

images

Extract
shape

features

K-means
clustering

of the shape
features for
each patient

Use the
centriods of
the clusters
as grading

features

Classification:
GBM vs LG

Fig. 4 Framework for grading using DP images.

Fig. 5 Presence of irregular shaped nuclei with different proportion in (a)–(c) LG and (d)–(f) GBM images.
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2.5 Feature Selection and Classification

The extracted image features are used to design four grading
experiments: (1) MRI only, (2) MRI with the molecular infor-
mation, (3) DP only, and (4) DP with the molecular information.
A feature selection step is useful to optimize a classification
performance and to understand the importance of individual
features. A 10-fold cross-validation scheme is used to evaluate
the classifier models for the grading experiments by reporting
the mean area under the receiver operating characteristic (AUC)
curve. In a 10-fold cross-validation, the classifier model is first
trained using ninefold data, which additionally yields weights or
importance scores for individual features. The feature impor-
tance score is used to rank the features and subsequently select
top k most important features. The trained model is then rebuilt
using the top k features and then tested using the left-out fold of
data. The value of k is varied from one to maximum number of
features to investigate the effect of feature dimension on classi-
fication accuracy. The final feature ranking is obtained after
averaging the importance scores over 10 folds. We use four
of the most successful classifier models: linear support vector
machine (linear SVM), SVM with radial basis function
(SVM-RBF), gradient boost, and random forest (RF). The
classifier performances are statistically compared using paired
t-tests between the 10-fold AUC scores. An α-value of 0.05
is used to determine the level of significance.

2.6 Algorithm Implementation

We use MATLAB for the tumor segmentation in MRI, cell nuclei
segmentation DP images, and grading feature extractions (texture
feature in MRI and cell-nuclei morphological feature in DP). The
classifier models, cross-validation and feature selection pipeline,
and statistical experiments are developed using Python’s machine
learning and statistics packages: sci-kit learn and sci-py.

3 Experiments

3.1 Tumor RoI Segmentation in MRI

For tumor region segmentation, the BTS17 method is trained
with the MRI from 30 patients in the BRATS-2013 training
dataset and tested on both the TCIA and BRATS-2017 datasets.
We consider the core tumor region (necrosis, enhanced, and
nonenhanced tumor) as it retains the maximum clinical signifi-
cance and disregard the infiltrating edematous region as this
tissue does not show significant texture variations in any of the
MRI modalities. The bounding box of the tumor core region
represents the RoI. The RoI ensures sufficient image features
that are necessary for the grading step. Hence, pixel-level accu-
racy of the segmentation task is not necessary as long as the tumor
region has been identified. Figure 6 shows example images of the
segmented tumor and corresponding RoI in two representative
slices. Although the tumor segmentation is performed in 3-D,
but 2-D images are shown for better visualization.

For DT feature extraction, we consider all tumor bearing sli-
ces of the RoI in a volume. The number of hidden states, as per
Eq. (12), is set as the half of total slices in the RoI. Based on the
LDS pole locations, only the absolute of maximum Eigen values
from all three modalities are considered, and these Eigen values
are then averaged to obtain the final dynamic feature for the
grading task.

Figure 7 shows that final features λmax _avg of GBM tumors
mostly lie outside of the unit circle as GBM tumors usually

represent significantly varying textures in MRI slices than
that of the LG tumors. Similarly, the MFDFA and mBm features
are extracted for each MRI slices in the RoI and only the maxi-
mum of the extracted feature values is selected as the final fea-
ture for grading. A total of 16 features are extracted from three
MRI modalities as follows: (1 × 3) mBm, (4 × 3) MFDFA, and
the DT feature (λmax _avg).

3.2 Cell Nuclei Segmentation and Micro-Anatomical
Feature Extraction in DP Images

A key contribution of this study is to demonstrate the efficacy of
MR-based noninvasive tumor grading in comparison with inva-
sive grading using DP images. A direct comparison may be pos-
sible for the GBM/LG classification between the TCIA dataset
and DP images only since the histopathology images are
unavailable in the BRATS dataset. Figure 8 shows an example
image of the segmented nuclei and the five cluster centroids,
which are used as features for tumor grade classification.
Although the RoI outlined in the whole slide images is used
in this study, only a small part is cropped from the original
image for better visualization (see Fig. 8).

4 Results

4.1 Feature Selection and Importance

Following the steps in Sec. 2.5, the performance of top k most
important features is shown in Fig. 9 for three representative

Fig. 6 Example images of tumor segmentation using BTS. Each row
shows the corresponding input MR channels (FLAIR, T2, and T1c) and
the segmented tumor with the RoI indicated in red.

Fig. 7 Pole locations (λmax_avg) of GBM and LG patients.
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Fig. 8 Example images of segmented nuclei and the five cluster centroids of the extracted shape
features are used for grading in pathology images. (a) The original pathology image and segmented
nuclei, and (b)–(f) five cluster centroids in descending order of the two tumor grades: GBM (red) and
LG (green).

Fig. 9 Effect of feature dimension on classifier accuracy for (a) the BRATS dataset, (b) the TCIAMRI and
IDH datasets, and (c) the TCGA DP-IDH dataset.
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experiments and two best performing classifier models. Figure 9
also shows the effect of feature dimension on classifier model
performance. The RF model outperforms the linear-SVM for the
BRATS dataset, however, the improvement in AUC is not sta-
tistically significant (p ¼ 0.11) when all radiomics features are
included [Fig. 9(a)]. Both MRI-TCIA and DP-TCGA datasets
have yielded similar performance with linear-SVM and RF
models with no significant difference (p > 0.05). This result
can be further explained by individual feature weights or impor-
tance scores produced by the classifier models. The classifier
model performance reaches a plateau in Fig. 9 after a certain
feature dimension indicating that weights of additional features
are not adding further value to the classification performance.
Table 1 shows the importance scores and rank ordering of
MRI radiomics and molecular features using the superior RF
classifier model. The overall best molecular feature weight is
three times as much as the second best MRI radiomics features
(minimum Hurst index and statistically most significant holder,
α) from T1c images. Table 2 shows that the perimeter and area
of the fourth cluster’s centroids of DP images have high impor-
tance scores. Since classifier models show the maximum
possible accuracy with all features (Fig. 9), we subsequently
consider all-inclusive feature models to statistically compare
the classifier performances.

4.2 Performance Comparison of Classifier Models

In this study, the datasets have notable imbalance in class ratio.
Therefore, there is increased possibility of overfitting the data
due to limited sample size. These limitations pose challenge
to find a suitable classifier model. Figure 10 shows mean
AUC following 10-fold cross-validation for five experiments
and four classifier models with all available features. The RF

model is clearly the classifier of choice for the BRATS dataset
with larger sample size (Fig. 10). Figure 10 also shows that non-
linear classifier models such as SVM-RBF and gradient boost
result in poorer classification performance for the MRI-TCIA
and DP-TCGA datasets than that of the linear model (linear-
SVM). Statistical tests reveal that linear-SVM significantly
outperforms (p ¼ 0.02) gradient boost and RF classifiers for
the MRI-TCIA dataset and the significance of linear-SVM over
RF model is at a borderline (p ¼ 0.05) for the DP-TCGA-IDH
dataset.

4.3 HG/LG Grading Using BRATS Images

The proposed MRI radiomic features, extracted from BRATS
images, yield a mean AUC of 0.88� 0.02 in HG versus LG
classification using RF classifier model. Additional performance
metrics, such as accuracy, sensitivity, specificity, are presented
in the first row of Table 3. The quantitative scores in Table 3 are
shown using RF classifier for the BRATS dataset and linear-
SVM for the other datasets.

Table 1 Feature importance of proposed MRI radiomics and molecu-
lar features obtained using the MRI-TCIA dataset and RF classifier.

maxHq minHq maxHF SMSH mBm

MRI Rank 11 11 15 7 7

(T2) Score 0.03 0.03 0.02 0.04 0.04

MRI Rank 5 5 15 7 11

(FLAIR) Score 0.05 0.05 0.02 0.04 0.03

MRI Rank 15 2 11 2 7

(T1c) Score 0.02 0.09 0.03 0.09 0.04

DT

T2 + FLAIR + T1c Rank 4

Score 0.07

Mutation of IDH

Molecular Rank 1

Score 0.3

Note: Hq, Hurst index (min, max); HF, holder function; f ðαÞ (max);
SMSH, statistically most significant holder; α that maximizes f ðαÞ.

Table 2 Feature importance of proposed DP image and molecular
features obtained using the DP-TCGA dataset and RF classifier.

CoC 1 CoC 2 CoC 3 CoC 4 CoC 5

Area Rank 10 12 6 3 4

Score 0.04 0.03 0.06 0.10 0.09

Perimeter Rank 10 16 6 1 5

Score 0.04 0.02 0.06 0.18 0.07

Major axis Rank 9 12 12 6 12

Score 0.05 0.03 0.03 0.06 0.03

Mutation of IDH

Molecular Rank 2

Score 0.11

Note: CoC, centroids of cluster.

Fig. 10 Performance comparison of different classifier models.
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4.4 GBM/LG Grading in MRI and Comparison
with DP Grading

The classification of GBM versus LG groups using MR images
(TCIA dataset) and DP images (TCGA dataset) of the same 58
patients yields mean AUCs of 0.90� 0.04 and 0.93� 0.05,
respectively. All other quantitative scores, such as accuracy, sen-
sitivity, and specificity, are shown in the second and fourth rows
of Table 3 for MR and DP grading, respectively. The results in
Table 3 show that the performance of the proposed MRI radio-
mics feature-based noninvasive glioma grading is comparable
with that of the invasive DP-based classification of GBM versus
LG tumors. Additionally, the molecular alteration is also sepa-
rately added to the MRI and DP pathology image features to
perform classification with MRI + molecular and DP + molecu-
lar data, respectively (Table 3). The inclusion of molecular infor-
mation substantially improves the classification performance of
MRI and DP image features by yielding mean AUCs of 0.97�
0.02 and 0.98� 0.02, respectively.

5 Discussion
This work investigates the efficacy of structural MRI and tex-
ture-based radiomic features in tumor grading in comparison
with histopathology image and molecular alteration informa-
tion. The findings of this paper can be summarized as follows.
First, the proposed radiomic features extracted from conven-
tional structural MRI have shown competitive tumor grade
classification performance for both the BRATS-2017 (AUC:
0.88) and TCIA (AUC: 0.90) datasets. Second, our automatic

classification of tumor grades demonstrates that using noninva-
sive structural MRI (AUC: 0.88 for BRATS-2017, and 0.90 for
TCIA) may offer comparable tumor grading performance using
the DP images (AUC: 0.93), for the available patient data in this
study. Therefore, in case of frequent follow-up procedures, non-
invasive structural MRI may be useful for tumor grading before
the biopsy is recommended. Third, following the most recent
WHO criteria for tumor grading, additional information with
molecular alteration along with DP and MRI has yielded 5%
and 7% increase for the same TCIA dataset, as shown in
Table 3 and Fig. 10, respectively. The accuracy gains suggest
that molecular information adds useful complementary informa-
tion to MR or DP image-based grading.

The importance of molecular feature is further supported by
the rank ordering of features in Tables 1 and 2. Notably, the
molecular feature ranks as one of the most important features,
which is used in the recent WHO grading criteria. In the feature
ranking, radiomics features from T1C images have shown higher
importance than other features. This observation is intuitive
as T1C images show significant texture variation due to the
enhancement of the tumor tissues. The high importance of sev-
eral parameters of the fourth cluster’s centroids suggests that the
k-mean clustering group the irregular shaped nuclei in a single
cluster that is well suited to characterize the tumor grades. Note
that the prevalence of the irregular shaped nuclei in HG/LG is
one of the key characteristics for the grading.

We have compared the classification performance of MRI
and DP image features using similar patient cohorts from TCIA
and TCGA datasets, respectively. However, direct comparisons

Table 3 Classification performance in grading tumors using datasets of MRI, DP images, and molecular alteration.

Dataset No. of patients Classifiers Features extracted from AUC Accuracy Sensitivity Specificity

BRATS HG (210) RF MRI 0.88� 0.02 0.88� 0.01 0.98� 0.01 0.62� 0.06
LG (75)

TCIA GBM (24) Linear-SVM MRI 0.90� 0.04 0.83� 0.04 0.77� 0.10 0.88� 0.05

LG (34) Linear-SVM MRI + molecular 0.97� 0.02 0.86� 0.04 0.85� 0.08 0.87� 0.05

TCGA GBM (24) Linear-SVM DP 0.93� 0.05 0.93� 0.04 0.90� 0.10 0.95� 0.03

LG (34) Linear-SVM DP + molecular 0.98� 0.02 0.90� 0.04 0.87� 0.10 0.92� 0.04

Table 4 List of state-of-the art glioma grading methods using MRI and DP images.

Grading using Study Classified grades Dataset Images used Reported scores

MRI Zacharaki et al.5 Metastasis/grade-IV, grade II/III/IV 98 patients Conventional MR, perfusion Accuracy (91.2%)

Higano et al.9 GBM/anaplastic astrocytoma 37 patients Conventional MR, ADCa Sensitivity (79%)

Specificity (81%)

Emblem et al.30 HGG/LGM 29 HGG Conventional Sensitivity (90%)

23 LGG MR, CBVb Specificity (83%)

DP Barker et al.31 GBM/LG 182 GBM, 120 LG Whole slide Accuracy (93.1%)

Mousavi et al.32 GBM/LG 51 GBM, 87 LG Whole slide Accuracy (84.7%)

aADC, apparent diffusion coefficient.
bCBV, cerebral blood volume.
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between our study and previous studies are not possible without
having access to advanced MRI data of similar patient cohort, as
reported in these studies. Nevertheless, we show the state-of-the-
art studies on tumor grading in Table 4 that have used either
advanced MRI modalities along with conventional structural
MRIs and/or pathology images unlike our study. There is a
large variability in the reported accuracy due to small sample
size, difference in grading classes, datasets and imaging modal-
ities, and performance metrics. Based on the results obtained in
this study, we summarize the limitations of our work below.
First, DP images and molecular alteration status are not avail-
able for the BRATS-2017 dataset, which does not allow direct
comparisons within the same patient cohort. Second, our smaller
sample size for DP grading and molecular information, and
unbalanced data in the BRATS 2017 dataset may have compro-
mised sensitivity, specificity, and consistency in classifier per-
formance. Limited samples in the dataset may have overfitted
with nonlinear classifier models, which are usually known to
be superior to linear models. Hence, linear classifier model is
recommended for smaller datasets since such model is not flex-
ible enough to overfit the data. The availability of more patient
samples with both DP and MR images would help harness the
benefits of nonlinear models more efficiently as it is seen with
the BRATS dataset. However, the AUC result reported as above
is a reliable metric that takes both sensitivity and specificity
into account and reports an unbiased result when compared to
a simple accuracy metric.

6 Conclusions and Future Work
In this study, for the first time in the literature, a fully automatic
noninvasive tumor grading method using conventional MRI
has been proposed. The proposed noninvasive method has
shown efficacy of conventional MR images across multiple
datasets in classifying both HG/LG and GBM/LG grades.
The conventional MRI and its sophisticated radiomic and DT
features have achieved tumor classification performance compa-
rable to that of the advanced MRI in the literature. This suggests
that the MRI-based method may be useful in diagnosing
the tumor grades before the biopsy is recommended. Further,
following the most recent WHO criteria, we demonstrate radio-
mic and molecular-based glioma grading with the molecular
alterations. While the gold standard DP images and molecular
information are still superior, the proposed method with struc-
tural MRI combined with molecular alterations may offer
a logical option in classifying the tumor grades. Finally, the
availability of large and balanced dataset of structural MRI
may help to develop better classifier models that may be more
competitive to DP and molecular patient data for tumor grading
in a clinical setting.
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