Skip to main content
. 2019 Apr 2;19(7):1588. doi: 10.3390/s19071588
Algorithm 2: Random Forest algorithm pseudocode.
input: Number of Trees (m), random subset of the features (mtry), training dataset (D)
output: random forest (RF)
/1/ RF is empty
/2/ for each i to m do
/3/ Di = Bootstrap Sample (D)
/4/ DTi = Random Decision Tree (Di, mtry)
/5/ RF = RFDTi
/6/ end
/7/ return RF