Skip to main content
. 2019 Apr 2;21(8):2740–2744. doi: 10.1021/acs.orglett.9b00698

Table 1. Optimization of the Reaction Conditionsa,b.

graphic file with name ol-2019-00698k_0004.jpg

entry 1a/2a (equiv) [Ir]-Cat(mol %) [Ni]-Cat (mol %) TMG (equiv) yieldc (%)
1 1.5:1.0 1.0 [Ni-1]-Cat (5.0) 1.5 94
2 1.5:1.0 0.15 [Ni-1]-Cat (5.0) 1.5 96
3 1.5:1.0 0.15 [Ni-1]-Cat (1.0) 1.5 95
4 1.5:1.0 0.15 [Ni-2]-Cat (0.20) 1.5 76
5 1.0:1.1 0.15 [Ni-2]-Cat (0.20) 1.5 99
6 1.0:1.1 0.15 [Ni-2]-Cat (0.20) 1.2 99
7 1.0:1.1 0.15 [Ni-2]-Cat (0.20) 1.2 99d
a

[Ir]-Cat = [Ir(ppy)2(dtbbpy)]PF6, [Ni-1]-Cat = NiBr2 + dtbbpy (1.0:0.20 equiv) added separately, [Ni-2]-Cat = preformed [Ni(dtbbpy]Br2, TMG = 1,1,3,3-tetramethylguanidine,

b

Reaction conditions: 1a (0.25 mmol, 1.0 equiv), 2a (0.28 mmol, 1.1 equiv), [Ir]-Cat (0.15 mol %), [Ni-2]-Cat (0.20 mol %), TMG (0.30 mmol, 1.2 equiv), dry and degassed DMSO (0.25 M, 1.0 mL), irradiation at 455 nm for 3 h.

c

Yields were determined by GC analysis with naphthalene as internal standard.

d

Reaction was up-concentrated to 0.75 M and run for 17 h, and the yield is reported after purification via automated flash-column chromatography.