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Abstract: Despite that graphene has been extensively used in flexible wearable sensors, it remains an
unmet need to fabricate a graphene-based sensor by a simple and low-cost method. Here, graphene
nanoplatelets (GNPs) are prepared by thermal expansion method, and a sensor is fabricated by sealing
of a graphene sheet with polyurethane (PU) medical film. Compared with other graphene-based
sensors, it greatly simplifies the fabrication process and enables the effective measurement of signals.
The resistance of graphene sheet changes linearly with the deformation of the graphene sensor,
which lays a solid foundation for the detection of physiological signals. A signal processing circuit is
developed to output the physiological signals in the form of electrical signals. The sensor was used
to measure finger bending motion signals, respiration signals and pulse wave signals. All the results
demonstrate that the graphene sensor fabricated by the simple and low-cost method is a promising
platform for physiological signal measurement.
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1. Introduction

There has been a growing demand for wearable flexible sensors with the continuous advance of
modern technology. Flexible and wearable sensors have drawn extensive attention due to their wide
potential applications in wearable electronics. Flexible sensors with high sensitivity, good flexibility,
and excellent stability are highly desirable for monitoring human biomedical signals, movements
and environmental factors [1,2]. To ensure a robust and conformal contact with the curvilinear,
rough, and dynamic surface of the skin without impeding daily activities, wearable sensors should
have a low modulus and high stretchability. In addition to good wearability, wearable sensors
with high sensitivity, light weight, low cost, low power consumption and negligible hysteresis are
desirable [3–5]. Nanomaterials possess larger surface areas, exceptional material properties and
are compatible with low-cost fabrication processes. Thus, nanomaterials are widely employed as
building blocks for developing wearable sensors [6]. Flexible sensors based on nanomaterials have
opened a new door for the accurate and comfortable measurements of physiological signals [7–9]. The
ideal graphene is monoatomic layered graphite with a two-dimensional honeycomb crystal structure
formed by SP2 hybridization [10,11]. Its basic structure is composed of six-membered ring-like
benzene units, and it is one atom thick. Due to the special structure of graphene, it has many unique
properties, excellent electrical properties (electron mobility up to 2 × 105 cm2/(V·s)), extraordinary
thermal conductivity (5000 W/(m·K)), outstanding specific surface area (2630 m2/g), excellent Young’s
modulus (1100 GPa) and tensile strength (125 GPa) [12–14]. Graphene plays an important role in the
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field of wearable sensors due to its sensitive piezoresistive effect, large electrical conductivity and
excellent Young’s modulus [15–17]. Graphene-based materials have shown the highest gauge factors
among all reported literature and can be transferred to various flexible substrates [18]. It is possible to
exploit piezoresistivity variations in order to measure pressure [19,20].

A variety of graphene piezoresistive sensors have been developed for detecting human motions
and spatially resolved monitoring of pressure distribution [21–23]. Graphene-based sensors high
sensitivity, and are wearable and flexible for health monitoring [24–27]. Sang-Hoon Bae et al. used the
method of chemical vapor deposition (CVD) to prepare graphene, and chose polydimethylsiloxane
as a flexible substrate. Finger bending signals were measured [28]. They proved the feasibility of
graphene as a conductive material in a flexible strain sensor. However, the CVD method significantly
increases the fabrication cost. Graphene strain sensors can be fabricated by laser engraving technology
with different patterns [29]. However, the methods of production and patterning are complex. The
patterning requires at least 25 min, which is inefficient and time-consuming for mass production.
Wang et al. developed graphene woven fabrics (GWFs), which are fabricated on a crossover copper
mesh by CVD. The GWFs can be used to sensitively measure human body motion signals [30].
Unfortunately, the method is time-consuming, and has the disadvantages of photoresist contamination
and the cracking graphene films. Electrostatic textile technology and redox method have been used to
produce graphene pressure sensors by wrapping reduced graphene oxide (rGO) on electrospun poly
vinylidenefluoride-co-trifluoroethylene (PVDF-TrFE) nanofibers. The graphene pressure sensors can
monitor human body signals in real time [31], but this requires tedious processing steps and a long
production time (over 20 h). The preparation of a graphene pressure sensor for physiological signal
detection using a simple method is still in its infancy.

In this paper, a graphene sensor is demonstrated for physiological signal measurement. Graphene
nanoplatelets (GNPs) are synthesized by thermal expansion method, and the graphene sensor is
fabricated by double-sided sealing of polyurethane (PU) medical film on the graphene sheet. Three
kinds of physiological signal are measured, including finger bending signals, respiratory signals and
wrist pulse signals. A signal processing circuit composed of a signal conversion circuit and a filter
circuit is developed to acquire and transmit the physiological signals. The GNPs synthesized by
thermal expansion are cheap, conductive and already commercially available compared with CVD
graphene and liquid phase exfoliated graphene [24]. Due to its ease of production, the versatility of
the technique, the low cost and the potentially large scalability, the as-synthesized sensor is believed to
be promising in applications of rehabilitation training, sleep monitoring and heart disease prevention.

2. Experimental Materials and Experimental Methods

2.1. Experimental Materials and Instruments

The graphite intercalation compound was bought from Asbury Graphite Mills Inc (Asbury, OH,
USA). PU films were bought from Shanghai Hons Medical Technology Co. Ltd. (Shanghai, China.
The graphene sheets were formed by a manual digital display pressure machine YP-12BS (Tianjin,
China). The tensile measuring of the GNP sheet was performed on a tensile measure machine TST-01
(Jinan, China). Scanning Electron Microscope (SEM) images of the GNP sheets were obtained by JEOL
JSM-7800FPRIME (Tokyo, Japan). The X-ray diffraction (XRD) spectra of graphite and GNPs were
characterized by X-ray polycrystalline diffractometer APD 2000 PRO (Beijing, China). The resistances
were recorded by a Hydra Series III Data Acquisition System Fluke 2638A (Everett, USA). The output
voltages of the signal processing circuit were recorded by a data acquisition instrument NI USB-63619
(Beijing, China).

2.2. Experimental Methods

GNPs were prepared by thermal expansion and exfoliation method [31]. The thermal expansion
and exfoliation method peeled flake graphite at high temperature. First, a small amount of commercial
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graphite intercalation compound (Figure S1a) was put in a crucible which had been preheated to
700 ◦C. Then, the graphite intercalation compound in muffle furnace was maintained at 700 ◦C for
one minute. The thermal expansion converted the compounds into worm-like materials (Figure S1b),
producing a large amount of GNPs. Due to the low density of GNPs, precautions must be taken in
the process to avoid inhaling GNPs into the lungs. 0.04 mg of the synthesized GNPs was weighed.
Then, the synthesized GNPs were placed in a mold to make a graphene sheet by an electronic pressing
machine. The mold is 50 µm high, 20 mm long and 10 mm wide. It is worth noting that when the
GNPs were placed in the mold, a slight pressure was applied to them in order to prevent the diffusion
of GNPs at the edge of the mold and the uneven thickness of the graphene sheet. Then, a graphene
sheet with a thickness of 48 µm ± 5 µm was formed by keeping the pressure at 1 MPa for 1 min in a
manual digital display pressure machine (Figure S1c). Two pieces of medical PU film were used to
packet the graphene sheet to form a graphene sensor.

3. Results and Discussion

3.1. Characterization of the Graphene Sensor

As shown in Figure 1, we measure the X-ray diffraction (XRD) spectra of graphite and GNPs by
X-ray polycrystalline diffractometer. It shows that the diffraction peak of graphite is very sharp at
a theta of 26.5◦. The corresponding layer spacing is 0.336 nm by calculating the Prague equation, which
indicates that the degree of graphitization is high, and the spatial arrangement of the microcrystalline
layer is highly regular. The diffraction peak of the GNPs is still 26.5◦; however, the intensity of the
diffraction peak is much lower, and the half-width of the diffraction peak is wider compared with the
graphite, which demonstrates that the graphite with the complete crystal structure is transformed into
the GNPs with the decrease of integrity and the increase of disorder degree. The results show that
amorphous GNPs has been successfully obtained [32]. Figure 2 shows the frontal and side cross-section
views of the GNP sheet. The smooth and continuous surface forms a conductive network-layer. The
side cross-section of the GNP sheet confirms that the GNP sheet consists multilayers of conductive
networks. The conductive multilayer structure enables stretchability of the GNP sheet, and provides
a continuous conductive network for sensing.

To verify the feasibility of the GNP sheets as a sensor, we characterized the pressure response of
the GNP sheets. A GNP sheet is placed on the pressure measuring machine. Different resistances of the
GNP sheet corresponding to different pressures are recorded. Figure 3a shows the relative resistance
variations of the GNP sheets under different pressures. Applying linear fitting to the data, we get the
best fitting lines with R2 of 0.98 at pressure ranging from 0 to 20 KPa and R2 of 0.99 at pressure ranging
from 20 to 80 KPa. The changes of relative resistance variations of the GNP sheets have a bilinear
relationship with the variation of the pressure applied to the sheet. The pressure response of the GNP
sheets verifies that the GNP sheets have a high relative sensitivity at low pressures (0 to 20 KPa),
which is suitable for practical applications (e.g., gentle touch, figure bending, object manipulation).
In addition, the piezoresistive properties of the GNP sheets are measured and analyzed. A GNP
sheet connected with conductive wires was fixed at both ends on the tensile measuring machine. The
GNP sheet was stretched slowly. In the meantime, its resistances were recorded at different stretching
lengths. The experimental results were calculated using 3 repeated sheets. The initial resistance R0

of the GNP sheet is 6.5 Ω. Figure 3b shows the relative resistance variation of the GNP sheet versus
stretching strain. Having employed a linear fitting to the data, we get the best fitting line with R2

of 0.98. This fitting line shows that the change of relative resistance variation of the GNP sheet has
a linear relationship with the variation of the stretching strain of the GNP sheet, which provides
a good foundation for measuring physiological signals based on the graphene sensor. The GNP sheet
is relatively flexible due to its condensed multiple-layer structure. It can bend to almost 270 degrees
(Figure S1d). When the GNP sheet is coupled with PU film, the mechanical properties are further
enhanced by the PU film. The response of the graphene sensor to strains is presented in Figure 3c.
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The graphene sensor responds in a good linear relationship to the applied strain, with the strain load
during the experiment ranging from 0% to 55%. The deformation of the GNP sheets can only be
stretched to 13%, and will break upon further stretching. On the contrary, the GNP sheets packed
with PU film can be stretched up to 100% without mechanical failure, resulting in a significantly
improved stretchability after PU film sealing. The gauge factor k is ∼205.54 for the GNP sheets in the
deformation range from 0% to 55% strain, and∼58.83 for the graphene sensor in the deformation range
from 0% to 10% strain. The gauge factors for our graphene sensor (achieved ∼58.83 at 55% strain) are
comparable with previous graphene-based strain sensors [21–23,33]. The hysteresis behavior of the
sensors is also shown in Figure 3d. In the stretching process, the value of ∆R/R0 steadily increases
upon stretching, and gradually decreases during the release process. Hysteresis is mainly caused
by the viscoelastic nature of polymers, as well as the interaction between nanomaterial fillers and
polymers [3]. Hysteresis occurred in the graphene sensor, since PU film is a viscoelastic polymer matrix
with elasticity and viscosity.
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Figure 3. The mechanical response of the GNP sheets and the graphene sensors. (a) The relationship of
the resistance ratio of the GNP sheet with the applied pressure. (b) The relationship of the resistance
ratio of the GNP sheet with its stretching strain. (c) The relationship of the resistance ratio of the GNP
sheet packed with PU film with its stretching strain. (d) Hysteresis performance of the graphene sensor.
R0 is the initial resistance value. R is an instantaneous resistance value. L0 is the length of the GNP
sheet. L is the instantaneous length of the GNP sheet.

3.2. Fabrication of Signal Processing Circuit

The graphene sensor is used to detect physiological signals, including finger bending signals,
respiration signals and wrist pulse signals. The overall schematic of measuring physiological signals is
shown in Figure 4a. First, the physiological signals of the human body are detected by the graphene
sensor, and the conversion of the graphene sensor resistance signal to the voltage signal is realized
through a signal conversion circuit. A Wheatstone bridge circuit and an operation amplifier (AD620)
are composed of the signal conversion circuit (Figure 4b). The AD620 gains resistor R6 is set at 10 KΩ,
and the gain formula is shown in Equation (1),

G =
49.4KΩ
RG + 1

(1)
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The measured resistance Rx in the bridge is the resistance of the graphene sensor. The reference
resistance R3 is chosen as 120 Ω. Then, the output voltage of the signal conversion circuit theoretically
follows the following Equation (2),

V = 5
(

Rx

( Rx + R5)
− 0.5

)(
49.4
R6

+ 1
)

(2)

The linear range of the output voltage of the signal conversion circuit is between −2.4 V and 3.6 V
due to the AD620 accessing a direct current (DC) power of 5 V. In the experiment of physiological
signal measurements, the output of the bridge circuit conforms to the linear range when the graphene
sensor is placed in the bridge circuit, which benefits the physiological signals measurements without
signal distortion.

To improve the signal-to-noise ratio and reduce the noises produced by external noise and internal
power frequency noise, filter circuits with different filtering ranges for measuring different signals are
fabricated. As shown in Figure 4c, the filter circuit consists of a two-order active high-pass filter circuit
and a two-order active low-pass filter circuit, which can be referred to as a two-order active bandpass
filter circuit. R7, R8, R11, R12, C1, C2, C3 and C4 are parameters of the filter circuit and can be changed
according to the required filter frequency range of the detection signal. The high cut-off frequency of
the filter circuit can be expressed as in Equation (3),

fH =
1

2π
√

C1C2R7R8
(3)

The low cut-off frequency is expressed as in Equation (4),

fL =
1

2π
√

C3C4R11R12
(4)

The filter circuit not only possesses a filtering function, but also an amplification function. The
amplification factor can be expressed as in Equation (5),

A0 = 1 +
R9

R10
(5)

The signal conversion circuit converts the resistance signal acquired by the graphene sensor
to a voltage signal. The filter circuit removes the noise from the signals. The whole system makes
it possible to improve the signal-to-noise ratio and amplify the voltage amplitude of the signal by
11.4 times.

3.3. Measurement of Finger Bending Action

Finger bending action measurement is of great importance in the field of human health and
robotics [34]. The prevention, treatment and rehabilitation of cardiovascular and cerebrovascular
diseases have gradually attracted people’s attention because of the increasing incidence of
cardiovascular and cerebrovascular diseases. The sequelae of cardiovascular and cerebrovascular
diseases are often manifested in language, behavior disorder and memory decline. Behavior disorders
are particularly manifested in the disorders of finger control. The best period of rehabilitation treatment
is within two months after clinical treatment, and the most effective rehabilitation therapy is needed
within this time range, otherwise, the sequelae will have a great impact on the life and work of the
patients. Hence, timely rehabilitation therapy is of great significance to patients. At the same time,
the effect of rehabilitation is reflected in human movement signals during rehabilitation. It is important
to monitor the physical signal during rehabilitation training.

We apply the graphene sensor to monitor finger bending signals in real time. We choose the
low-pass filter circuit at 10 Hz to filter the finger bending signal, and collect the signal with a sampling
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frequency of 10,000 Hz using the data acquisition instrument (Video). Figure 5 shows the signals of the
finger bending action. State A is a resting state before flexion of the fingers, and state B corresponds
to the greatest degree of finger bending during the measurement. The voltage values of the signals
between state A and state B decrease first, and then increase compared with state A, indicating that
the resistance values of graphene sensor decrease firstly and then increase. Both pressure and tension
contribute to the changes of resistance values from state A to state B. The graphene sensor is subjected
to pressure firstly in this process, so that the resistance values decrease, and then the resistance values
increase because the tension plays a major role. State C is the state from the bending to the resting state.
When the finger moves back to its original position, the voltage values of the signals decline firstly,
and then increase. This is because the stretching strain of graphene sensor firstly decreases, so that
the voltage values of the graphene sensor decrease. In addition, then the pressure dominates, which
causes the voltage values to fall below zero. With the release of pressure and tension, the voltage of
the graphene sensors returns to the original state. The data show that the collected voltage signal can
reflect the finger bending action. By extracting and calculating the key points of the figure bending
signals with MATLAB, we find that if the finger moves periodically, the system outputs a periodic
voltage signal. The results demonstrate that the graphene sensor can monitor the movement of fingers,
which can be used in the rehabilitation of finger flexion. It provides an intuitional method to observe
the effect of rehabilitation training, which is important for rehabilitation training of cardiovascular and
cerebrovascular diseases.
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3.4. Measurement of Respiration Signals

Respiration is an important physiological process of the human body. Detection of respiration
signals is an important part of healthcare monitoring. Diseases related respiration signals have
attracted wide attention all over the world. The incidence of obstructive sleep apnea syndrome (OSAS)
is high and harmful. Accurate and reliable monitoring of patients’ respiratory and sleep physiological
signals can help to cure disease [35]. At present, sleep monitoring devices are expensive and are limited
to specific application scenarios. Therefore, the development of a portable and low-cost respiratory
sleep monitoring system is of great significance. The fabricated graphene sensor was attached to the
abdomen of a volunteer by a PU film. The recorded signals were recorded and processed by the signal
processing circuit. The output signals were obtained by a data acquisition instrument. A low-pass
filter circuit at 20 Hz and a sampling frequency at 10,000 Hz are chosen to filter the respiration signals
and collect the signals by data acquisition instrument. The collected signals are analyzed by MATLAB.
The three points A, B and C in Figure 6 are three moments of the respiratory process. Moment A
is the beginning of inbreathing. The pressure in the lung begins to increase. Moment B represents
a moment of starting expiration, corresponding to the beginning of the pressure decreasing in the lung.
Moment C is a moment of finishing expiration. This is also the beginning of a resting state. As with the
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mechanism analyzed in the finger bending signal, both pressure and tension contribute to the changes
in voltage values from moment A to moment C. After the extraction and calculation of the feature
points, the deep breathing cycle of the subject is 5.25 s, with a frequency of 11.42 times per minute. The
respiratory rate accords with the depth of respiratory frequency. It shows that the graphene sensor
has good accuracy in measuring respiratory signals. This graphene sensor can achieve effective and
low-cost detection of respiration signals during sleep, which is of great significance for the prevention
and treatment of respiratory diseases.
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3.5. Wrist Pulse Signal Measurement

Pulse signal is an auxiliary examination of cardiovascular diseases. High pulse rate has a high
correlation with the incidence of coronary heart diseases [36]. It can predict hypertension, coronary
heart disease and other diseases. When the pulse rate of an adult is more than 100 beats per minute,
it is known as tachycardia. If the pulse rate of an adult is less than 60 beats per minute, it is called
bradycardia. There are many diseases in clinic will result in the change of the pulse rate. For example,
the speed of heart will be accelerated when fever occurs, resulting in an increase in the pulse rate, and
especially the heart disease can change the pulse rate. The measurement of pulse rate has become an
indispensable testing item for patients.

The graphene sensor is applied to measure wrist pulse signals. We attach the graphene sensor to
the wrist to measure the radial artery pulse wave. The pulse wave pressure on the wrist skin surface is
less than 0.6 KPa [37,38], which conforms to the linear range of the resistance of the graphene sensor
varying with the pressure applied to it. The pulse signals are filtered using the bandpass filter circuit
with 0.5–25 Hz. A remarkable periodic voltage signal is obtained, as shown in Figure 7a. The peaks
of the pulse signal are marked with red circles. To check the quality of the acquired pulse signal, we
analyze the pulse wave signal by spectrum analysis (Figure 7b), and compare it with the normal pulse
wave signal spectrum obtained using traditional sensors (Figure 7c). From the comparison between
Figures 7b and 7c, we draw the conclusion that the pulse signal measured by the graphene sensor
accords with the main frequency distribution range of the normal pulse wave. After calculating the
interval between one peak and its adjacent peak (PP) of the pulse signal, we find that the average PP
interval is 0.79 s, and the variance is 0.03. The results demonstrate that the wrist pulse of the subject
is in accordance with the normal pulse wave signal with a range of 0.75 s–0.85 s. All these results
show that the graphene sensor provides a low-cost, simple to produce, high-comfort and accurate
measurement method for the pulse rate, which is attractive in the field of preventing hypertension,
coronary heart disease, and other diseases.
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4. Conclusions

In short, we synthesized GNPs using the thermal expansion and exfoliation method, and
developed a graphene sensor. The resistance of the graphene sensor has a linear relationship with its
stretching strain, which lays a solid foundation for the measurement of physical signals. We fabricated
a signal processing circuit to output the physiological signals collected by the graphene sensor. The data
of the finger bending signal, respiration signal and wrist pulse signal were processed and analyzed,
which confirmed the accuracy of the signals. The graphene sensor fabricated by this method provides
a low-cost, simple and flexible sensing method for measurement of physical signals. This is believed to
be promising in applications of rehabilitation training, sleep monitoring, and heart disease prevention.
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