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Abstract: Iodine is an essential nutrient necessary for the production of thyroid hormones. A valuable
source of iodide, which is the bio-available iodine form could be mineral waters offered by different
spas. In this work, the method capable of direct determination of iodide in mineral water samples
based on IAM liquid chromatography on the phosphatidylcholine column (IAM.PC.DD2 Regis
HPLC) with DAD detection without sample pretreatment or any pre-concentration steps is presented.
The calibration graph for iodide was linear in the range of 0.5–10.0 mg L−1 with a correlation
coefficient of 0.9996. The limit of detection was 22.84 ng mL−1. The relative recoveries were in
the interval of 98.5–100.2% and the repeatability, expressed as a relative standard deviation (RSD)
was less than 5%. The RSA (Response Surface Analysis) investigated the effect of the sample
concentration and the injection volume. The iodide concentrations in the mineral water samples
ranged from 0.58 to 2.88 mg L−1. The accuracy of the method was assessed through independent
analysis by ICP-MS. Iodide levels measured by these two procedures did not significantly differ.
The effects of interfering ions like HCO3

−, Cl−, SO4
2−, F−, and Br− were also tested. The analysis

has shown insignificant differences in the values of the iodide peak area and its height measured in
multicomponent mixtures with an error smaller than 5%.

Keywords: phosphatidylcholine; iodide anions; mineral waters; sustainable chemistry

1. Introduction

Iodine belongs to an essential micronutrient. For the human body, it is an exogenous element that
can only be taken through drinking water or various foods. Iodine is absorbed by the gastrointestinal
tract in the form of iodide becoming the key component of the thyroid hormones including thyroxin
(T4) and triiodothyronine (T3) [1]. Currently, it is estimated that about 2 billion people in the world are
affected by iodine deficiencies, including 30% of which are children [2,3].

Iodine Deficiency Disorders (IDD) cause an endemic goitre, cretinism, and are particularly
dangerous for pregnant women since they can lead to fetal brain damage and miscarriage [4–6].
Iodine intake for an adult has been estimated to be 1 µg per kg body weight daily [7]. The World
Health Organization (WHO) iodine prophylaxis program has recommended obligatory salt iodization
of 30 ± 10 mg KI/kg, and additional supplementation for pregnant and lactating women by 150–200 µg
iodine per day [2]. The U.S. Institute of Medicine (IOM) has recommended even higher daily allowance
(RDA in µg d−1) of iodine as follows for adults 150 (RDA), pregnant women: 220 (RDA), and lactating
women: 290 (RDA) [8].

Iodine is found mainly as iodide, iodate, and iodine-organic compounds in the environment [9,10].
These forms are converted to one another rapidly. However, iodide is considered to be the most
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mobile and bioavailable iodine form [10]. Several methods have been described in order to determine
the iodine. In most of them, the iodine species were derivatized to iodide, which, subsequently,
was determined by a high performance liquid chromatography (HPLC) [11] or to organo-iodine forms
further analyzed by a gas chromatography-mass spectrometry (GC-MS) [12]. However, the above
methods possess very important limitations such as time-consuming derivatization steps and restricted
requirements devoted to the iodine scavenger. The determination of inorganic iodine species is possible
by an ion chromatography (IC) with conductivity detection characterizing with poor sensitivity for
quantification in some applications. The limitation of IC usability is the presence of chlorides in
the matrix, which requires sample pretreatment by the use of an on-guard silver cartridge [13,14].

Other methods recommended for iodine determination go as follows: spectrophotometry [15],
titration [16], and the ion-selective electrode [17]. In the case of conventional iodometric
titration, the main drawback is false estimation because of interfering oxidizing agents [14].
In turn of electrochemical determination, unsatisfactory precision has been emphasized [18].
Furthermore, the main disadvantages in using electrochemical detection are unvarying pre-treatment
steps [19–21]. The spectrophotometric method, which is based on the Sandell and Kolthoff reaction [15],
is one of the oldest methods utilizing the iodine-catalyzed redox reaction between cerium (IV)
and arsenic (III). It has been applied mainly because it does not require expensive instrumentation.
However, a catalytic effect of sodium and iron leading to false high values of iodine has been
demonstrated [22].

More sophisticated methods such as ion-pair liquid chromatography [23] and Inductively Coupled
Plasma Mass Spectrometry, ICP-MS [24], transient isotachophoresis-capillary zone electrophoresis [25],
and electroanalysis [26], are recommended as methods for providing reliable and accurate results.
However, they have been excluded from routine analysis in many countries due to the high costs.
The Dionex application note (Application Note 236) described the use of a silica-based column
that incorporates hydrophobic, weak anion-exchange, and ion-exclusion properties (the Acclaim
Mixed-Mode WAX-1) to determine iodide in high ionic strength samples such as seawater [27].
In another application note (Application Note 239), an IC system was used with a column designed for
the separation of polarizable anions (the Thermo Scientific™ Dionex™ IonPac™ AS20 column) [28].
Conductivity and UV detection showed similar linearity and LOD on the level of 15 µg/L.
Linear response to iodide was confirmed between 50–250 µg/L. Determinations of iodide in saline
matrixes was accurate with recoveries ranging from 93% to 113%. To determine the concentration
of iodide by an HPLC system, the fluorescence detector can also be applied [29,30]. Only one work
has described handmade created phosphatidylcholine stationary phases for the chromatographic
separation of a few inorganic anions [31]. Obtained stationary phases have been prepared
by loading liposomes of dimyristolyphosphatidylcholine (DMPC) onto reversed-phase columns.
Currently, Immobilized Artificial Membranes are being prepared commercially by phosphatidylcholine
analogues chemically bonded to a propylamino-silica core [32]. As they can efficiently simulate
bio-membrane permeation [33,34], these columns are useful in permeability studies or predicting
the therapeutic effects of many substances such as (−)-epicatechin conjugates [35], various model
drugs [36,37], flavonoids [38], statins [39], and NSAIDs [40].

Taking into account the importance of iodine consumption, it is clear that an analytical method
for inorganic iodine determination in different food products that could be easily applied is needed.
Therefore, the aim of this work is to develop an analytical method based on IAM-HPLC-DAD capable
of quantifying iodide in mineral water samples as a source of iodine supplementation. The proposed
methodology is focused on the application of commercially available phosphatidylcholine column
(IAM.PC.DD2 Regis HPLC) for the first time, which is able to retain iodide even by the use of
water containing NaCl as an eluent, obtain enough capacity necessary for iodide determination in
a complex matrix, sufficient sensitivity necessary for trace analysis, selectivity against interfering ions,
and using a small sample volume. Obtained results were compared with the reliable ICP-MS method
as a reference.
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2. Results and Discussion

2.1. Effect of Experimental Variables

To establish the best conditions for the determination of iodide, the high-performance liquid
chromatography method was optimized with respect to sodium chloride concentration in the mobile
phase. The influence of NaCl on the retention factor (k), symmetry (As), and efficiency of the peaks
(N) may be analyzed on the basis of the data included in Table 1 and the examples of chromatograms
obtained under studied conditions (Figure 1). The results show that the retention time increased up
to 6 min and then gradually decreased with increasing concentration of NaCl in the mobile phase.
A concentration of 30 mM was chosen in subsequent experiments since it enabled the highest efficiency
expressed as the theoretical plates number (above 3000 N) and the most beneficial peak’s symmetry
(As smaller then 2). It has been previously established that anions are retained on a phospholipid
monolayer on the basis of a solvation-dependent mechanism but considering presence of the quaternary
ammonium groups (N+) on the surface, an anion-exchange process can also contribute to their
retention [31]. It is clear that an eluent’s ionic strength influences both retention mechanisms.
Therefore, all peak’s parameters undergo improvement with increasing NaCl concentration in
the mobile phase.

Table 1. Effect of NaCl concentration in the mobile phase in the range of 1 to 30 mM for the KI
retention factor (k), the peak symmetry factor (As), and the theoretical plates number (N). The column
was IAM.PC.DD2 Regis HPLC Agilent Technologies, flow rate of the mobile phase was 0.5 mL/min,
injected volume 3 µL, and analytical wavelength of 226 nm.

NaCl Concentration
[mM] Retention Factor k Symmetry Factor As * Theoretical Plates

Number N (EUP) **

1 2.83 (± 0.08) 2.73 (± 0.05) 295 (± 97)
5 3.19 (± 0.07) 2.90 (± 0.04) 1191 (± 147)

10 3.57 (± 0.06) 2.97 (± 0.07) 1973 (± 198)
15 3.59 (± 0.10) 2.74 (± 0.08) 2352 (± 116)
20 3.59 (± 0.07) 2.57 (± 0.06) 2794 (± 174)
25 3.50 (± 0.08) 2.32 (± 0.07) 3082 (± 196)
30 3.39 (± 0.06) 1.91 (± 0.06) 3136 (± 177)

All calculations were performed using the HSM program. * The HSM program uses the following equation to
calculate asymmetry: As = 1/2(1 + B/A), where A and B are evaluated at a 5% peak height of an appropriate peak.
** The following equation is used to calculate the number of theoretical plates according to EUP standards: N = 5.54
(RT/W1/2), where RT is the actual retention time of the appropriate peak, W equals the peak width obtained by
drawing tangents to each side of the peak and calculating the distance between the two points where the tangents
meet a line that runs parallel to the baseline at half peak-height.



Molecules 2019, 24, 1243 4 of 14
Molecules 2019, 24, x FOR PEER REVIEW 4 of 14 

 

 

Figure 1. Effect of different concentrations of NaCl in the eluent system on iodide retention, peak 
symmetry, and efficiency. 

Chromatographic method optimization was carried out by applying a Response Surface 
Methodology (RSM). This procedure was applied to obtain optimum chromatographic conditions to 
avoid volume or concentration overloading, which manifests itself in the form of distorted peak 
shapes. It allowed the evaluation of the relationship between a set of controlled experimental factors 
such as injection volume or sample concentration and obtained results expressed as the peak 
symmetry and the theoretical plate number. The obtained dependency model can be described by 
the following second-degree polynomial equation. 

Z = β0 + β1C + β2C2 + V (1) 

where Z is a dependent variable, C is the concentration, and V is the injection volume. 
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injection volume and the theoretical plate’s number proved to be the best fit. The significance of F 
statistics in both cases shows that, in each of them, at least one independent variable (concentration 
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Figure 1. Effect of different concentrations of NaCl in the eluent system on iodide retention, peak
symmetry, and efficiency.

Chromatographic method optimization was carried out by applying a Response Surface
Methodology (RSM). This procedure was applied to obtain optimum chromatographic conditions
to avoid volume or concentration overloading, which manifests itself in the form of distorted peak
shapes. It allowed the evaluation of the relationship between a set of controlled experimental factors
such as injection volume or sample concentration and obtained results expressed as the peak symmetry
and the theoretical plate number. The obtained dependency model can be described by the following
second-degree polynomial equation.

Z = β0 + β1C + β2C2 + V (1)

where Z is a dependent variable, C is the concentration, and V is the injection volume.
In terms of matching variables to this model, the relationship between concentration versus

the injection volume and the theoretical plate’s number proved to be the best fit. The significance
of F statistics in both cases shows that, in each of them, at least one independent variable (concentration
or volume) affects the dependent variable (N or As). The response surfaces are shown in Figure 2A,B
and Table 2.

Table 2. Second-degree polynomial model parameters.

Parameters As N

C 0.021 (0.005) −49.876 (11.734)
I(C2) −0.0001 (0.00004) 0.204 (0.112)

V 0.037 (0.006) −113.931 (14.506)
constant 0.646 (0.100) 8360.409 (257.425)

observations 35 35
R2 0.812 0.853

Adjusted R2 0.794 0.839
Residual Std Error 0.209 (df = 31) 538.961 (df = 31)

F statistic 44.771 (df = 3;31) 60.201 (df = 3;31)
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avoiding overloading. Other LC-UV applications utilizing the ion-exchange separation mechanism 
for iodide determination require much bigger sample injection volumes in the range of 25 to 500 µL 
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2.2. Analytical Quality Control 

Figure 2. Effect of iodide concentration (C) and injection volume (V) on peak symmetry: As-(A),
and system efficiency: N-(B) by the Response Surface Analysis (RSA).

In the light of a sequence of designed experiments analyzed by the RSA, the best symmetry
of the peak and the system efficiency was obtained by decreasing the sample volume and its
concentration. Due to the optimization of operational factors, subsequent quantifications were
performed by applying 3 µL of diluted samples. Furthermore, analyzed samples did not require
any pre-concentration steps to obtain an optimal response. Such a low sample volume (3 µL)
is beneficial when taking into account the possibility of extending the chromatographic column
lifetime and avoiding overloading. Other LC-UV applications utilizing the ion-exchange separation
mechanism for iodide determination require much bigger sample injection volumes in the range of 25
to 500 µL [11,41–43].
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2.2. Analytical Quality Control

The parameters such as linearity, the limit of detection, and quantification are presented in Table 3.

Table 3. The linear regression parameters obtained for the calibration curves of iodide ions.

LOD *
[mg L−1]

LOQ *
[mg L−1]

Linear Range *
[mg L−1]

Regression Equation **
(y = ax + b)

a ± Sa b ± Sb r Se F

0.02284 0.06852 0.5–10.0 16156.1 (± 175.33) −2264.6 (± 902.5) 0.9996 1361.5 8491.4

* Number of calibration points: 8. ** Sa: the standard deviation of the slope, Sb: the standard deviation of
the intercept, Se: the standard error of estimate, F—Fisher F Statistic.

The applicability of the proposed method was evaluated by analyzing real canal water samples.
Since no positive samples were found regarding the content of iodides, the samples were spiked with
the analyte at three concentration levels (2, 5, and 10 mg L−1). The results are presented in Table 4.
Relative recovery values were in the range 98.5–100.2%, which indicates the absence of the matrix
effect on the proposed method.

Table 4. The percentage of recoveries (R) of real canal water samples spiked with the analyte.

Sample Added [mg L−1]
Measured Mean ± SD

(n = 3) [mg L−1]
Percentage of

Recovery RSD %

Canal water

0 0 - -
2 1.97 (± 0.07) 98.5 3.55
5 4.96 (± 0.22) 99.2 4.43

10 10.02 (± 0.46) 100.2 4.59

2.3. The Mineral Water Sample Analysis

The optimized procedure (IAM-HPLC-DAD) was applied to determine iodide in mineral
water samples. Exemplary chromatogram of the investigated water sample with DAD iodide
peak identification is presented in Figure 3. Table 5 shows iodide content in six selected natural,
mineral waters from Polish resorts with a long tradition in the field of spa medicine. In samples
investigated, a single peak occurred at the same retention time, which was measured for a standard
iodide. Furthermore, the absorption spectrum measured throughout the chromatographic peak
exhibited a maximum at 226 nm, which is characteristic for the iodide. The identity of the iodide
was confirmed by retention time and absorption spectrum for the up-and downslope. The coefficient
of agreement between the standard spectrum recorded under defined chromatographic conditions
and the examined sample was 0.9984.
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Figure 3. Chromatogram of sample W3. Insert: UV-absorption spectra of iodide in sample W3
recorded in the range of 190 to 400 nm. Conditions: stationary phase: IAM.PC.DD2 Regis HPLC
(4.6 × 150 mm, 10 µm, pore size: 300 Å), mobile phase 30 mM NaCl/water, the flow rate 0.5 mL min−1,
detection 226 nm.

Iodide was analyzed quantitatively with an external standard curve. The ICP-MS, which is
considered to be fast, accurate, robust, and specific, was used as the reference method.

The content of iodides declared by producers differs significantly from the value measured both
by HPLC and ICP-MS. In some cases, quantities declared by producers may require re-evaluation
to reach true levels. However, the experimental values quantified on the phosphatidylcholine
column do not differ from the values measured by the reference ICP-MS method. To investigate
the agreement between measurements made by two methods, the relationship between measurements
from the IAM-HPLC against those from the reference method was prepared. The linear regression
analysis for this dataset possesses the slope close to one and the low value of the intercept, which only
differs a little from zero. This indicates excellent statistical compatibility of results obtained by both
compared methods.

y (IAM-HPLC) = 0.9607 (± 0.02899)x(ICP-MS) + 0.1379 (± 0.04619)

R2 = 0.9856, Se = 0.1056, F = 1098.01

Table 5. Iodide content in selected mineral waters (n = 3 each) analyzed by HPLC-DAD on IAM.PC.DD2
Regis HPLC Agilent Technologies and ICP-MS.

Sample Contents Declared
[mg L−1]

IAM.PC.DD2 Regis HPLC
Agilent Technologies [mg L−1]

Mean ± SD
Relative Bias * (%) ICP-MS [mg L−1]

Mean ± SD
Relative Bias ** (%)

1 0.52 0.58 (± 0.02) 11.5 0.41 (± 0.04) −21.1

2 2.49 0.84 (± 0.07) −66.2 0.69 (± 0.03) −72.2

3 2.50 2.88 (± 0.03) 15.2 2.72 (± 0.02) 8.8

4 2.36 2.01 (± 0.07) −14.8 2.10 (± 0.06) −11.0

5 0.90 0.66 (± 0.08) −26.6 0.57 (± 0.06) −36.6

6 4.43 1.60 (± 0.06) −63.8 1.56 (± 0.02) −64.8

* Relative bias (%) = (value from HPLC − Contents declared) × 100/Contents declared. ** Relative bias
(%) = (value from ICP-MS − Contents declared) × 100/Contents declared.

The linear regression might explain the bivariate relationship, which exists between two sets of
measurements. Thus, the strength, form, and direction of a relationship can be identified but sometimes
this approach is not recommended for comparative analyses [44]. A very useful data visualization



Molecules 2019, 24, 1243 8 of 14

tool is the Bland-Altman plot (B & A is known as Tukey Mean-Difference plot). When comparing
two sets of measurements for the same variable made by different instruments, it is often required
to determine whether the instruments are in agreement or not. The B&A plot is a simple way to
evaluate the bias between the mean differences of measurements done by two methods. It is a kind
of scatterplot of differences of two paired measurements against the average of these measurements.
The average of two measurements is the best way to estimate the true mean. Bland and Altman say
that, if the points are between the limits of agreement constructed as a 95% confidence interval for
the difference, then these two instruments agree [45–47].

The gap between the X-axis and the blue line (Figure 4) represents the difference between readings
from two measurement instruments. The mean value (0.086) is significantly different from zero
(p = 0.004). This indicates that, on average, HPLC measurements are higher by about 0.086 units
than ICP.MS. Except for one point belonging to sample W4, all observations are between the lower
and upper bounds of the 95% confidence interval, which means that these two methods of measuring
agree. Furthermore, Bland and Altman suggest checking the assumption of the normal distribution
of differences. Figure 5 shows that there is no significant deviation of differences from the normal
distribution. This hypothesis was also checked by the Shapiro-Wilk test (p = 0.52).
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2.4. Interferences of Coexisting Ions

The effects of representative potential interfering ionic species in mineral water samples like
HCO3

−, Cl−, SO4
2−, F−, and Br− were also tested. To perform this study, aqueous solutions containing

a constant iodide concentration and different coexisting ions were subjected to the developed procedure.
Iodide absorbs at 226 nm while the other anions (λmax = 210 nm) remain undetected at this wavelength.
Tables 6 and 7 show the tolerance limits of the interfering ions. The tolerance limit (TL) of coexisting
ions was defined as the largest amount, which makes variation less than 5% in the peak height or area.

Table 6. The tolerance limits of the interfering ions in the height of the iodide peak.

Statistical Evaluation of
the Iodide Peak Height

[I−] = 4 ppm
H2O HCO3

−

[1000 ppm]
Cl−

[1000 ppm]
SO4

2−

[100 ppm]
F−

[10 ppm]
Br−

[10 ppm]

Average peak height 6188.50 6209.67 6263.67 6138.67 6140.33 5890.33

SD 254.26 100.01 59.70 274.97 109.70 157.02

CV 4.11 1.61 0.95 4.48 1.79 2.67

Tolerance limit [%] - 0.3 1.2 0.8 0.7 4.8

Table 7. The influence of selected anions on the surface area of iodine peaks in the standard solutions.

Statistical Evaluation of
the Iodide Peak Area

[I−] = 2 ppm
H2O HCO3

−

[1000 ppm]
Cl−

[1000 ppm]
SO4

2−

[100 ppm]
F−

[10 ppm]
Br−

[10 ppm]

Average peak area 232,474.7231,092.7 233,938.9 230,291.6 230,719.1 225,425.5

SD 3185.09 3122.82 3182.58 2255.27 1715.77 4106.21

CV 1.37 1.35 1.36 0.98 0.74 1.82

Tolerance limit [%] 0.6 0.6 0.9 0.8 3.0

The presence of bromide provides the highest value of the tolerance limit considering the peak
height (4.8%) and its area (3.0), but both of them were still smaller than 5%. Iodide can easily be
detected by UV absorbance without interference from other anions. Proposed conditions can be
classified as specific for iodide determination since it was either separated from potentially interfering
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ions, which can be present in mineral water samples at a high concentration or identified by its
retention (6 minutes) at absorption maximum (226 nm).

3. Experimental

3.1. Materials and Sample

Deionized and purified water by ULTRAPURE Millipore Direct-Q 3UV-R
(Merck, Darmstadt, Germany) of the resistivity 18.2 MΩ cm was used to prepare all the aqueous
solutions. Sodium chloride was sourced from POCH (Gliwice, Poland). A stock standard solution of
potassium iodide (100 mg L−1) was prepared from potassium iodide (Merck, Darmstadt, Germany).
Mineral water samples were purchased from a local market (Lublin, Poland). They were stored at 4 ◦C
in the refrigerator. The working standard solutions were prepared immediately before use.

3.2. HPLC Conditions

Chromatographic measurements were made on a LaChrom HPLC Merck Hitachi (E. Merck,
Darmstadt, Germany) equipped with a diode array detector (L-7455), pump (L-7100), interface (D-7000),
and solvent degasser (L-7612). Chromatographic column IAM.PC.DD2 Regis HPLC (4.6 × 150 mm,
10 µm, pore size: 300 Å) was purchased from Agilent Technologies (Santa Clara, CA, USA).
Column temperature was controlled in the range of 15 to 50 ◦C by the thermostatic column
compartment L-7350. Chromatographic data were acquired and processed by D-7000 HSM Software
version 3.0 (E. Merck, Darmstadt, Germany). The mobile phases were filtered through a Nylon 66
membrane filter (0.45 µm) Whatman (Maidstone, England) using a filtration apparatus. The eluent was
prepared by dissolution inorganic salt (NaCl) in water. The chromatography was carried out at room
temperature. Retention data was recorded at a flow-rate of 0.5 mL min−1. The detection wavelength
was set at 226 nm chosen accordingly with the recorded spectra by the DAD detector ranging from 190
to 400 nm. A sample solution was injected twice ranging from 3 to 20 µL.

3.3. ICP-MS

To validate the proposed method, iodide was assayed with the ICP-MS system. Analysis was
carried out using an inductively coupled plasma mass spectrometer (ICP-MS), Varian MS-820
(Mulgrave, Victoria, Australia) coupled to a cross-flow nebulizer and a Scott spray chamber.
The concentration was determined after diluting the solution with 0.5% (v/v) tetramethyhylammonium
hydroxide (TMAH, Sigma-Aldrich, St. Louis, MO, USA) and adding tellurium as an internal
standard. Standard solutions of tellurium with purity of 99.999% were purchased from Ultra
Scientific (North Kingstown, RI, USA). Argon gas with a purity of 99.999% was purchased from
the Messer Group (Bad Soden, Germany). All reagents were of an analytical grade unless specified
otherwise. Deionized water with a resistivity of 18.2 MΩ/cm was obtained from a HLP-20 system
(Hydrolab, Straszyn, Poland).

3.4. Method Optimization and Validation

The interactions among process variables such as analyte’s concentration and injection volume
were determined by the RSA (Response Surface Analysis). The effect of concentration and injection
volume was found to range from 5 to 100 ppm (tj. 5, 10, 15, 25, 50, 75, and 100 ppm) and 3–20 µL (3, 5,
10, 15, and 20 µL). The experimental data was developed by using the open source R program [48].

The method validation was carried out according to the guidelines ICH Q2 (R1) [42,49]. The linear
range was calculated from a calibration curve made by injecting standards of iodide in triplicate
at 10 concentration levels (0.5, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0) between 0 and 10 mg L−1. The limits
of detection (LOD) and quantification (LOQ) correspond to 3 and 10 times the signal-to-noise
ratio, respectively. Accuracy of the method was assessed using the determination of iodide
recovery. The sample matrix (canal water) was spiked with a known concentration of iodide at three
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concentration levels of 2, 5, and 10 mg L−1 and the percentage of recoveries (R) of the spike standard
were calculated as follows:

R (%) = (Cm − Co)/m × 100 (2)

where Cm is a value of iodide in a spiked sample, Co is the value of iodide in a sample, and m is
the amount of iodide spiked. Specificity of the method was estimated by measuring the response
of the investigated analyte (peak height) at a concentration of 4 mg L−1 in the presence of
the high concentration of the potentially interfering components such as HCO3

− (1000 mg L−1),
Cl−(1000 mg L−1), SO4

2−(100 mg L−1), F−(10 mg L−1), and Br−(10 mg L−1).

3.5. Data Analysis

Multiple regression analysis was performed by using Microsoft Excel 2010. Experimental values
were expressed as means ± SD. The Shapiro-Wilk’s W test for detecting a normal distribution of data
were performed by the use of Statistica v. 12. The Bland-Altman plot was done in an R-statistical
programing environment (R Core Team 2018) [48].

4. Conclusions

In the present study, a commercial phosphatidylcholine column IAM.PC.DD2 Regis HPLC was
applied for the quantification of iodide in mineral water samples. The obtained results agreed
well with ICP-MS used as the reference one, which indicates good performance of both methods
for iodide determination. The main advantage of the current work is the simple instrumentation
covering HPLC-DAD, which is considered to be a standard in most laboratories. Comparing
the current methodology with those previously reported in the literature [50], the method utilizing
the HPLC-DAD system with Mixed-Mode WAX-1 column, regarding linearity, sensitivity, precision,
and recovery, and the phosphatidylcholine column ensured about two times shorter retention time
(current method: 5.8 min, reported method: 10.8 min). In addition, it ensured a ten times smaller
LOD value (current method: 22.84 µg L−1, reported method: 200 µg L−1) and a narrower range of
recovery (current method: 98.5–100.2%, reported method: 92.6–108.9%). In conclusion, the presented
results prove the usability of the IAM.PC.DD2 Regis HPLC column for iodide determination in
aqueous samples.
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