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Abstract: Since its re-emergence in 1993, the spatial patterns of malaria outbreaks in South Korea
have drastically changed. It is well known that complicated interactions between humans, nature,
and socio-economic factors lead to a spatial dependency of vivax malaria occurrences. This study
investigates the spatial factors determining malaria occurrences in order to understand and control
malaria risks in Korea. A multilevel model is applied to simultaneously analyze the variables in
different spatial scales, and eigenvector spatial filtering is used to explain the spatial autocorrelation
in the malaria occurrence data. The results show that housing costs, average age, rice paddy field
ratio, and distance from the demilitarized zone (DMZ) are significant on the level-1 spatial scale;
health budget per capita and military base area ratio are significant on the level-2 spatial scale.
The results show that the spatially filtered multilevel model provides better analysis results in
handling spatial issues.
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1. Introduction

Plasmodium vivax, an endemic factious disease known as tertian malaria, was prevalent on the
Korean peninsula for centuries. It was eradicated in South Korea in 1979 through a national control
project and improvements in public sanitation [1]. However, a military serviceman in Paju brought
about its re-emergence in 1993. In the following years, the number of malaria occurrences peaked in
2000 with 4000 and declined afterward. Since 2010, the number has fluctuated around 1000 cases every
year (Figure 1). The transmission of malaria and its occurrences reflect various social and economic
conditions such as human demographic changes, the economic situation, and the level of public
sanitation in a country [2,3]. The re-emergence of malaria in South Korea is noteworthy because it
is speculated to have originated from adjoining North Korea [4,5]. North Korea experienced severe
economic aggravation in the 1990s and had severe malaria outbreaks. As malaria is transmitted by
mosquitoes, the spatial patterns of malaria occurrence have similar counts in nearby areas, consequently
leading to spatial clustering or spatial dependency [6–8]. As previously noted, the initial re-emergence
occurred in Paju, which is a remote rural area with little population except for several military bases
because of its proximity to the border between North and South Korea. As a result, malaria occurrence
in South Korea not only reflects socio-economic environments but also presents political and military
tensions between the two Koreas.

This study applied multilevel modeling to use variables of multiple levels from a hierarchical
structure in analyzing malaria occurrences, which reflects many complicated natural, socio-economic,
and political dimensions. Using the multilevel model helps to supplement the limited availability
of health and disease data. Data from multiple levels of the spatial scale extend the analysis range
and enable further understanding of malaria occurrences. Many multilevel models have analyzed the
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determinants of malaria [9–13]. However, study targets and areas were mostly limited to Plasmodium
falciparum in sub-Saharan Africa, the epidemiological characteristics of which are different from vivax
malaria in the temperate climate region. Several multilevel modeling methods have been applied to
explain the vivax malaria in Asia [14,15]. However, they did not account for spatial autocorrelation
in the model. A multilevel study analyzed malaria in South Korea [16]. However, neither spatial
autocorrelation nor a political perspective of disease was appropriately considered.
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These types of spatial dependence issues have been widely introduced in the literature [18]. 
Thus, the application of ordinary multilevel modeling for the analysis of malaria occurrences has 
limitations because it typically assumes independent and identical distribution (i.i.d.) of the 
occurrence data. However, most malaria occurrences are spatially dependent, and a corresponding 
application of ordinary multilevel modeling is non-spatial and unrealistic, which leads to biased or 
inefficient results [19,20]. 

A spatial statistical method that handles spatial autocorrelation in spatial data is necessary for 
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Figure 1. Number of malaria occurrences in Korea since its re-emergence.

Most multilevel modeling assumes that observations are independent of each other [17]. However,
this is not a realistic assumption for a malaria analysis. As malarias are transmitted by mosquitoes,
the movement of mosquitoes naturally leads to spatial autocorrelation in malaria occurrences.
After malaria has emerged, its transmission through mosquitoes becomes exacerbated with human
influence as a host. In the process, an infected neighbor will have a greater chance of infecting people
due to the malaria transmission cycle. In addition, environmental factors such as swamps and the
rice paddy fields in this study have a huge influence in providing breeding habitat for mosquitoes.
These factors all contribute to spatial autocorrelation in malaria occurrences.

These types of spatial dependence issues have been widely introduced in the literature [18].
Thus, the application of ordinary multilevel modeling for the analysis of malaria occurrences has
limitations because it typically assumes independent and identical distribution (i.i.d.) of the occurrence
data. However, most malaria occurrences are spatially dependent, and a corresponding application
of ordinary multilevel modeling is non-spatial and unrealistic, which leads to biased or inefficient
results [19,20].

A spatial statistical method that handles spatial autocorrelation in spatial data is necessary for
reliable spatial data analysis in multilevel modeling. Griffith suggested spatial filtering methods
in the hierarchical generalized linear model in the disease mapping of West Nile Virus spread
by mosquitoes [21]. Park and Kim applied a spatially filtered multilevel model in the analysis of
neighborhood-level health status in South Korea [22].

This study analyzes malaria occurrences in South Korea in 2014 using the multilevel generalized
linear model (MGLM). In the analysis, an eigenvector spatial filtering model is applied and accounts
for spatial autocorrelation in the model. The results show that malaria transmission in South Korea
is significantly influenced by housing costs, average age, rice paddy field ratio, distance from the
demilitarized zone (DMZ), health budget per capita, and military base area ratio throughout multiple
levels of analysis. This study reveals the unique socio-political conditions on the Korean peninsula
related to malaria occurrences. The distance from the DMZ and military base area ratio variables reflect
the influence of military tensions and confrontations between North and South Korea. This study
helps to extend understanding of local political effects on epidemiology.
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2. Study Area, Data, and Methodology

2.1. Study Area and Data

Figure 2 shows the study areas composed of Si, Gun, and Gu (city and county) in Seoul, Incheon,
Gyeonggi, and Gangwon provinces in South Korea. In total, the data of 1301 districts from 83 cities are
used for the modeling. Malaria occurrences in 2014 were obtained from the Korea Centers for Disease
Control and Prevention. Descriptive statistics and references for the variables used in the analysis are
presented in Table 1.
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Table 1. Descriptive statistics and references for the variables in the research. DMZ: demilitarized zone.

Categories Variables Unit Mean Standard
Deviation References

Dependent variable Malaria occurrences Count 0.376 1.415

Independent
variables

District level
(Eup, Myeon,

and Dong)

Housing cost 1000 1580.0 1360.3 [2,9–14,23]
Sex ratio - 1.019 0.092 [2,9,12,14,16]

Average age - 41.26 4.559 [10,13–16]
Rice paddy area ratio % 4.1 8.756 [15,24,25]
Distance from DMZ km 4.482 2.663 [7,24,26–28]

City and county level
(Si, Gun, and Gu)

Health budget per capita \ 47,337 29,278 [2,11,13,14]
Military base area % 16.78 25.21 [7,24,26,27,29,30]

This research uses count data for malaria occurrences as the dependent variable. The point-based
case data are aggregated based on administrative areal units such as Eup, Myeon, and Dong (districts,
or level-1 scale) as shown in Figure 3. For the analysis at the upper level, the counts at level-1 are
aggregated again based on Si, Gun, and Gu (city and county, or level-2). In the literature, disease
data are often analyzed by incidence rate standardized by the population, age, or sex. However,
this research uses the count data for each areal unit. Due to the epidemiological characteristics in
Korea, the use of incident rate per population would be erroneous, leading to a biased analysis result.
Military servicemen are not counted in the census population data. Because these servicemen are quite
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prone and vulnerable to malaria infection, using census data for population would lead to a biased
result, especially in this small administrative area. To avoid this bias and distortion in the analysis,
malaria occurrence count data are used for the analysis.

Like other infectious diseases, malaria transmission is affected by socio-economic factors [23].
Independent variables in this analysis are composed of socio-economic, demographic, and land use
data. The district level (level-1) variables consist of housing costs, sex ratio, average age, rice paddy
area ratio, and distance from the DMZ. Obtained from the Ministry of Land, Infrastructure and
Transport of Korea, the housing cost is applied as a proxy variable to present the economic status of the
area [2]. Sex ratio data were collected from the Population and Housing Census data of Statistics Korea.
The sex ratio and age variables present local socio-demographic features of malaria transmissions in
South Korea. From its re-emergence until 1997, more than 90% of malaria cases occurred in military
soldiers and veterans. From 1997 until today, these soldiers and veterans still account for about half of
malaria occurrences in Korea [24,31]. Given that all Korean males must provide military service for
two years in their early 20s, sex and age variables are highly relevant in estimating malaria occurrences
in Korea. The rice paddy field ratio data are calculated from the land use map provided by the
Environmental Geographic Information Service of the Ministry of Environment of Korea in 2013.
Anopheline mosquitoes, vectors of malaria, are known to lay their eggs in stagnant water, including
rice paddies, ditches, and ponds. As these places are appropriate environments for mosquitoes’
breeding and growing, rice paddy field ratio data are important in estimating malaria occurrences [2].
Distances from the DMZ data are used in this research to evaluate the amount of influence from North
Korea and the DMZ region. As Figure 3 shows, given that spatial patterns of malaria occurrences
are clustered within the vicinity of the DMZ [7], the re-emergence of malaria in South Korea would
have derived from North Korea. The mosquitoes from North Korea with malaria pathogens can pass
through the DMZ to South Korea, seeking prey and breeding sites, and such infiltration is assumed to
have resulted in the outbreak of malaria occurrences in South Korea [24,26].
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The city and county level (level-2) variables are health budget per capita and military base area
ratio. Obtained from Statistics Korea, health budget per capita was used to measure the spatial
disparities of health care services. The military base area is an important variable in malaria analysis
in South Korea because malaria re-emergence was initiated from a military serviceman. In addition,
many civilian patients are recently discharged veterans who had been stationed in the nearby DMZ
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area, causing the spatial diffusion of malaria. Nonetheless, the exact number of military personnel
stationed in the study area is not available due to its confidentiality. Instead, the proportion of the
military base area is used as a proxy variable for the population of military servicemen. The military
base area data were obtained from the National Defense Committee of the National Assembly of Korea
in October 2016.

2.2. Analysis Methods

2.2.1. Multilevel Model

Multilevel regression method is applied to account for the effects of the level-2 scale on the
nested level-1 scale in the data using a hierarchical structure. Spatial data sets in social sciences
often have a multilevel structure in that they are collected or measured in multiple spatial scales.
The multilevel model assumes that individuals in an upper hierarchy are correlated with each other,
and each group is independent of each other. As a result, interaction or contextual effects may exist
between different levels. Considering the hierarchical structure of the data, which can potentially result
in errors in an ordinary least squares (OLS) model, a multilevel regression is necessary for a better
estimation result.

In this research, the malaria occurrence count data are utilized as the dependent variable.
Aggregated by the administrative areas, the count data are assumed to follow the Poisson
distribution [32,33]. Since the lower bound of the dependent variable is 0, application of the linear
regression model has a structural limitation [34]. MGLMs are applied to analyze the non-normal
data considering the random effects [35]. MGLMs normalize the dependent variable. The standard
link function for the level-1 dependent variable is given by log

(
Yij
)
, and it is converted back by

Ŷij = exp(log(Ŷij)) after the model estimation.
The multilevel modeling begins by analyzing a null model that only contains the hierarchical

structure with no independent variables. As level-1 and level-2 independent variables are added to the
null model, a multilevel model with all the independent variables from two spatial scales is estimated.
The level-2 model integrates the hierarchical variables into one model. The overall model is expressed
as follows:

Level 1 : log
(
Yij
)
= β0j + β10Xij + eij

Level 2 : β0j = γ00 + γ01Zj + u0j

Combined : log
(
Yij
)
= γ00 + β10Xij + γ01Zj + u0j + eij,

(1)

where Xij and Zj indicate the independent variables in level-1 and level-2: Xij is the variable in the
District level, and Zj is the variable in the County level; eij is the error term at level-1; γ00 is a mean of
dependent variable log

(
Yij
)

after accounting for County-level variables; and u0j is the error term in the
County level. In the combined equation, γ00 + β10Xij + γ01Zj are fixed effects. u0j + eij are random
effects. In the modeling framework, the intercept is assumed to be inconsistent when there is a large
between-group variance.

2.2.2. Spatially Filtered Multilevel Model

Extending from Equation (1), the multilevel model combined with eigenvector spatial filtering is
conceptualized as follows:

log
(
Yij
)

= γ00 + β10Xij + γ01Zj︸ ︷︷ ︸
f ixed e f f ect

+ u0j + eij︸ ︷︷ ︸
random e f f ect

= Xβ
(
= γ00 + β10Xij + γ01Zj

)︸ ︷︷ ︸
f ixed e f f ect

+ Eγ(= δ0 + δ1e1 + · · ·+ δnen)︸ ︷︷ ︸
spatial f iltering component

+
(

u′0j + r′ij
)

︸ ︷︷ ︸
white noise︸ ︷︷ ︸

random e f f ect

(2)
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The spatial filtering component functions as an additional proxy variable accounting for the
spatial effect in the data. As a result, the spatial autocorrelation of random effects in the model
are accounted for, and corresponding white noise is independent and identically distributed (i.i.d.).
It should be noted that eigenvector filtering in this model is applied to level-2 (county level). Therefore,
the number of available eigenvectors is n, which is the number of areal units in level-2.

All statistical analyses and figures in this research were made using statistical software R 3.4.2
(R Core Team, Vienna, Austria), and the maps were visualized using ESRI ArcGIS 10.4 (ESRI, Redlands,
CA, USA). The glmer function in the lme4 package of R was used to estimate the MGLMs [34]. The ME
function in the spdep package in R was used to search the eigenvectors from the spatial lag variant in
a GLM framework that provides the spatial lag process [36].

3. Results

3.1. Spatial Filtering Process

Figure 4 presents the changes in spatial autocorrelation as different levels of the multilevel model,
and eigenvector spatial filtering is applied. The null model shows that Moran’s I of random effects is
0.64 (p-value ∼= 0.0), which is a strong positive spatial autocorrelation. The random effect of level-1, eij
(in Equation (1)), shows a positive spatial autocorrelation with Moran’s I value at 0.30 (p-value < 0.001).
Furthermore, the random effect of level-2, u0j + eij, shows a positive spatial autocorrelation with
Moran’s I value at 0.10 (p-value = 0.06). This indicates that the multilevel model in this study requires
eigenvector spatial filtering.

By applying the spatially filtered multilevel model, eigenvectors were extracted from the spatial
lag process, and one eigenvector was selected, eigenvector no. 2. Comparing all generated eigenvectors,
eigenvector no. 2 decreased the largest amounts of Moran’s I value. If additional eigenvectors are
added to the multilevel model, the corresponding Moran’s I value becomes negative. The Moran’s I
value, 0.01 (p-value = 0.36), in the random effects of the spatially filtered multilevel model shows that
the positive spatial autocorrelation in the model becomes negligible, having no significant effect in
the model estimation. The spatial pattern of the selected eigenvector is displayed in Figure 5, and the
clustered pattern is noticeable in the map.
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is negligible in the analysis. Given the AIC (Akaike information criterion) value, the level-1 model
result shows a better estimation compared to the null model. Among the level-1 variables in the model,
three variables (average age, rice paddy ratio, and distance from the DMZ) are significant.
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variables (health budget per capita and military base area ratio) and three level-1 variables (average
age, rice paddy ratio, and distance from the DMZ) are significant in this model. The variance of
random effects in level-2 decreases to 0.25, and the AIC value decreases as well. This indicates that the
level-2 model better estimates the malaria occurrences compared to the level-1 model.

In the spatial filtering model, four level-1 variables (housing costs, average age, rice paddy ratio,
and distance from the DMZ) and two level-2 variables (health budget per capita and military base
area ratio) are significant in the model. The housing cost variable is significant only in the spatial
filtering model. The variable coefficient signs remain constant in the level-2 model and the spatial
filtering model. The AIC value in the spatial filtering model decreased from 1882.0 to 1879.3, showing
improved model estimation. The group-level variance decreased from 0.25 in the level-2 model to
0.20 in the spatially filtered model. This indicates that the spatial filtering component accounts for the
group-level variance. These results show that the spatially filtered multilevel model yields the most
appropriate estimation in this study.
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Table 2. Estimation results of the models.

Categories
Multilevel Models Spatially Filtered

Multilevel ModelNull Model Level-1 Multilevel Level-2 Multilevel

Fixed effects

Level-1 Variables
Housing costs - −0.03 −0.17 −0.24 *

Sex ratio - 0.06 0.07 0.07
Average age - −0.25 ** −0.21 ** −0.20 **

Rice paddy ratio - 0.15 ** 0.15 ** 0.15 **
DMZ distance - −1.31 ** −1.31 ** −1.20 **

Level-2 Variables
Health budget per capita - - −0.91 ** −0.82 **

Military base area - - 0.22 ** 0.32 **

Random effects

Group-level variance 1.74 0.50 0.25 0.20
Constant −1.94 −2.06 −2.27 −2.31

AIC 1998.8 1901.5 1882.0 1879.3
Log-likelihood −997.4 −943.8 −932.0 −929.6

Moran’s I of random effect 0.64 ** 0.30 ** 0.10 (p = 0.06) 0.01

* p-value < 0.0; ** p-value < 0.001; AIC: Akaike information criterion.

3.3. Results Interpretation—Spatially Filtered Multilevel Model

The results indicate that spatial units with lower housing costs, lower average age, higher rice
paddy ratios, less distance from the DMZ, lower health budget per capita, and higher military base
area ratios are more susceptible to malaria risks.

Military base areas show the unique characteristics of malaria occurrences in Korea. Because
malaria’s re-emergence originated in military servicemen in the DMZ, military patients have played
a major role in malaria transmission in Korea [7]. Malaria transmission in Korea is unique for the
following reasons. First, because it was initiated from adjoining North Korea, malaria transmission in
South Korea was hardly controlled because of the political conflict between North and South Korea.
Due to the continued confrontation, most troops stationed in the DMZ are easily exposed to a high
risk of malaria [31]. Second, military activities in the DMZ such as overnight patrols leave military
servicemen easily exposed to malaria-carrying mosquitoes [29]. Third, limited accessibility to the DMZ
makes it difficult for health authorities to find potential patients among the military servicemen and
appropriately treat them [30].

Along with the military base area, the distance from the DMZ is a variable that explains the unique
characteristics of malaria in Korea. It reflects the general transmission mechanisms of vector-borne
diseases whereby people in adjacent areas are more likely to be infected than those in distant areas.
The distance from the DMZ can be interpreted as the level of malaria influence from North Korea as
well, since malaria’s re-emergence in South Korea originated from and is affected by North Korea [27].
Currently, the DMZ is a barrier preventing South Korea’s disease control efforts [7]. However, the vector
mosquitoes from North Korea can freely cross the border and infiltrate.

Housing cost represents the economic status of the region and provides spatial patterns for the
disparity in Korea as well [2]. It is highest in Seoul, the capital city, and becomes lower as further away
from Seoul. Most malaria occurrences are concentrated near the DMZ, which is distant from Seoul.
The spatial distribution of the disease implies that areas with lower housing costs are more susceptible
to malaria risks.

Average age is applied to explain the effect of age on malaria risks. Young adults in their 20s were
most susceptible to malaria from 2001 to 2011 in Korea [16]. Most military servicemen stationed in the
border area are in their early 20s. Furthermore, the residents of high-risk areas, including Incheon,
Goyang, and Gimpo, as common urban areas, tend to have a lower average age than other rural areas.
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The rice paddy ratio is significant in explaining the relationship between malaria transmission
and human activities. Considering the life cycle of the vector mosquitoes that lay their eggs in stagnant
water, rice paddies are ideal places for mosquito breeding [37]. In practice, more than 50% of the
larvae of Anopheles sinensis, which are prime vector species of malaria in Korea, were found in rice
paddy areas according to the research conducted in Ganghwa and Paju [25]. The western parts of
Seoul’s metropolitan area, including Goyang, Paju, and Gimpo, are mostly plains and rice paddy areas.
Such land use may lead to prominent malaria transmission in these areas.

Health budget per capita reflects the service level of medical and health care and its
correspondence to malaria occurrences. Generally, a lower health budget per capita implies a higher
demand for health care. The results indicate that regions with a low health budget are more susceptible
to malaria risks. A good medical care system in South Korea, featuring a public health insurance
system and easy access to medical facilities, has prevented malaria from causing any mortality in the
country [28]. However, the health budget per capita variable shows that malaria transmission and its
influence is significantly affected. Further research using more variables is necessary to determine the
effect of the health care system on malaria occurrences in developed countries, which must be different
from developing countries with higher malaria risks.

4. Conclusions

This study explains the spatial determinants of district- and city-level factors on malaria
occurrences by applying a multilevel and spatially filtered multilevel model. The spatially filtered
multilevel model improves the ordinary multilevel model by adding spatial filter term accounting for
the spatial autocorrelation in the level-2 random effect. The spatially filtered multilevel model appears
to be the most appropriate, judging from the AIC and random effect Moran’s I. The result presents four
level-1 variables (housing costs, average age, rice paddy ratio, and distance from the DMZ) and two
level-2 variables (health budget per capita and military base area ratio) that are statistically significant.
Malaria in Korea has unique epidemiological characteristics due to political and social circumstances.
Imported from North Korea, malaria occurrences in South Korea were initiated and transmitted
by military servicemen in the DMZ. Malaria transmission in South Korea has been continuously
influenced by adjoining North Korea since then, which can be verified by the distance from DMZ and
military base area ratio variables. This study is expected to contribute to further understanding of the
mechanisms of malaria transmission and other vector-borne diseases.

This study has limitations as follows: the dependent variable used in this research does not
have detailed information about patients such as age, occupation, and sex, which could be significant
information for explaining the epidemiological features of malaria. Additionally, the patient address
and the location of actual infection are not always identical because of the mobility of the patients and
the incubation period of malaria.
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