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Abstract

Background: Oral immunotherapy (OIT) is a promising therapeutic approach to treat food allergic patients.
However, concerns with regards to safety and long-term efficacy of OIT remain. There is a need to identify
biomarkers that predict, monitor and/or evaluate the effects of OIT. Here we present a method to select candidate
biomarkers for efficacy and safety assessment of OIT using the computational approaches Bayesian networks (BN)
and Topological Data Analysis (TDA).

Results: Data were used from fructo-oligosaccharide diet-supported OIT experiments performed in 3 independent
cow’s milk allergy (CMA) and 2 independent peanut allergy (PNA) experiments in mice. Bioinformatical approaches
were used to understand the data structure. The BN predicted the efficacy of OIT in the CMA with 86% and
indicated a clear effect of scFOS/lcFOS on allergy parameters. For the PNA model, this BN (trained on CMA data)
predicted an efficacy of OIT with 76% accuracy and shows similar effects of the allergen, treatment and diet as
compared to the CMA model. The TDA identified clusters of biomarkers closely linked to biologically relevant
clinical symptoms and also unrelated and redundant parameters within the network.

Conclusions: Here we provide a promising application of computational approaches to a) compare mechanistic
features of two different food allergies during OIT b) determine the biological relevance of candidate biomarkers c)
generate new hypotheses to explain why CMA has a different disease pattern than PNA and d) select relevant
biomarkers for future studies.

Keywords: Bayesian network analyses, Bioinformatics, Experimental food allergy, Oral immunotherapy, Topological
data analyses

Background
Food allergy is an important socio-economic and health
problem estimated to occur in 6–8% of children and in
1–2% of adults [1–3]. Unfortunately, to date there is no
effective and safe therapy available and only symptom-
atic treatment and elimination diets are currently
available.
Human studies have shown that both subcutaneous im-

munotherapy (SCIT) and oral immunotherapy (OIT)
which are based on the regular administration of the cul-
prit food in increasing doses, have promising therapeutic

potential in allergy. Even though SCIT may have some
clinical efficacy for food allergy (increased food allergen
thresholds), treatment has been shown to be associated
with a high incidence of allergic side effects, which cur-
rently limits its application in clinical practice [4–6]. Few
clinical trials have shown encouraging results of specific
OIT in CM and PN allergic children [7–10]. OIT in-
creases food allergen thresholds, diminishes skin prick test
responses, enhances allergen-specific IgG4, decreases
allergen-specific IgE, increases the activation threshold of
basophils and temporarily increases regulatory T cells
(Tregs) and relevant cytokine levels [7–9, 11]. OIT is con-
sidered safer than SCIT, and hence more suitable for hu-
man treatment [4, 8]. However, although OIT has some
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efficacy, it is hampered by the high incidence of allergic
side-effects [7, 12–14]. Moreover, to date OIT has not yet
resulted in long-lasting protection against food allergy:
children subjected to OIT appear desensitized (i.e. protec-
tion against clinical effects), but not tolerized to peanut
(i.e. induction of complete non-responsiveness or selective
modulation of B and T cell responses) [9, 15], so the con-
tinuous ingestion of the allergen is still required to protect
against clinical symptoms.
Data suggest that in addition to the food itself, an im-

mune modulating agent (adjuvant) may be helpful to in-
duce tolerance rather than desensitization [16–20]. In
addition, an immune modulating agent may enhance the
safety of the IT procedure by reducing the optimal allergen
dose required to induce tolerance or by direct suppression
of the allergic effector response over shorter treatment pe-
riods. Recent in vitro studies, as well as studies in animals
and in allergic children, suggest that non-digestible carbo-
hydrates, such as fructo-oligosaccharides (FOS) may im-
prove both the efficacy and the safety of subcutaneous and
oral therapeutic approaches. FOS has been shown to dir-
ectly interact with the epithelium and to modulate the in-
testinal mucosal and systemic immune system from an
allergic tuning towards a Treg and Th1 setting [21],
thereby suppressing allergic inflammation [22–24].
One of the major challenges in immunotherapy of

food allergy is the lack of food allergy-specific bio-
markers for disease diagnosis, illness monitoring, ther-
apy evaluation, and prognosis prediction. To improve
our understanding and ability to intervene in complex
multifactorial food allergy, it is important to investigate
the molecular networks underlying the biological system
and elucidate which interactions contribute to pathology
and how this occurs. Biomarkers involved in these pro-
cesses should be measurable indicators of normal bio-
logic processes, pathogenic processes, or therapeutic
responses, for the risk assessment, early diagnosis, and
predicting and monitoring responses to therapies and
toxicities.
This article focuses on applying data mining tools to

search for hidden trends within large data sets. Here,
Bayesian modeling in combination with technologies from
topological data analysis and network science were used
to analyze complex data from experimental OIT studies in
mice by unraveling the complex relationships between an-
alyzed parameters and prioritizing candidate biomarkers.
A Bayesian network (BN) is a type of probabilistic

graphical model that lies at the intersection between sta-
tistics and machine learning. A BN is a compact represen-
tation of a probability distribution over a set of discrete
variables. It can help to create a simplified overview of a
complicated experiment, depicting an intuitive representa-
tion of relationships between variables, where it combines
prior knowledge (such as the known relationships between

variables) with data from observations. It captures the re-
lationships between variables, and may be used to make
inferences about unobserved variables. BNs are particu-
larly suitable to deal with multiple cause-effect relation-
ships within a complex system. Furthermore, a trained BN
describing general relationships among variables can be
used to make inferences about what-if scenarios and can
as such be used to test hypotheses. Application of BNs has
progressed enormously over the last decades leading to its
use spanning all fields.
We use techniques that borrow extensively from topo-

logical data analysis and network science to extract in-
formation from high-dimensional data sets. The ‘shape’
of data, as it can be elucidated by topological analysis,
can provide information about the observed system. The
geometric shape of our application of these techniques
corresponds to the way in which different features
within the system interact. The use of Bayesian networks
in combination with topological analysis enables the dis-
covery of therapeutic mechanisms that trigger a specific
cascade of processes underlying OIT and subsequently
identify a wide range of relevant disease parameters.
This way the study design of future studies may be opti-
mized in silico, saving time and resources.
The aim of this study was i) to compare the key drivers

of the mechanisms of scFOS/lcFOS diet-supported OIT in
peanut allergy and cow’s milk allergy and ii) to identify the
biological relevance of biomarker (panels) of immunother-
apy of food allergy thereby enabling the prioritization of
candidate biomarkers.

Methods
Data sources
Data were obtained from previously published studies
describing experimental peanut allergy (PNA) and cow’s
milk allergy (CMA) models, in which female C3H/
HeOuJ mice were sensitized to the allergens and treated
with/without OIT and fed a diet supplemented with/
without f scFOS/lcFOS [23, 25]. The experimental pro-
cedures from these previously published murine studies
were approved and conducted according to the guide-
lines determined by the Ethical Committee of Animal
Research of Utrecht University (DEC2014.III.12.120 and
AVD108002015212). The treatment efficacy was assessed
with an intradermal (i.d.), intragastric (i.g.) and intraperi-
toneal (i.p.) food provocation. The outline of the studies
is depicted in Fig. 1. The results of these murine studies
indicated that scFOS/lcFOS supplementation improved
the efficacy of OIT in cow’s milk allergic mice.

Bayesian network analyses
For Bayesian data analysis, a selection of variables was
made from both the CMA and PNA model datasets to
ensure that the selected variables were present in all data
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and that these were measured under equivalent circum-
stances Additional file 1. Moreover, the selected vari-
ables were objective parameters that determine clinically
relevant allergy symptoms (body temperature drop dur-
ing anaphylaxis, ear swelling upon local challenge and
mast cell activity (mMCP-1)) in combination with
allergen-specific IgE and IgG1, both known to be upreg-
ulated in sensitized mice ([26, 27]). These clinically rele-
vant variables were combined with specific IgE and
IgG1, both known to be upregulated in sensitized mice
[26, 27]. The model used here was trained using data
from three CMA animal model datasets. In order to in-
tegrate the data to train a single model, some consider-
ations had to be made. Because several variables, which
were to be included, were measured in assays that use
relative values, pooling the data for use in the model re-
quired normalization and discretization. In the three
datasets, variables with relative measures were normal-
ized by rescaling to a new range (min-max
normalization), so that variables from different data sets
are comparable. Variables with an absolute scale (such
as temperature) were kept unchanged.
Because of the relatively small amount of data available

for model training, it was decided to train a discrete
Bayesian network. In a discrete Bayesian network, each
node represents a variable. Each node contains a condi-
tional probability table that represents the joint probabil-
ities of the states of this node and the states of the
parent nodes. In order to express the variables and their
dependencies as conditional probabilities, the variables

have to be discrete. Discretization was therefore per-
formed, using ‘Hartemink’s algorithm’. This is a method
of discretization that automatically finds quantiles that
preserve and maximize mutual information among vari-
ables within the network. It was applied as implemented
by package ‘bnlearn’ [28, 29].
The structure of the network was not taken from the

data, but provided by expert knowledge. After the model
structure was defined, conditional probabilities were es-
timated using maximum likelihood estimation as imple-
mented in package ‘bnlearn’ [29]. Model performance
was assessed using a multiclass area under the ROC
curve algorithm by [30].

Topological data analyses
Data were taken from the CMA and PNA model data-
sets for topological visualization. For the CMA model,
two experiments were merged into one dataset while for
the PNA model data from one experiment was used
Additional file 1. During this merge, features were dis-
carded when only one of the two datasets contained said
feature. This was done to prevent situations where the
similarity of two features cannot be determined because
of mutually exclusive sample sets. The processing pro-
cedure for both datasets was identical.
Among the included variables were mucosal mast cell

protease-1 (mMCP-1) upon i.g. food challenge and
allergen-specific IgE, IgG1, IgG2a in serum, acute allergic
skin response (ear swelling) upon i.d. food challenge, ana-
phylaxis symptom score and body temperature after

Fig. 1 Experimental timelines of PNA and CMA models. 6-week-old female C3H/HeOuJ mice were randomly allocated to the control- and experimental
groups: sham-sensitized control group;, sensitized control group;, FOS supplemented group; oral immunotherapy group; and the oral immunotherapy
with FOS supplementation group. Mice were i.g. sensitized to the cow’s milk protein whey or PE (20mg whey in 0.5ml or 6mg PE in 2ml PBS) with
cholera toxin as an adjuvant (15 μg in 0.5ml PBS). The FOS supplemented diet was provided from D35 to the end of the protocol and OIT with 10mg
whey or 1.5 or 15mg PE in 0.5ml PBS was given from D42-D59 (5 oral gavages/week for 3 weeks). Acute allergic symptoms were measured upon i.d.
challenge at D64 (10 μg whey or 1 μg PE in 20 μl PBS/ear), mast cell degranulation was measured upon i.g. challenge at D70 (50mg whey or 15mg PE
in 0.5ml PBS) and an i.p. challenge (50 μg whey or 100 μg PE in 200 μl PBS) was conducted at D77 to stimulate T cell responses prior to organ collection.
At 6 time points throughout the animal experiment (D0, D35, D50, D63, D71 and D78), subgroups of mice from each control- and experimental group
were killed by cervical dislocation and blood and organs were collected. PE; peanut extract, CT; cholera toxin, OIT; oral immunotherapy, FOS; fructo-
oligosaccharides, i.d.; intradermal, i.g.; intragastric, i.p.; intraperitoneal, LP; lamina propria of small intestine, SCFA; short-chain fatty acids
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challenge, leukocyte phenotypes by flowcytometry, cyto-
kine release of MLN, LP and spleen-derived lymphocytes
after ex vivo stimulation with anti-CD3, whey protein or
peanut extract (PE) and short-chain fatty acids (SCFA).
To construct the graph, an adjacency matrix was cal-

culated using Spearman’s rank correlation similarity.
Using the resulting adjacency matrix, a mutual k-nearest
neighbors graph was constructed (as described by [31]).
The same publication shows that the graph, given large
enough n, will be connected if we choose k on the order
of log(n) where n is the number of samples in the data.
Therefore, for each of the datasets, k equaled log(n).
To aid visualization and interpretation of the mutual

nearest neighbors network, the nodes of the network
were assigned to clusters using the multilevel modularity
optimization algorithm by [32].

Results
Bayesian network illustrates beneficial effects of scFOS/
lcFOS diet and OIT on CMA
Internal validation of the performance of the BN-model
trained on the CMA model data was performed to assess
how well the model can infer the clinical severity of al-
lergy in light of the diet and treatment effects. mMCP-1
was chosen as a meaningful objective representation of
allergic severity. The predictive performance of the
model on mMCP-1 tertiles from CMA model data was
good, as assessed from a multiclass area under the ROC
curve value of 0.86. The ROC curves from the predicted
mMCP-1 tertiles of the CMA data are depicted in
Additional file 2).
Next we used the BN to make inferences to test the

influence of sensitization with or without OIT on the
probability distribution of BN variables. In Fig. 2a the
probability distribution of the BN parameters is shown
irrespective of the animal treatments (sensitization,
scFOS/lcFOS dietary supplementation, or OIT), showing
84.6% probability of being sensitized, 54.2% probability
of having received the scFOS/lcFOS supplemented diet
and 42.6% probability of having received OIT treatment
and the other probability distributions of the parameters
analyzed in the animals.
The probability distributions of the analyzed parameters

changed upon the assumption of the model that all ani-
mals were sensitized (Fig. 2b) resulting in only a small
shift in probability distributions of the variables. This can
be explained by the fact that the chance of sensitization ir-
respective of the animal treatments was already 84.6%
(Fig. 2a), so the increase to 100% sensitization does not
have a major effect. The effect on the probability distribu-
tions change significantly upon the assumption of the
model that all animals were sensitized and received OIT
treatment (Fig. 2b and c). This results in a clear decrease
in probability of high specific-IgE (from 21.51 to 17.82%),

specific-IgG1 (from 81.72 to 60.40%), ear swelling upon
i.d. challenge (from 64.58 to 60.79%) and mMCP-1 (from
84.96 to 51.99%) levels, indicating the clear effect of OIT
on these allergy parameters.
Next we investigated the effect of the scFOS/lcFOS

supplemented diet on the probability distributions in
sensitized animals (Figs. 2b and 3a). This modeling
showed a clear decrease in probability of high
specific-IgE (from 21.51 to 3.42%), high specific-IgG1
(from 81.72 to 64.10%), high mMCP-1 (from 84.96 to
66.72%) and an unexpected increase in high ear swelling
(from 64.58 to 80.11%). Together, these calculations in-
dicate a clear effect of scFOS/lcFOS diet on these allergy
parameters. This effect of the scFOS/lcFOS diet on the
probability distributions in sensitized animals is further
increased by the extra addition of OIT in the model
(Fig. 3a and b). %). It increased high specific IgE (3.42 to
14.29%) and IgG1 (64.10 to 77.68%) titers, whereas it
also increased the beneficial low specific IgE (6.84% to
21.43), illustrating the mixed effect of adding OIT to the
scFOS/lcFOS on IgE titers., however IgE-titers reflect
sensitization and not the allergic status as illustrated by
the fact that non-allergic individuals may have high IgE
titers. Moreover, desensitized humans often have high
IgE titers, but are no longer allergic. Therefore the rele-
vance of IgE titers to monitor OIT efficacy is quite
speculative [33]. Besides changes in IgE-titer, the
addition of OIT to scFOS/lcFOS diet also results in a
beneficial decreases in probability of high earswelling
(from 80.11% to 55.36), high mMCP-1 (66.72 to 32.46%)
and a decrease in anaphylaxis-associated drop in
body-temperature (from 33.54% to 20.63).
Together these data indicate clearly the added effect of

supplementing the diet with scFOS/lcFOS on the effi-
cacy of OIT in CMA, which confirms previous work
[23]. These examples illustrate how the BN is suitable to
easily test and generate hypotheses by visualizing the
consequences of what-if scenarios. Instead of analyzing
the effects of interventions on the entire population, the
modeling also enables to focus on the effects of inter-
ventions on subpopulations of subjects, which clearly
makes this approach even more valuable for future ap-
plications (e.g. mechanism elucidation, patient stratifica-
tion), although this goes beyond the scope of this
manuscript.

Bayesian network indicates similar key drivers in PNA and
CMA
Although both CMA and PNA seem clinically similar
diseases, they differ in the fact that CMA is most preva-
lent during early childhood, but is often outgrown [34]
while PNA is more persistent and is the most frequent
cause of life-threatening allergic reactions in adults [35].

Bilsen et al. BMC Bioinformatics          (2019) 20:206 Page 4 of 11



Fig. 2 (See legend on next page.)
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To assess whether key features of the CMA and PNA
models have similar properties, we used the Bayesian
network that was trained on data from the CMA model
to make inferences on the PNA model data. Inferences
on mMCP-1 tertiles in the BN from a PNA model ex-
periment, using the network trained on the CMA model
data give a multiclass area under the ROC curve value
of 0.76; which is considered a fair performance. The
ROC curves from the predicted mMCP-1 tertiles of the
PNA data are depicted in Additional file 3).
From these analyses, it is reasonable to deduce that

the effects of the allergen, treatment and diet are
similar within our Bayesian network abstraction of
CMA across peanut and cow’s milk models. There-
fore, we can regard the model as a reasonable repre-
sentation of the core mechanisms and characteristics
of allergy, treatment and diet.

Topological data analyses prioritize candidate biomarkers
The BN indicated that the core characteristics of allergy,
treatment and diet in both the PNA and CMA models
are similar. Because many more parameters were ana-
lyzed throughout the course of each study in each indi-
vidual mouse, the next question was whether it would
be possible to indicate whether the relevance of the ana-
lyzed parameters differ between PNA and CMA by de-
termining how the parameters are related to each other
and to the clinical endpoints of the food allergy.
Figure 4 shows the overview of the mutual nearest

neighbors network of parameters that were measured in
the CMA model. From this experiment, 66 parameters

were available for analysis. These were organized in 7
large (6–12 parameters) and 4 small clusters (1–2 pa-
rameters). The parameters closest related to clinical out-
comes (ear swelling, i.d. shock scores, i.d. body
temperature, mMCP-1), were located in the same cluster
(grey) indicating how closely they are connected to the
antigen-specific antibodies. The remaining parameters
closely linked to clinical outcomes (shock score and
body temperature after i.p. challenge) were clustered to-
gether with splenocyte-derived parameters, both located
in a cluster (yellow) which was quite closely linked to
this antibody/clinical parameter-cluster.
The antibody/clinical parameter-cluster (grey) was clos-

est related to SCFA-cluster (cadetblue) and to a cluster
with spleen-derived/clinical parameters (yellow). The
remaining clusters harboring MLN and splenocyte-derived
parameters showed quite indirect relationships clusters
(blue, orange, magenta, green,) with the antibody/clinical
parameter cluster or had no relationship (dark blue,
brown, indianred) at all (IL10 production of anti-CD3
stimulated MLN-derived lymphocytes, CD19 + B220+
cells, spleen CXCR3+ cells and spleen T1ST2+ cells). The
indirect or absent relationship with clusters harboring clin-
ical parameters indicates that they are of lesser importance
to the process of OIT of food allergy.
Figure 5 shows the TDA of the PNA model. In the

PNA model 33 parameters were analyzed which were or-
ganized in 6 clusters containing 4–7 parameters. The pa-
rameters most closely related to clinical outcomes (ear
swelling, body temperature, shock scores, mMCP-1)
were located in the same cluster as spleen Th1 (CD183

(See figure on previous page.)
Fig. 2 Bayesian network trained on CMA data, effects of sensitization and/or OIT. BN depicting the relationships between the analyzed
parameters and the animal treatments (sensitization, scFOFS/lcFOS diet, or OIT treatment) using CMA data. Moreover the probability distributions
of all BN variables are depicted a) irrespective of animal treatments, b) assuming that all animals were sensitized and c) assuming that all animals
were sensitized and received OIT

Fig. 3 Bayesian network trained on CMA data, effects of scFOS/lcFOS diet with or without OIT. BN depicting the relationships between the
analyzed parameters and the animal treatments (sensitization, scFOFS/lcFOS diet, OIT treatment) using the CMA data. The probability distributions
of all BN variables are depicted assuming that all animals were sensitized and a) received scFOS/lcFOS diet or b) received scFOS/lcFOS diet in
combination with OIT
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+ CD69+) and Th2 (T1ST2+/CD69+) cells. In contrast
to the CMA model, all clinical parameters were located
in the same cluster (indianred). Moreover, the
antigen-specific antibodies were not linked in the same
cluster as the clinical parameters, although they were
closely linked (blue cluster). Another cluster (grey)
closely linked to the clinical parameter cluster, consisted
of the Tregs of spleens and MLN, Th2 cells in MLN,
IFNγ production of antiCD3/CD28 stimulated spleens
and the % CD11b-CD103+ cells of CD11c +MHCII+
DCs in MLN. The cluster (orange) harboring parameters
of cytokine-production of stimulated splenocytes was in-
directly linked to the clinical symptoms via the antibody
cluster (blue). The remaining clusters showed quite an
indirect relationship (magenta) with the clinical param-
eter cluster or had no relationship at all (green:
SCFA-cluster). The latter finding is quite remarkable,
since in the CMA model the SCFA-cluster was quite
closely linked to the clinical parameter clusters.

In summary, even though not all analyzed parameters
were identical in both models, there is a substantial
similarity in topology and clustering of features from
both PNA and CMA models (clinical parameters, anti-
bodies, SCFA, cytokines from stimulated splenocytes)
and the connections between the clusters, indicating that
both models have largely similar mechanistic relation-
ships. Nevertheless, topological data analyses also indi-
cate differences between parameters and the clinical
outcome (e.g. importance of SCFA). These differences
identified by the mutual nearest neighbors networks
may be useful to generate new hypotheses for observed
clinical differences and prognoses of CMA and PNA.

Discussion
Immunotherapy is currently the most promising
therapy for patients with food allergy, who now rely
on avoidance and carrying adrenaline auto injectors in
case of accidental exposure. Unfortunately, current

Fig. 4 The mutual nearest neighbors network of the CMA model. Topological network showing the clustering of parameters (dots with same
color). The clusters were used to identify the cluster-relationships in CMA. Moreover, the encircled clusters were used to compare the cluster-
relationships between CMA and PNA (see Fig. 5)
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immunotherapy treatments of food allergy are too often
accompanied by allergic side effects and do not appear to
give long-term protection (reviewed by [17]). Recent in
vitro studies, studies in animal models and studies in chil-
dren with atopic dermatitis indicate that the addition of
non-digestible sugars may improve the efficacy and safety
of therapeutic approaches [22, 24, 36, 37]. However, the
mechanism of action of these approaches is still largely
unclear and as a result possibilities, limitations and safety /
risks of these types of interventions are not known. The
lack of insight into the mechanism also results in a large
number of parameters being measured in studies, while the
usefulness of results for a large part of these parameters is
unclear and the studies become extremely elaborate.
Here we use ways of data mining to search for hidden

trends within existing sets of data, by applying computa-
tional solutions (including algorithms, models and tools)

which can be used to optimize experimental designs,
data analyses and interpretation and hypotheses gener-
ation. We show that network analysis methods can be
applied to investigate the underlying molecular mecha-
nisms involved in immunotherapy of food allergy and
the prioritization of biomarkers. By applying Bayesian
networks and topological data analyses, ‘hidden’ informa-
tion was discovered in the available data by visualizing
the complex relationships between measured parameters
and symptoms. In this study, we analyzed data animal
experiments with the major allergenic foods, peanut and
cow’s milk, which show different disease patterns. CMA
is most prevalent during early childhood, but is often
outgrown [34] while PNA is more persistent and is the
most frequent cause of life-threatening allergic reactions
in adults [35]. Our analyses suggest that the mechanisms
involved in immunotherapy of CMA and PNA are very

Fig. 5 The mutual nearest neighbors network of the PNA model. Depicted is the topological network showing the clustering of parameters (dots
with same color). The clusters were used to identify the cluster-relationships in CMA. Moreover, the encircled clusters were used to compare the
cluster-relationships between PNA and CMA (see Fig. 4)
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similar but not completely identical on the basis of the
measured parameters. Possibly, slight differences can
help to explain differences between patients.
One of the most striking differences was that our data

clearly indicates the role of SCFA in CMA, but not in
PNA. Previously, we have shown that in PNA and CMA,
increased levels of SCFA, specifically butyrate, coincided
with allergy reduction [23, 25]. These findings are con-
firmed in literature, where accumulating evidence indi-
cates that SCFA have several anti-allergic properties by
among others Treg induction and enhancement of the
gut barrier function (as reviewed by [38]). Previous find-
ings also show that dietary fibers which are metabolized
by the gut microbiota into SCFA are able to downregu-
late PNA [39] and inflammatory airway responses in
asthma [40]. Moreover, in CMA, levels of fecal butyrate
were increased in tolerant infants [41]. So even though
we have observed that increased levels of SCFA coin-
cided with an allergy reduction in both PNA and CMA
using the dataset used in current analyses ([23, 25], we
here show that the structure of how the experimental
data are correlated with each other are different between
the allergy models. This means that the relationship be-
tween the SCFA and the clinical outcomes in PNA a) is
more indirect and/or b) occurs via different mechanisms
or parameters which were not analyzed in the studies
and/or c) is not essential for the outcome of the allergy,
so the level of SCFA could be an epiphenomenon which
is in contrast to the current opinion in literature as
mentioned before. This example nicely illustrates how
these types of network-based analyses, enable the gener-
ation of new hypotheses, in this case the role of the dif-
ferent biomarkers in (treatment of) food allergy and to
explain the differences between the disease patterns of
CMA and PNA.
Another important feature of applying these types of

network analyses is that they create a new view of the
dataset which can be used to determine the biological
relevance of the measured parameters. Using the mutual
nearest neighbors networks from the topological data ana-
lyses, several criteria can be applied to prioritize the mea-
sured parameters: i) it became clear that several more or
less ‘standard’ study parameters seem to have little rele-
vance because they had no clear link to the clinical out-
comes of immunotherapy, while others had a very direct
link; ii) clusters of parameters were identified that indi-
vidually were linked in a comparable manner to the bio-
logically relevant parameters, so one could argue that
analyses of only a few cluster-members would be sufficient
instead of analyzing the entire panel; iii) mutual nearest
neighbors networks enabled the prioritization of parame-
ters based on the invasiveness of the measurements of the
parameter in case of ‘equally’ relevant linked parameters
to the clinical parameters. For instance, SCFA analyses in

cecum content or IgE in serum are far less invasive for the
subject than determining the skin response upon chal-
lenge, both in experimental animal models and in
humans.
The application of the computational approaches dem-

onstrated here allows investigators to more productively
mine the currently-available and/or future data sets of
phenotypes for food allergy-related traits to discover
testable hypotheses for physiological mechanisms that
lead to a food allergic phenotype. Other network-based
methodologies to mine data to search for hidden trends
within large data sets have been successfully applied in
different fields. Most prominently in cancer research: re-
cently, a cancer hallmark network framework for model-
ing genome sequencing data to predict cancer clonal
evolution and associated clinical phenotypes has been
generated and applied [42, 43], clearly indicating the
high potency of network approaches to truly help further
understanding of the complex nature of biological pro-
cesses and translating the information into clinical
practice.
Here we show that the addition of oligosaccharides

with or without immunotherapy reduced the food al-
lergy in both CMA and PNA. Moreover, even though
the analyzed parameters in CMA and PNA were not
identical, we showed that the key mechanisms between
CMA and PNA are comparable. The BN shown here is
quite simple in this experimental setting containing a
limited set of parameters. For future clinical applica-
tions, it would be very interesting to expand this BN
with patient characteristics (e.g. epigenetic factors, gen-
etic factors, age, sex, medication), analyzing multiple pa-
rameters on multiple time points. This would result in a
so called dynamic BN which would enable a stratifica-
tion strategy to predict before the start of treatment
whether a patient will benefit from undergoing immuno-
therapy. These new insights provide good starting points
for selecting relevant biomarkers to monitor and predict
safety and efficacy in later clinical studies, but also even-
tually in clinical applications.

Conclusions
Here we provide a promising application of bioinformat-
ics method to compare mechanistic features between
different food allergies and to identify the biological rele-
vance of biomarker (panels) of immunotherapy of food
allergy. We have shown that the key drivers that influ-
ence PNA and CMA are similar but that these pheno-
typically similar diseases show mechanistic differences in
their subnetworks. The application of this method may
be useful to generate new hypotheses to explain why
CMA has a different disease pattern than PNA and to
select biomarkers that are useful in for future clinical
studies.
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