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Abstract

Background: People are exposed to mixtures of highly correlated gaseous, liquid and solid pollutants. However,
in previous studies, the assessment of air pollution effects was mainly based on single-pollutant models or was
simultaneously included as multiple pollutants in a model. It is essential to develop appropriate methods to accurately
estimate the health effects of multiple pollutants in the presence of a high correlation between pollutants.

Methods: The flexible tensor product smooths of multiple pollutants was applied for the first time in a quasi-Poisson
model to estimate the health effects of SO2, NO2 and PM10 on daily all-cause deaths during 2005–2012 in Guangzhou,
China. The results were compared with those from three other conventional models, including the single-pollutant
model and the three-pollutant model with and without first-order interactions.

Results: The tensor product model revealed a complex interaction among three pollutants and significant combined
effects of PM10, NO2 and SO2, which revealed a 2.53% (95%CI: 1.03–4.01%) increase in mortality associated with an
interquartile-range (IQR) increase in the concentrations of all three pollutants. The combined effect estimated by the
single-pollutant model was 5.63% (95% CI: 3.96–7.34%). Although the conventional three-pollutant models produced
combined effect estimates (2.20, 95%CI, 1.18–3.23%; 2.78, 95%CI: 1.35–4.23%) similar to those of the tensor product
model, they distorted the estimates and inflated the variances of the estimates when attributing the combined health
effects to individual pollutants.

Conclusions: The single-pollutant model or conventional multi-pollutant model may yield misleading results in the
presence of collinearity. The tensor product quasi-Poisson regression provides a novel approach to the assessment of
the health impacts of multiple pollutants by flexibly fitting the interaction effects and avoiding the collinearity problem.
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Background
An increasing number of studies have demonstrated the
association between daily ambient air pollution levels and
adverse health outcomes worldwide [1–4]. Some studies
generally estimated the health effect of each pollutant se-
parately via a single-pollutant model controlling for time
trends and meteorological factors [5–7]. However, pollu-
tion occurs as a mixture of highly correlated gaseous, li-
quid and solid pollutants. Some studies observed that the
effect using the single-pollutant model was weakened after

other pollutants were simultaneously included [8]. There-
fore, the results of the single-pollutant model tends to
overestimate the health effects of pollutants. Moreover,
many studies observed synergistic effects of combinations
of pollutants on health outcomes [9, 10]. To advance our
understanding of the biological mechanisms of pollutant
toxicity, it is essential to move from the single-pollutant
model to the multi-pollutant model [11]. This would pro-
vide important information for guiding regulatory policies
for public health.
Many researchers have recognized the limitations of

the single-pollutant model and have taken some efforts
to overcome such limitations. One of commonly used
methods is to simultaneously include two or three
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pollutant variables in a generalized additive model
(GAM); then, the effects of one pollutant can be esti-
mated after adjusting for other pollutants in the model
[12–14]. This simple resolution ignores the high correl-
ation of the occurrence of pollutants, which likely leads
to a collinearity problem, such as variance inflation or
bias even reverse estimation of parameters. For example,
Chen et al. [15] and Kan et al. [16] showed that PM10

was negatively associated with daily respiratory mortality
when the NO2 or SO2 was considered simultaneously,
suggesting that the PM10 had a protective effect. To alle-
viate this problem, the Health Effects Institute supports
the development of innovative statistical methods for
studying the health effects of multiple pollutants in the
presence of collinearity.
Several different approaches have been attempted to

analyze the effects of multiple pollutants. One approach
is the principal component analysis (PCA) that can avoid
unstable parameter estimates in the condition of collin-
earity [17, 18]. However, PCA only maximizes the vari-
ance interpreted by the linear combination of
independent variables without directly considering the
relationship between the dependent variable and inde-
pendent variables. Partial least-squares regression (PLSR)
combining PCA with canonical correlation analysis cap-
tures not only the information of independent variables
but also the relationship with the dependent variable, yet
this approach produces linear combinations of the ori-
ginal independent variables that are difficult to interpret
in practice. Using Monte Carlo simulations, Månsson
and Shukur [19] showed that the estimators produced
by Poisson ridge regression were more accurate (i.e. had
less standard errors) than those produced by the Poisson
log-linear model. However, the increase in accuracy was
at the expense of increasing bias in the condition of
strong collinearity. Bayesian model averaging (BMA) av-
erages the effects of models for all possible combinations
of independent variables; these models are weighted by
the posterior probability of the model [20]. However,
there are different views on the interpretation of effect
estimates from BMA in the case of extensive collinearity.
Bobb et al. [21] proposed Bayesian kernel machine re-
gression (BKMR) that regressed the heath outcome on a
flexible kernel function of multiple pollutants. BKMR
can be highly sensitive to the specification of the prior
distribution and can solve the problem of collinearity
using hierarchical variable selection.
To date, there is no standard model for evaluating

health effects of multiple pollutants. Sun et al. [22]
concluded that no method was unanimous across all
simulation scenarios that differed in sample size, the
number of pollutants and the strength of exposure-re-
sponse association. The choice of the appropriate
method should depend on the goal of the study. Wood

proposed a general method for constructing low-rank
tensor product smooths of multiple variables that could
quantitatively estimate the nonlinear effects of multiple
independent variables on a dependent variable [23, 24].
The tensor product smooths has been widely applied in
geometry, physics, mechanics and quantum theory [25].
To the best of our knowledge, the tensor product smooths
for GAM was never employed to evaluate the health
impacts of multiple pollutants. This study employed firstly
this approach to assess non-linear effects and potential
interaction effects of SO2, NO2 and PM10 on mortality in
Guangzhou, China, during 2005–2012.

Methods
Data
Daily meteorological data for mean temperature, relative
humidity and atmospheric pressure were collected at the
Guangzhou Weather Station and were downloaded from
the China Meteorological Data Sharing Service System. Air
pollution data, including particulate matter < 10 μm in
aerodynamic diameter (PM10), nitrogen dioxide (NO2) and
sulfur dioxide (SO2), were provided by the Guangzhou
Bureau of Environmental Protection. The daily concen-
trations of PM10, NO2 and SO2 were the average levels
collected from seven fixed-site air quality monitoring
stations that were all located in central urban areas and had
complete data during the study period of 2005–2012 [26].
There were 40 missing observations for PM10, NO2, and
SO2, accounting for 1.5% of the study days. We did not
replace the missing values. Because the levels of air pollu-
tion and health effects of pollution on mortality may be
different in suburban areas, to maintain consistency of the
study population, the mortality data were also limited to
death registration records of the whole population at six
central urban districts.

Statistical analysis
First, we constructed a basic quasi-Poisson regression
model without air pollutant variables. Natural cubic splines
(ns) of daily mean relative humidity, atmospheric pressure
and temperature were used to control the nonlinear and
non-monotonic confounding effects of meteorological fac-
tors on mortality. Time can be considered as a proxy of
some other unobserved time-varying confounders. A
natural cubic spline function of time was used to control
for the long-term trend and seasonal variations of daily
mortality and potential confounding effects of unobserved
time-varying covariates. The partial autocorrelation func-
tion (PACF) of residuals and the Akaike’s Information
Criterion (AIC) were used to guide the selection of the
number degrees of freedom (df) for ns. When a df of 7 was
used for time variables, the PACF was free of patterns and
was not autocorrelated [16, 27]. The value of df equal to 3
was used for meteorological variables because this value
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has been shown to control well their impacts on daily
mortality changes [28–30]. We used a 14-day moving
average of mean temperature to control the lag effect
because previous studies in Guangzhou observed that
the effects of mean temperature on mortality persisted
for approximately 14 days [31, 32]. Day of the week
(DOW) and a holiday (HOD) indicator were included
in the model as indicator variables.
After the basic model was constructed, we added air

pollution variable(s) to the model. The reason was that
many studies, including our data, showed that the adverse
impacts of each specific pollutant were statistically signifi-
cant at lag 0 and lag 1, and these impacts almost dis-
appeared at lag 3 and during longer lags [33, 34]. To
adequately capture the lag effects, a 3-day moving average
of air pollution concentrations (i.e., lag 0–2) was used, and
the concentrations were introduced into the model in the
following four ways:
Model I (single-pollutant model) incorporated each of

pollutant variables into the basic model, separately:

Log μt
� � ¼ αþ θ1ns Temperaturetð Þ þ θ2ns Humidityt

� �
þθ3ns Pressuretð Þ þ θ4ns Timeð Þ þ δ1DOWt

þδ2HODt þ β PM10t=NO2 t=SO2tð Þ;
ð1Þ

where β(PM10t/NO2t/SO2t) signifies that respective single-
pollutant models for PM10, NO2 and SO2 are established; β
is the coefficient of a pollutant variable.
Model II (three-pollutant non-interaction model),

simultaneously included three pollutant variables with-
out considering first-order interactions and is specified
as follows:

Log μt
� � ¼ αþ θ1ns Temperaturetð Þ þ θ2ns Humidityt

� �
þθ3ns Pressuretð Þ þ θ4ns Timeð Þ þ δ1DOWt

þδ2HODt þ β1PM10t þ β2NO2t þ β3SO2t :

ð2Þ

Model III (three-pollutant interaction model) adds linear
terms of the first-order interaction between pollutants to
model II:

Log μt
� � ¼ αþ θ1ns Temperaturetð Þ þ θ2ns Humidityt

� �
þθ3ns Pressuretð Þ þ θ4ns Timeð Þ þ δ1DOWt

þδ2HODt þ β1PM10t þ β2NO2t þ β3SO2t

þβ12 PM10t �NO2tð Þ þ β13 PM10t � SO2tð Þ
þβ23 NO2t � SO2tð Þ;

ð3Þ

where β1, β2 and β3 are the regression coefficients of pollut-
ants, and β12, β13 and β23 are the regression coefficients of
first-order interaction terms.

Model IV (tensor product model) constructs the ten-
sor product smooths (te) of three pollutants (PM10, NO2

and SO2)and is specified as follows:

Log μt
� � ¼ αþ θ1ns Temperaturetð Þ þ θ2ns Humidityt

� �
þθ3ns Pressuretð Þ þ θ4ns Timeð Þ þ δ1DOWt

þδ2HODt þ te PM10;NO2; SO2ð Þ;
ð4Þ

where te(PM10, NO2, SO2) is the tensor product smooth
function of three pollutants. For models I-IV, μt is the ex-
pected number of deaths on day t, α is the intercept, ns(.)
denotes the unknown smooth functions modeled by natural
cubic splines, and θ1- θ4 represent the coefficients vector of
smooth functions.
Construction of the tensor product smooths has been

described previously in detail [23]. Mathematically, sup-
posing that there are two vector spaces V and W, where
the V has a basis ei (i = 1…m), and the W has a
basis fj (j = 1… n), the tensor product of V ⊗ W is gen-
erated by

P m
i¼1

Pn
j¼1 ei � f j , where the product ope-

ration ⊗ is Kronecker product. In this paper, we briefly
introduce the construction process of tensor product
smooths of three covariates (i.e., PM10, NO2, SO2). It is
easy to generalize the tensor product smooths to more
variables in the same way. Basis functions for represen-
ting the smooth function of each pollutant are given by

f ðPM10Þ ¼
PI

i¼1 αiϕiðPM10Þ , f ðNO2Þ ¼
PK

k¼1 ωkηkðNO2Þ
and f ðSO2Þ ¼

PL
l¼1 blφlðSO2Þ,

where the ϕi(PM10), φl(SO2) and ηk(NO2) are the
basis functions and αi, bl and ωk are parameters. Next,
the smooth of PM10, denoted by f(PM10), is converted
into a smooth function of PM10 and SO2, denoted by
f(PM10, SO2) (to make f(PM10) change smoothly with SO2),
which can be achieved by allowing αi to vary smoothly
with SO2. Thus, we obtain

αi SO2ð Þ ¼
XL
l¼1

bilφl SO2ð Þ

which results in

f PM10; SO2ð Þ ¼
XI

i¼1
αi SO2ð Þϕi PM10ð Þ

¼
XI

i¼1

XL

l¼1
bil φl SO2ð Þϕi PM10ð Þ:

Similarly, we can now create a smooth function
of PM10, SO2 and NO2 by allowing f(PM10, SO2) to vary
smoothly with NO2. Therefore, with following the same
reasoning as before, we obtain
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te PM10;NO2; SO2ð Þ ¼ f PM10;NO2; SO2ð Þ

¼
XI
i¼1

XL
l¼1

XK
k¼1

vilkηk NO2ð Þφl SO2ð Þϕi PM10ð Þ;

where vilk are the coefficients of basis functions of tensor
product smooths.
According to the above description, it is clear that the

complexity of the tensor product smooth function depends
on the type of basis function and its dimensionality; there-
fore, it is essential to choose an appropriate basis function
describing the relationship between an adverse outcome
and air pollutants. In this study, we used the cubic spline
basis function that is widely used to flexibly fit a potential
nonlinear relationship.
To avoid the problem of collinearity and controlling the

tradeoff between goodness of fit and model smoothness,
we define the following penalized likelihood function to
estimate parameters:

l vð Þ þ J f PM10;NO2; SO2ð Þð Þ
(and)

J f PM10;NO2; SO2ð Þð Þ ¼
Z

PM10;SO2;NO2

½λPM10

∂2 f

∂ PM10ð Þ2
 !2

þ

λNO2

∂2 f

∂ NO2ð Þ2
 !2

þ λSO2

∂2 f

∂ SO2ð Þ2
 !2

�dPM10dNO2dSO2;

where l (v) is the likelihood function, and J(f(PM10, NO2,
SO2)) represents tensor product penalties. λPM10 , λNO2

and λSO2 are smoothing parameters. Such parameters
can be selected by Generalized Cross Validation (GCV).
The estimates, denoted by v̂ilk , are obtained by pe-
nalized iteratively re-weighted least squares which ma-
ximizes the penalized likelihood function. Furthermore,
stratified analyses by educational attainment, sex and
age were conducted respectively.

Estimation of the combined effects
The combined effects of three air pollutants were mea-
sured by the combined rate ratio (RR). For the single-
pollutant model and the three-pollutant non-interaction
model, RR was calculated as the exponentiated sum of
the products of each pollutant’s regression coefficient
and the pollutant’s increment. For the three-pollutant
interaction model, RR was calculated as the exponen-
tiated sum of the following two parts: 1) the product of
each pollutant’s regression coefficient and the pollutant’s
increment and 2) the product of each interaction term
coefficient and the difference value of the interaction
term. The standard error of RR was estimated based on
the variance-covariance matrix of pollutants’ coefficients.
The detailed derivation process is described in the
supplemental materials and uses the method proposed

by Winquistet al.[13]. For the tensor production model,
the RR is calculated as follows:

teTν ¼ te PM10
jth ;NO2

jth ; SO2
jth

� �
−te PM10

ith ;NO2
ith ; SO2

ith
� �

;

where

te PM10
jth ;NO2

jth ; SO2
jth

� �

¼
XI
i¼1

XL
l¼1

XK
k¼1

vilkηk NO2
jth

� �
φl SO2

jth
� �

ϕi PM10
jth

� �
;

te PM10
ith ;NO2

ith ; SO2
ith

� �

¼
XI
i¼1

XL
l¼1

XK
k¼1

vilkηk NO2
ith

� �
φl SO2

ith
� �

ϕi PM10
ith

� �
:

Therefore, we can get RR = exp (teTν).

The values teðPM10
jth ;NO2

jth ; SO2
jthÞ and teðPM10

ith ;

NO2
ith ; SO2

ithÞ are the values of the tensor product
smooths at the jth and ith percentiles of pollutants’ con-
centrations, respectively. The vector ν is the coefficient
vector of the basis function of tensor product smooths.
The vector teT is the transposed difference vector of
basis functions of tensor product smooths at the jth per-
centiles and the ith percentiles of pollutants’ concentra-
tions. The 95% confidence interval (CI) of RR was
estimated by the following formula:

95%CI ¼ exp teTν−z1−α=2 seteT ν
� �

; exp teTν−z1−α=2seteT ν
� �� �

;

seteT ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
teT Σ̂te

p
;

where Σ̂ is the variance-covariance of the coefficients of
the basis function and α =0.05.
To improve the readability of the results and better

understand the excess burden due to air pollution, we cal-
culated the excess risk (ER) of mortality by (RR-1)*100%,
i.e., the percentage increase in mortality associated with
air pollution.
To clarify the robustness of the lag selection for air

pollutants, we conducted a sensitivity analysis to deter-
mine the effects of air pollution at lag 0–1 by using a
2-day moving average in models I-IV.
All analyses were performed using R software version

3.3.1, by using the “mgcv” used to fit the GAM.

Results
The total number of all-cause deaths was 193,715 during
2005–2012, with 66.34 cases per day. The daily mean
temperature had an average of 22.5 °C and ranged from
5.1 °C to 34.2 °C. The mean daily average concentrations
of PM10, SO2 and NO2 were 74.9 μg/m3, 41.0 μg/m3 and
62.4 μg/m3, respectively. The interquartile ranges (IQR)
of three pollutants were 48.2 μg/m3, 33.7 μg/m3 and
33.3 μg/m3, respectively (Table 1). The time series plot
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of air ambient pollutants and all-cause deaths revealed a
consistent seasonality; there were generally more deaths
and higher concentrations of pollutants in the cool sea-
son (from May to October) than in the warm season
(from November to April) (Fig. 1). The Spearman corre-
lations of PM10 and NO2, PM10 and SO2, and NO2 and
SO2 were 0.83, 0.60 and 0.65, respectively (P < 0.01).
The tensor product model can produce a four-di-

mensional plot for the RR of mortality associated with the
levels of three pollutants. To intuitively show the com-
bined effects of air pollutants, the concentration of one of
pollutants was fixed at the reference value (the 25th per-
centile was used in this study); then, a three-dimensional
graph of RR of the other two pollutants can be drawn
(Fig. 2). Generally, as the concentration of pollutants
increased, a stronger combined effect of pollutants on
mortality was observed, but the relationship was not com-
pletely linear or monotonic. The effect of one pollutant
varied with the concentration of another pollutant. For
example, the effect of PM10 increased significantly with
the concentration of SO2 at low concentrations, but the
curve of PM10 effect was relatively flat for high concen-
trations of SO2, which indicated that there was an inter-
action between pollutants.
Table 2 and Fig. 3 show the effects of air pollution

estimated by four different models. The single-pollutant
model (Model I) revealed that an IQR increase in the con-
centration of PM10, NO2 and SO2 was associated with in-
creases in mortality of 2.03% (95% CI: 1.08–2.99%), 1.63%
(95% CI: 0.69–2.59%) and 1.86% (95% CI: 0.94–2.78%), re-
spectively. The level of NO2 was negatively associated with
the risk of mortality if PM10 and SO2 were included simul-
taneously in the non-interaction model (models II-III).
The combined effect of three pollutants estimated by the
single-pollutant model (ER = 5.63, 95%CI: 3.96–7.34%)
was much greater than those obtained from other three
multi-pollutant models. The combined effect estimated by
the three-pollutant non-interaction model (ER = 2.20,
95%CI: 1.18–3.23%) was slightly smaller than those from
the interaction model (ER = 2.78, 95%CI: 1.35–4.23%) and

the tensor product model (ER = 2.53, 95%CI: 1.03–4.01%).
Fig. 3(a-c) shows that the tensor product model, compared
to the three-pollutant non-interaction model and inter-
action model, produced more precise effect estimates
(i.e., narrower 95%CI), especially for the main effects of
single pollutants.
Table 3 shows the results of stratified analyses by the

tensor product model. There were a total number of
193,715 deaths during 2005–2012 in Guangzhou; 24.4,
56.4 and 92.6% of deaths were of those aged under 65,
males and individuals with low educational attainment
(illiterate or only primary education), respectively. Females,
elderly people (65 years of age or above) and individuals
with low educational attainment were more vulnerable to
ambient air pollution exposure than were males, younger
individuals and those with high educational attainment.
The sensitivity analysis for all models revealed that the

effects at lag 0–1 were slightly larger than those at lag
0–2 (Additional file 1: Figure S1).

Discussion
Most of previous studies of the health effects of air pol-
lution are based on a single-pollutant model or include
multiple pollutants in a model at the same time, thus
ignoring the possibility of high correlation among pol-
lutants that leads to the inflation of variance and the
instability of model parameter estimation. The com-
monly used solution is stepwise regression and remo-
ving one of the highly correlated variables; however,
this method may cause the loss of some important in-
formation. In this study, we proposed a quasi-Poisson
regression with tensor product smooth to estimate the
health effects of multiple pollutants. Overall, we observed
that the combined effect of three pollutants (PM10, SO2

and NO2) gradually increased along with concentration of
pollutants. Moreover, there was a complex interaction
among the pollutants. The results of the stratified analysis
showed that elderly individuals, females and people
with low educational attainment were more vulnerable
to air pollution.

Table 1 Summary statistics for daily number of deaths, daily air pollution concentrations and weather conditions in Guangzhou,
China, 2005–2012

Percentile

Variables Mean ± SD Min 25th 50th 75th Max

Daily number of deaths 66 ± 14 21 56 64 75 248

PM10 (μg/m3) 74.9 ± 39.6 7.6 46.4 66.9 94.6 342.3

SO2 (μg/m3) 41.0 ± 29.6 2.3 19.9 33.7 53.6 214.1

NO2 (μg/m3) 62.4 ± 27.8 16.7 42.1 55.6 75.4 254.7

Mean temperature (°C) 22.5 ± 6.3 5.1 18.0 24.2 27.7 34.2

Mean humidity (%) 72.9 ± 13.2 20.0 65.0 75.0 83.0 99.0

Mean pressure (hpa) 10,074 ± 70 9874 10,023 10,071 10,128 10,272
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The single-pollutant model, a common method of asses-
sing health effects of air pollution, revealed that the levels
of each single pollutant (PM10, NO2 and SO2) had a sig-
nificantly positive relationship with the risk of all-cause
deaths, with ER values associated with IQR increase in the
concentration of lag 0–2 of 2.03, 1.63 and 1.86%, respec-
tively. We observed that the effect estimates of PM10 and
NO2were greater at lag 0–1, with ER values per IQR in-
crease of 2.13, 1.73 and 1.79% (i.e., 0.44, 0.52 and 0.53%
per 10ug/m3 increase). Consistently, Wu et al. reported
that ER of mortality associated with IQR increase in
PM10 in Guangzhou was 1.77% (95%CI: 0.37–3.18%) in

2006–2009 and 2.03% (95%CI: 0.79–3.30%) in 2010–2013,
and the effect estimates were very similar after adjusting for
NO2 or SO2 [35]. The estimate of the PM10 effect was also
very similar to that reported in 90 American cities and in
38 Chinese cities (i.e., 0.5 and 0.44% per 10ug/m3 increase),
while the effects of SO2 and NO2 we observed were smaller
than the estimates in four Asian cities (i.e., 1.00 and 1.23%
per 10μg/m3 increase) [34, 36].
The three-pollutant models produced abnormal health

impact estimates of single pollutants (e.g., a negative
effect of NO2) and w19pt?>The above phenomenon was
due to strong collinearity among pollutants with

Fig. 2 The combined effects of two pollutants on mortality, given the level of the remained pollutant fixed as the reference level. Red lines
represent the exposure-response relationship between one pollutant and mortality when other two pollutants were fixed as the reference level
(i.e. 25th percentile)

Fig. 1 Time-series plots of air ambient pollutants and all-cause deaths during 2005–2012 in Guangzhou, China. PM10, particulate matter < 10 mm
in aerodynamic diameter; SO2, sulfur dioxide; NO2, nitrogen dioxide
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Spearman correlation coefficients of 0.60–0.83, which
caused variance inflation of the regression parameters
and bias in the statistical inference [11]. As to the com-
bined effects of three pollutants, it was clear that the
additive effect of a single pollutant based on the
single-pollutant model was much higher than the com-
bined effect estimated by other three multi-pollutant

models. The reasons are that the single pollutant
model does not take into account the high correlation
between pollutants, and one air pollutant may be a
substitute for another air pollutant or the mixture of
air pollutants [37].
The most innovative point of this study is that the ten-

sor product quasi-Poisson regression model was, for the

Table 2 Excess risk of mortality and 95% confidence intervals (%) associated with an IQR increment in air pollutant concentrations

Modela PM10 NO2 SO2 Combined effects

I 2.03 (1.08–2.99) 1.63 (0.69–2.59) 1.86 (0.94–2.78) 5.63 (3.96–7.34)

II 1.98 (0.23–3.77) − 1.24 (− 3.24–0.81) 1.47 (−0.10–3.07) 2.20 (1.18–3.23)

III 1.35 (− 1.11–3.88) − 0.49 (− 3.51–2.61) 2.46 (− 0.11–5.10) 2.78 (1.35–4.23)

IV 1.45 (− 0.33–3.27) 0.53 (− 1.42–2.52) 0.92 (−0.65–2.52) 2.53 (1.03–4.01)
aModel I, II, III and IV denote the single-pollutant model, the three-pollutant non-interaction model, the three-pollutant interaction model and the tensor product
model, respectively

Fig. 3 Mortality rate ratio (RR), estimated by models I-IV, for various levels of air pollution relative to the reference level. a-c show the exposure-
response curves for PM10, NO2 and SO2, respectively, given the levels of other two pollutants fixed as their 25th percentiles. d shows the
combined rate ratio (RRc) associated with the simultaneous increases in the levels of three pollutants. The horizontal lines in (a-d) indicate RR is
equal to 1
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first time, applied to assess the combined effect of several
pollutants on adverse health outcome in the presence of
multi-collinearity and to explore the complex interaction
of several pollutants. Several methods that were proposed
in the past made additional assumptions of the existence
of a linear or specific functional relationship between
atmospheric pollutants and the response variable or only
explored the first order interaction; in contrast, the GAM
with tensor product smooth not only relaxes those
assumptions but also flexibly explores the nonlinear effect
and the complex interaction of multiple pollutants.
Specially, this method gives a highly visual depiction of
the relationship between all-cause deaths and air pol-
lutants, which may allow analysts to discover more un-
detectable characteristics of data than would be possible
with the use of a simple model, and provide a new
approach to comprehensive evaluation of health effects of
multiple pollutants.
In this study, the tensor product model was also

used to identify subpopulations that were more sus-
ceptible to exposure to a mixture of multiple pollut-
ants. Some studies that assessed the health effect of
single pollutants revealed that females were more sus-
ceptible than males to adverse effects of ambient air
pollution [38]. Kan et al. observed that the effects of
PM10 on mortality were almost twice as strong in fe-
males [39]. The reasons for sexual differences were
unclear and deserved to be further investigated. We
observed greater combined effects of multiple pollut-
ants in females than in males. Residents with low
educational attainment were more sensitive to expos-
ure to ambient air pollution than those with high
educational attainment, which was consistent with pre-
vious studies [39, 40]. Most individuals with low educa-
tional attainment experience higher financial risk and,
therefore, potentially also experience inferior living
conditions and inadequate healthcare. Additionally,

individuals with low educational attainment were more
likely to be occupationally exposed to air pollution [41].
Our study has some limitations. Although the GAM

with tensor product smooth is flexible enough to explore
the relationship between adverse health outcome and air
pollutants, the “curse of dimensionality” occurs when
the number of variables in the tensor product smooth
increases, which is inherent in many flexible models
[23]. The total dimensionality is the product of dimen-
sionalities of each pollutant; thus, a large sample size is
needed to accurately estimate parameters, and the
computation is time-consuming. Moreover, it is difficult
to interpret results of the model in high-dimensional
spaces. We assessed health effects of three main pollu-
tants to demonstrate the methods; however, other pol-
lutants, such as ozone and PM2.5 that might be related
to mortality were not considered in this study because
of data unavailability during the study period.

Conclusions
Ambient air pollution has a significant impact on mor-
tality. Our findings indicate that there exists a high corre-
lation and a complex interaction among air pollutants.
The single-pollutant model is unable to accurately esti-
mate the combined effects of multiple pollutants. The
simple multi-pollutant model with or without the first-
order interaction term may yield misleading results when
attributing health effects to individual pollutants. This
study provides a novel method, called a tensor product
quasi-Poisson model, for assessing the health effects of
multiple pollutants, which can be applied in various epide-
miologic studies to determine the combined effects of en-
vironmental, social and individual risk factors, especially if
such factors are highly correlated and have nonlinear
health effects.

Additional file

Additional file 1: FigureS1. Excess risk of mortality and 95%
confidence intervals (%) associated with an IQR increment in moving
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days. I-IV denote the models I-IV. (TIFF 551 kb)
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Table 3 The combined effects of three air pollutants on
mortality by age, sex and educational attainment, estimated by
the tensor product model

Deaths (%) ERa (95%CI)

Age (years)

< 65 years 47,303(24.4) −1.09 (− 2.81–0.66)

≥ 65 years 146,412(75.4) 3.71 (1.96–5.50)

Gender

Female 84,519(43.6) 3.58 (1.47–5.74)

Male 109,916(56.4) 1.50 (0.05–2.99)

Educational attainment

Low 170,629(92.6) 2.82 (1.19–4.49)

High 13,734(7.4) 2.19 (−1.11–5.60)
aThe excess risk (ER) of all-cause mortality associated with an IQR increment of
concentrations of three pollutants
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