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Abstract

Background: De novo transcriptome assemblies are required prior to analyzing RNA sequencing data from a species without
an existing reference genome or transcriptome. Despite the prevalence of transcriptomic studies, the effects of using
different workflows, or “pipelines,” on the resulting assemblies are poorly understood. Here, a pipeline was
programmatically automated and used to assemble and annotate raw transcriptomic short-read data collected as part of
the Marine Microbial Eukaryotic Transcriptome Sequencing Project. The resulting transcriptome assemblies were evaluated
and compared against assemblies that were previously generated with a different pipeline developed by the National
Center for Genome Research. Results: New transcriptome assemblies contained the majority of previous contigs as well as
new content. On average, 7.8% of the annotated contigs in the new assemblies were novel gene names not found in the
previous assemblies. Taxonomic trends were observed in the assembly metrics. Assemblies from the Dinoflagellata showed
a higher number of contigs and unique k-mers than transcriptomes from other phyla, while assemblies from Ciliophora
had a lower percentage of open reading frames compared to other phyla. Conclusions: Given current bioinformatics
approaches, there is no single “best” reference transcriptome for a particular set of raw data. As the optimum
transcriptome is a moving target, improving (or not) with new tools and approaches, automated and programmable
pipelines are invaluable for managing the computationally intensive tasks required for re-processing large sets of samples
with revised pipelines and ensuring a common evaluation workflow is applied to all samples. Thus, re-assembling existing
data with new tools using automated and programmable pipelines may yield more accurate identification of taxon-specific
trends across samples in addition to novel and useful products for the community.
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Introduction

The analysis of gene expression from high-throughput nucleic
acid sequence data relies on the presence of a high-quality ref-
erence genome or transcriptome. When there is no reference
genome or transcriptome for an organism of interest, raw RNA
sequence (RNA-seq) data must be assembled de novo into a tran-

scriptome [1]. This type of analysis is ubiquitous across many
fields, including evolutionary developmental biology [2], can-
cer biology [3], agriculture [4, 5], ecological physiology [6, 7],
and biological oceanography [8]. In recent years, substantial in-
vestments have been made in data generation, primary data
analysis, and development of downstream applications, such as
biomarkers and diagnostic tools [9–16].
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Methods for de novo RNA-seq assembly of the most common
short-read Illumina sequencing data continue to evolve rapidly,
especially for non-model species [17]. At this time, there are sev-
eral major de novo transcriptome assembly software tools avail-
able to choose from, including Trinity [18], SOAPdenovo-Trans
[19], Trans-ABySS [20], Oases [21], SPAdes [22], IDBA-tran [23],
and Shannon [24]. The availability of these options stems from
continued research into the unique computational challenges
associated with transcriptome assembly of short-read Illumina
RNA-seq data, including large memory requirements, alterna-
tive splicing, and allelic variants [18, 25].

The continuous development of new tools and workflows for
RNA-seq analysis combined with the vast amount of publicly
available RNA-seq data [26] raise the opportunity to re-analyze
existing data with new tools. This, however, is rarely done sys-
tematically. To evaluate the performance impact of new tools
on old data, we developed and applied a programmatically au-
tomated de novo transcriptome assembly workflow that is mod-
ularized and extensible based on the Eel Pond Protocol [27]. This
workflow incorporates Trimmomatic [28], digital normalization
with khmer software [29, 30], and the Trinity de novo transcrip-
tome assembler [18].

To evaluate this pipeline, we re-analyzed RNA-seq data from
678 samples generated as part of the Marine Microbial Eu-
karyotic Transcriptome Sequencing Project (MMETSP) [31]. The
MMETSP dataset was generated to broaden the diversity of se-
quenced marine protists in order to enhance our understand-
ing of their evolution and roles in marine ecosystems and bio-
geochemical cycles [31, 32]. With data from species spanning
more than 40 eukaryotic phyla, the MMETSP provides one of
the largest publicly available collections of RNA-seq data from
a diversity of species. Moreover, the MMETSP used a standard-
ized library preparation procedure, and all of the samples were
sequenced at the same facility, making this dataset unusually
comparable.

Reference transcriptomes for the MMETSP were originally as-
sembled by the National Center for Genome Research (NCGR)
with a pipeline that used the Trans-ABySS software program
to assemble the short reads [31]. The transcriptomes gener-
ated from the NCGR pipeline have already facilitated discover-
ies in the evolutionary history of ecologically significant genes
[33, 34], differential gene expression under shifting environ-
mental conditions [8, 35], inter-group transcriptomic compar-
isons [36], unique transcriptional features [37–39], and meta-
transcriptomic studies [34–36].

In re-assembling the MMETSP data, we sought to compare
and improve the original MMETSP reference transcriptome and
to create a platform that facilitates automated re-assembly and
evaluation. Here, we show that our re-assemblies had better
evaluation metrics and contained most of the NCGR contigs as
well as adding new content.

Methods
Programmatically automated pipeline

An automated pipeline was developed to execute the steps of
the Eel Pond mRNAseq Protocol [27], a lightweight protocol for
assembling short Illumina RNA-seq reads that uses the Trin-
ity de novo transcriptome assembler. This protocol generates de
novo transcriptome assemblies of acceptable quality [40]. The
pipeline was used to assemble all of the data from the MMETSP
(Fig. 1). The code and instructions for running the pipeline
are available [41]. Scripts were tested on blank Ubuntu 16.04

instances on the XSEDE Jetstream cloud computing platform
and run in parallel on the High Performance Cluster Computer
(HPCC) at Michican State University, Institute for Cyber-Enabled
Reserch.

The steps of the pipeline applied to the MMETSP are as fol-
lows:

Download the raw data
Raw RNA-seq datasets were obtained from the National Center
for Biotechnology Information (NCBI) Sequence Read Archive
(SRA) from BioProject PRJNA231566. Data were paired-end Illu-
mina reads with lengths of 50 bases for each read. A metadata
(SraRunInfo.csv) file obtained from the SRA web interface was
used to provide a list of samples to the get data.py pipeline
script, which was then used to download and extract fastq files
from 719 records. The script uses the fastq-dump program from
the SRA Toolkit to extract the SRA-formatted fastq files (version
2.5.4) [42]. There were 18 MMETSP samples with more than
one SRA record (MMETSP0693, MMETSP1019, MMETSP0923,
MMETSP0008, MMETSP1002, MMETSP1325, MMETSP1018,
MMETSP1346, MMETSP0088, MMETSP0092, MMETSP0717,
MMETSP0223, MMETSP0115, MMETSP0196, MMETSP0197,
MMETSP0398, MMETSP0399, MMETSP0922). In these cases,
reads from multiple SRA records were concatenated together
per sample. Taking these redundancies into consideration,
there were 678 re-assemblies generated from the 719 records
in PRJNA231566 (Supplementary Notebook 1 [43]). Assembly
evaluation metrics were not calculated for MMETSP samples
with more than one SRA record because these assemblies were
different than the others, containing multiple samples, and
thus not as comparable.

Initial transcriptomes that were assembled by the NCGR,
using methods and data described in the original publication
[31], were downloaded from the iMicrobe repository to com-
pare with our re-assemblies (ftp://ftp.imicrobe.us/projects/104/).
There were two versions of each assembly, ‘nt’ and “cds.” The
version used for comparison is noted below in each evaluation
step. To our knowledge, the NCGR took extra post-processing
steps to filter content, leaving only coding sequences in the ‘cds’
versions of each assembly [31].

Perform quality control
Reads were analyzed with FastQC (v0.11.5) [44] and multiqc (ver-
sion 1.2) [45] to confirm overall qualities before and after trim-
ming. A conservative trimming approach [46] was used with
Trimmomatic (version 0.33) [28] to remove residual Illumina
adapters and cut bases off the start (LEADING) and end (TRAIL-
ING) of reads if they were below a threshold Phred quality score
(Q<2).

Apply digital normalization
To decrease the memory requirements for each assembly, digi-
tal normalization was applied with the khmer software package
(v2.0) prior to assembly [47]. First, reads were interleaved, nor-
malized to a k-mer (k = 20) coverage of 20 and a memory size
of 4e9, then low-abundance k-mers from reads with a coverage
above 18 were trimmed. Orphaned reads, where the mated pair
was removed during normalization, were added to the normal-
ized reads.

Assemble
Transcriptomes were assembled from normalized reads with
Trinity 2.2.0 using default parameters (k = 25). This version
of Trinity (v2.2.0) did not include the “in silico normalization”

https://www.ncbi.nlm.nih.gov/bioproject?term=PRJNA231566
ftp://ftp.imicrobe.us/projects/104/
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Figure 1: A programmatically automated de novo transcriptome assembly pipeline was developed for this study. Metadata in the SraRunInfo.csv file downloaded from

the National Center for Biotechnology Information was used as input for each step of the pipeline to indicate which samples were processed. The steps of the pipeline
are as follows: download raw fastq data with the fastq-dump script in the SRA Toolkit, perform quality assessment with FastQC and trim residual Illumina adapters
and low-quality bases (Q<2) with Trimmomatic, do digital normalization with khmer version 2.0, and perform de novo transcriptome assembly with Trinity. If a process

was terminated, the automated nature of this pipeline allowed for the last process to be run again without starting the pipeline over. In the future, if a new sample is
added, the pipeline can be run from beginning to end with just new samples, without having to repeat the processing of all samples in the dataset as one batch. If a
new tool becomes available, e.g., a new assembler, it can be substituted in lieu of the original tool used by this pipeline.

option as a default parameter. The digital normalization ap-
proach we used with khmer is the same algorithm implemented
in Trinity, but it requires less memory and is faster [48].

The resulting assemblies are referred to below as the “Lab
for Data Intensive Biology” assemblies, or DIB assemblies. The
original assemblies are referred to as the NCGR assemblies.

Post-assembly assessment
Transcriptomes were annotated using the dammit pipeline (ver-
sion v1.0.dev0) [49], which relies on the following databases as
evidence: Pfam-A (version 28.0) [50], Rfam (version 12.1) [51], and
OrthoDB (version 8) [52]. In the case where there were multiple
database hits, one gene name per contig was selected by choos-
ing the name of the lowest e-value match (<1e-05).

All assemblies were evaluated using metrics generated by
the Transrate program (v1.0.3) [53]. Trimmed reads were used
to calculate a Transrate score for each assembly, which rep-
resents the geometric mean of all contig scores multiplied by
the proportion of input reads providing positive support for
the assembly [50]. Comparative metrics were calculated us-
ing Transrate for each MMETSP sample between DIB and the
NCGR assemblies using the Conditional Reciprocal Best Basic
Local Alignment Search Tool hits (CRBB) algorithm [54]. A for-
ward comparison was made with the NCGR assembly used
as the reference and each DIB re-assembly as the query. Re-
verse comparative metrics were calculated with each DIB re-
assembly as the reference and the NCGR assembly as the

Table 1: Number of assemblies with higher values in NCGR or DIB for
each quality metric

Quality metric Higher in NCGR Higher in DIB

Transrate score, ‘cds’ 44 583
Transrate score, ‘nt’ 495 143
Mean %, ‘cds’ 592 35
Mean %, ‘nt’ 42 596
% References with CRBB, ‘nt’ 100 538
Number of contigs, ‘nt’ 12 626
% Complete BUSCO, Eukaryota,
‘nt’

381 235

The ‘cds’ or ‘nt’ indicate the version of the NCGR assembly that was being com-
pared. The NCGR ‘cds’ assemblies were filtered for content.

query. Transrate scores were calculated for each assembly us-
ing the Trimmomatic quality-trimmed reads prior to digital
normalization.

Benchmarking Universal Single-Copy Orthologs (BUSCO)
software (version 3) was used with a database of 215 orthologous
genes specific to protistans and 303 genes specific to eukary-
ota with open reading frames (ORFs) in the assemblies. BUSCO
scores are frequently used as one measure of assembly com-
pleteness [55].

To assess the occurrences of fixed-length words in the as-
semblies, unique 25-mers were measured in each assembly
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Figure 2: The number of contigs and Transrate quality score for each dataset
varied between DIB and NCGR assemblies. (A) Slope graphs show shifts in the

number of contigs for each individual sample between the DIB and the NCGR
assembly pipelines. Negative slope (yellow) lines represent values where NCGR
was higher than DIB and positive slope (blue) lines represent values where DIB
was higher than NCGR. (B) Split violin plots show the distribution of the number

of contigs in each assembly with the original assemblies from NCGR in yellow
(left) and the DIB re-assemblies in blue (right side of B). (C) The difference in
Transrate score between the DIB and NCGR assemblies is shown as a histogram.
Negative values on the x-axis indicate that the NCGR assembly had a higher

Transrate score, and positive values indicate that the DIB assembly had a higher
Transrate score.

using the HyperLogLog (HLL) estimator of cardinality built into
the khmer software package [56]. We used the HLL function to
digest each assembly and count the number of distinct fixed-
length substrings of DNA (k-mers).

Unique gene names were compared from a random subset
of 296 samples using the dammit annotation pipeline [49]. If a
gene name was annotated in NCGR but not in DIB, this was con-
sidered a gene uniquely annotated in NCGR. Unique gene names
were normalized to the total number of annotated genes in each
assembly.

A Tukey’s honest significant different post-hoc range test
of multiple pairwise comparisons was used in conjunction
with an analysis of variance to measure differences between
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Figure 3: (A) Slope graphs comparing the proportion of CRBB hits between NCGR
’nt’ assemblies and DIB assemblies between the same samples. (B) Violin plots
showing the distribution of the proportion of NCGR transcripts with reciprocal

Basic Local Alignment Search Tool (BLAST) hits to DIB (blue) and the proportion
of DIB transcripts with reciprocal BLAST hits to NCGR (yellow).

distributions of data from the top eight most-represented
phyla (Bacillariophyta, Dinophyta, Ochrophyta, Haptophyta, Cil-
iophora, Chlorophyta, Cryptophyta, and Others) using the agri-
colae package version 1.2-8 in R version 3.4.2 (2017-09-28). Mar-
gins sharing a letter in the group label are not significantly dif-
ferent at the 5% level (refer to Fig. 8). Averages are reported ±
standard deviation.

Results

After assemblies and annotations were completed, files were up-
loaded to Figshare and Zenodo and are available for download
[57–59]. Due to obstacles encountered uploading and maintain-
ing 678 assemblies on Figshare, Zenodo will be the long-term
archive for these re-assemblies. Assembly quality metrics were
summarized and are available (Supplementary Tables S1 and S2
[43]).

Differences in available evaluation metrics between NCGR and DIB
were variable
The majority of transcriptome evaluation metrics collected for
each sample were higher in Trinity-based DIB re-assemblies
than for the Trans-ABySS-based NCGR assemblies, ‘cds’ versions
(Table 1). The Transrate score from the ‘nt’ version of the as-
semblies was higher in NCGR vs DIB, whereas compared to the
‘cds’ version, the DIB re-assemblies were higher (Supplemen-
tary Fig. S1 [43]). Since the NCGR ‘cds’ assemblies were filtered
for ORF content and the DIB re-assemblies were not filtered, the
unfiltered NCGR ‘nt’ assemblies are more comparable to the DIB
re-assemblies.

The DIB re-assemblies had more contigs than the NCGR as-
semblies in 83.5% of the samples (Table 1). The mean number
of contigs in the DIB re-assemblies was 48,361 ± 35,703, while



Johnson et al. 5

the mean number of contigs in the NCGR ‘nt’ assemblies was
30,532 ± 21,353 (Fig. 2). A two-sample Kolmogorov-Smirnov test
comparing distributions indicated that the number of contigs
was significantly different between DIB and NCGR assemblies
(P < 0.001, D = 0.35715). Transrate scores [53], which calculate the
overall quality of the assembly based on the original reads, were
significantly higher in the DIB re-assemblies (0.31 ± 0.1) com-
pared to the ‘cds’ versions of the NCGR assemblies (0.22 ± 0.09)
(P < 0.001, D = 0.49899). The Transrate scores in the NCGR ‘nt’ as-
semblies (0.35 ± 0.09) were significantly higher than in the DIB
assemblies (0.22 ± 0.09) (P < 0.001, D = 0.22475) (Supplementary
Fig. S1 [43]). The frequency of the differences between Transrate
scores in the NCGR ‘nt’ assemblies and the DIB re-assemblies is
centered around zero (Fig. 2C). Transrate scores from the DIB as-
semblies relative to the NCGR ‘nt’ assemblies did not appear to
have taxonomic trends (Supplementary Fig. S2 [43].

The DIB re-assemblies contained most of the NCGR contigs as well
as new content
We applied CRBB to evaluate overlap between the assemblies.
A positive CRBB result indicates that one assembly contains the
same contig information as the other. Thus, the proportion of
positive CRBB hits can be used as a scoring metric to compare
the relative similarity of content between two assemblies. For
example, MMETSP0949 (Chattonella subsalsa) had 39,051 contigs
and a CRBB score of 0.71 in the DIB re-assembly, whereas in the
NCGR assembly of the same sample had 18,873 contigs and a
CRBB score of 0.34. This indicated that 71% of the reference of
DIB was covered by the NCGR assembly, whereas in the reverse
alignment, the NCGR reference assembly was only covered by
34% of the DIB re-assembly. The mean CRBB score in DIB when
queried against NCGR ‘nt’ as a reference was 0.70 ± 0.22, while
the mean proportion for NCGR ‘nt’ assemblies queried against
DIB re-assemblies was 0.49 ± 0.10 (P < 0.001, D = 0.71121) (Fig. 3).
This indicates that more content from the NCGR assemblies was
included in the DIB re-assemblies than vice versa and also sug-
gests that the DIB re-assemblies overall have additional con-
tent. This finding is reinforced by higher unique k-mer content
found in the DIB re-assemblies compared to NCGR, where more
than 95% of the samples had more unique k-mers in the DIB re-
assemblies compared to NCGR assemblies (Fig. 4).

To investigate whether the new sequence content was gen-
uine, we examined two different metrics that take into account
the biological quality of the assemblies. First, the estimated
content of ORFs, or coding regions, across contigs was quan-
tified. Though DIB re-assemblies had more contigs, the ORF
content is similar to the original assemblies, with a mean of
81.8 ± 9.9% ORF content in DIB re-assemblies and 76.7 ± 10.1%
ORF content in the NCGR assemblies. Nonetheless, ORF con-
tent in DIB re-assemblies was higher than in NCGR assemblies
for 95% of the samples (Fig. 5 A,B), although DIB re-assemblies
had significantly higher ORF content (P < 0.001, D = 2681). Sec-
ond, when the assemblies were queried against the eukary-
otic BUSCO database [55], the percentages of BUSCO eukaryotic
matches in the DIB re-assemblies (61.8 ± 19.9%) were similar
to those in the original NCGR assemblies (63.8 ± 20.3%) (Fig. 5
C,D). However, the DIB re-assemblies were significantly different
compared to the NCGR assemblies (P = 0.002408, D = 0.099645).
Therefore, although the number of contigs and amount of CRBB
content were dramatically increased in the DIB re-assemblies
compared to the NCGR assemblies, the differences in ORF con-
tent and BUSCO matches compared to eukaryotic (Fig. 5) and
protistan (Supplementary Fig. S3 [43]) databases, while they
were significantly different, were less dramatic. This suggests

that content was not lost by gaining extra contigs. Since the ex-
tra content contained roughly similar proportions of ORFs and
BUSCO annotations, it is likely that the re-assemblies contribute
more biologically meaningful information.

Looking through the results for missing BUSCOs in the
eight samples where NCGR had >30% higher complete BUSCO
evaluation score (MMETSP0121, MMETSP0932, MMETSP0045,
MMETSP0169, MMETSP0232, MMETSP0439, MMETSP0329,
MMETSP0717), in some cases, a particular orthogroup in the
BUSCO database does not produce output for reasons that we
do not understand. For example, the Trinity-based pipeline only
produced 342 contigs for sample MMETSP0232, while the NCGR
‘nt’ assembly had 4,234 and the ‘cds’ version had 2,736. BUSCO
did not recognize any of the DIB contigs but it did recognize
the NCGR contigs. For other samples, MMETSP0169 (Corethron
pennatum, Phylum: Bacillariophyta), the BUSCO software rec-
ognized several DIB contigs, but the BUSCO group was still
considered “missing,” even though there were lengths of the
contig identified in the output as being similar. For example, the
BUSCO orthogroup “EOG0937060I” is a “DNARNA helicase, ATP-
dependent, DEAH-box type, conserved site.” The BUSCO output
indicates the DIB contig ‘TRINITY DN13758 c3 g2 i1’ with a
length 974 bases is related to this orthogroup. When we look
for this gene in the gff annotation file for MMETSP0169, there
are no annotation results for this contig. Another DIB contig,
‘TRINITY DN3716 c0 g1 i1’ (length 154) is also identified as sim-
ilar to this same orthogroup. This contig does have annotation
results, but it matches with a BUSCO orthogroup, ‘EOG090C08EI’,
which is a different gene, Abl-interactor, homeo-domain ho-
mologous domain (ABI family, member 3a). The top results
comparing the contig sequence ‘TRINITY DN13758 c3 g2 i1’
against the NCBI blastn database matches with small,
several hundred bp regions of the EOG0937060I gene se-
quence (XM 021257656.1, XM 004843976.2, XM 010604294.2,
XM 010604293.2, XM 010604291.2, XR 776390.2). Even though
this contig was assembled, it did not successfully annotate.
We do not know whether there are errors associated with
this assembled contig or if the contig sequence is unique to
this MMETSP0169 organism. Since the BUSCO database and
corresponding orthogroups were constructed from multiple
sequence alignments with existing individuals in the databases,
it is possible that the transcriptome from the newly sequenced
MMETSP0169 (Corethron pennatum) may naturally fall outside the
hmm scoring cutoffs for matching with the BUSCO orthogroups.
Since the corresponding NCGR assembly had a “Duplicated”
result from this particular BUSCO, it is also possible that there
is a particular oddity within this ortholog.

There are many examples that can be picked over in these re-
sults, which suggests that there is more to learn about the eval-
uation tools within the context of the organisms in this dataset.
For now, we conclude that our assemblies are differently frag-
mented in some regions relative to the NCGR assemblies. We
have assembled additional sequences that were not assembled
by NCGR. Some NCGR assemblies had different and more com-
plete content than the DIB assemblies. As far as we can tell, there
does not appear to be a pattern in the samples that fared well
with this pipeline vs NCGR. This could be a future avenue to ex-
plore.

Following annotation by the dammit pipeline [49], 91 ± 1.6%
of the contigs in the DIB re-assemblies had positive matches
with sequence content in the databases queried (Pfam, Rfam,
and OrthoDB), with 48 ± 0.9% of those containing unique gene
names (the remaining are fragments of the same gene). Of those
annotations, 7.8 ± 0.2% were identified as novel compared to
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Figure 4: Unique numbers of k-mers (k = 25) in the seven most represented phyla, calculated with the HyperLogLog function in the khmer software package. DIB
re-assemblies were compared to the NCGR ‘nt’ assemblies along a 1:1 line. Samples are colored based on their phylum level affiliation. More than 95% of the DIB

re-assemblies had more unique k-mers than to the NCGR assembly of the same sample.

the NCGR ‘nt’ assemblies, determined by a “false” CRBB result
(Fig. 6). Additionally, the number of unique gene names in DIB re-
assemblies was higher in 97% of the samples compared to NCGR
assemblies, suggesting an increase in genic content (Fig. 7).

Novel contigs in the DIB re-assemblies likely represent a
combination of unique annotations, allelic variants, and alter-
natively spliced isoforms. For example, ‘F0XV46 GROCL’, ‘Heli-
case C’, ‘ODR4-like’, ‘PsaA PsaB’, and ‘Metazoa SRP’ are novel
gene names found annotated in the DIB re-assembly of the
sample MMETSP1473 (Stichococcus sp.) that were absent in the
NCGR assembly of this same sample. Other gene names, e.g.,
‘Pkinase Tyr’, ‘Bromodomain’, and ‘DnaJ’, are found in both the
NCGR and DIB assemblies but are identified as novel contigs
based on negative CRBB results in the DIB re-assembly of sample
MMETSP1473 compared to the NCGR reference.

Assembly metrics varied by taxonomic group being assembled
To examine systematic taxonomic differences in the assemblies,
metrics for content and assembly quality were assessed (Fig. 8).
Metrics were grouped by the top eight most represented phyla in
the MMETSP dataset as follows: Bacillariophyta (N = 173), Dino-
phyta (N = 114), Ochrophyta (N = 73), Chlorophyta (N = 62), Hap-
tophyta (N = 61), Ciliophora (N = 25), Cryptophyta (N = 22), and
Others (N = 130).

While there were no major differences between the phyla in
the number of input reads (Fig. 8A), the Dinoflagellates (Dino-
phyta) had a significantly different (higher) number of contigs

(P < 0.01) (Fig. 8B), unique k-mers (P < 0.001) (Fig. 8C) compared
to other groups . Assemblies from Ciliates (Ciliophora) had lower
% ORF (P < 0.001) (Fig. 8D).

Discussion

DIB re-assemblies contained the majority of the previously assem-
bled contigs
We used a different pipeline than the original one used to create
the NCGR assemblies, in part, because new software was avail-
able [18] and, in part, because of new trimming guidelines [46].
The general genome assembler ABySS [20] was used in conjunc-
tion with a de novo transcriptome assembly pipeline described by
Keeling et al. [31]. We had no a priori expectation for the similar-
ity of the results, yet we found that the majority of new DIB re-
assemblies included substantial portions of the previous NCGR
assemblies seen in the CRBB results. Given this, it may seem sur-
prising that the Transrate and BUSCO scores are lower in the
DIB re-assemblies relative to the NCGR counterparts. However,
given that the number of contigs and the k-mer content were
both dramatically increased in the DIB re-assemblies, it is inter-
esting that the ORFs and annotations were similar between the
two assemblies. If the extra content observed was due to assem-
bly artifact, we would not expect these content-based results to
be similar. The two metrics, Transrate and BUSCO, which esti-
mate “completeness” of the transcriptomes, may not be telling
the whole story. Our results suggest that both pipelines yielded
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Figure 5: The percentage of contigs with a predicted ORF (A, B) and the percent-

age of complete protistan universal single-copy orthologs (BUSCO) recovered in
each assembly (C, D). In blue (right side B, D) are the DIB re-assemblies and in
yellow (left side of B, D) are the original ‘nt’ assemblies from NCGR. Slope graphs
(A,C) compare values between the DIB and the NCGR ‘nt’ assemblies. Yellow lines

represent negative slope values where NCGR was higher than DIB, and blue lines
represent positive slope values where DIB was higher than NCGR.

similarly valid contigs, even though the NCGR assemblies ap-
peared to be less sensitive.

The relative increase in number of unique k-mers from the
NCGR assemblies to the DIB re-assemblies could be due to the
higher number of contigs generated by Trinity. Within the data,
the Trinity assembler found evidence for building alternative
isoforms. The ABySS assembler and transcriptome pipeline that
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Figure 6: A histogram across MMETSP samples depicting the number of contigs
identified as novel in DIB assemblies. These contigs were absent in the NCGR
assemblies, based on negative conditional reciprocal best BLAST (CRBB) results.

Samples are sorted from highest to lowest number of “new” contigs. The re-
gion in gray indicates the number of unannotated contigs present in the DIB
re-assemblies, absent from NCGR ‘nt’ assemblies. Highlighted in blue are con-
tigs that were annotated with dammit [49] to a gene name in the Pfam, Rfam,

or OrthoDB databases, representing the number of contigs unique to the DIB re-
assemblies with an annotation.

Figure 7: Unique gene names found in a subset (296 samples) of either NCGR ‘nt’

assemblies or DIB re-assemblies but not found in the other assembly, normalized
to the number of annotated contigs in each assembly. The line indicates a 1:1
relationship between the unique gene names in DIB and NCGR. More than 97%
of the DIB assemblies had more unique gene names than in NCGR assemblies of

the same sample.

NCGR used [31] appears to not have preserved that variation,
perhaps in an attempt to narrow down the contigs to a consen-
sus transcript sequence.

Re-assembly with new tools can yield new results
Evaluation with quality metrics suggested that the DIB re-
assemblies were more inclusive than the NCGR assemblies.
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(A)

(B)

(C)

(D)

Figure 8: Box-and-whisker plots for the seven most common phyla in the MMETSP dataset: (A) number of input reads, (B) number of contigs in the assembly, (C)
unique k-mers (k = 25) in the assembly, (D) mean percentage open reading frames (ORF). Groups sharing a letter in the top margin were generated from Tukey’s honest
significant different post-hoc range test of multiple pairwise comparisons used in conjunction with an analysis of variance.
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The Transrate scores in the DIB re-assemblies compared to the
NCGR ‘nt’ assemblies were significantly lower, indicating that
the NCGR ‘nt’ assemblies had better overall read inclusion in
the assembled contigs, whereas the DIB assemblies had higher
Transrate scores than the NCGR ‘cds’ version. This suggests that
the NCGR ‘cds’ version, which was post-processed to only in-
clude coding sequence content, was missing information origi-
nally in the quality-trimmed reads. As we also saw with % ORF,
when filtration steps select only for ORF content in the NCGR
‘cds’ versions, potentially useful content is lost. The Transrate
score [53] is one of the few metrics available for evaluating the
“quality” of a de novo transcriptome. It is similar to the DET-
ONATE RSEM-EVAL score in that it returns a metric indicating
how well the assembly is supported by the read data [13]. It
does not directly evaluate the underlying de Bruijn graph data
structure used to produce the assembled contigs. In the future,
metrics directly evaluating the underlying de Bruijn graph data
structure may better evaluate assembly quality. Here, the DIB re-
assemblies, which used the Trinity de novo assembly software,
typically contained more k-mers, more annotated transcripts,
and more unique gene names than the NCGR assemblies.

These points all suggest that additional content in these
re-assemblies might be biologically relevant and that these re-
assemblies provide new content not available in the previous
NCGR assemblies. Since contigs are probabilistic predictions of
full-length transcripts made by assembly software [18], “final”
reference assemblies are approximations of the full set of tran-
scripts in the transcriptome. Results from this study suggest that
the “ideal” reference transcriptome is a moving target and that
these predictions may continue to improve given updated tools
in the future.

For some samples, complete BUSCO scores were lower than
more than half of DIB vs NCGR. This could be an effect of the
BUSCO metric, given that these samples did not perform poorly
with other metrics such as % ORF and number of contigs com-
pared to the NCGR. For other samples, MMETSP0252 (Prorocen-
trum lima) in particular, assemblies required several tries and
only four contigs were assembled from 30 million reads. The
fastqc reports were unremarkable compared to the other sam-
ples. In such a large dataset with a diversity of species with no
prior sequencing data, it is challenging to speculate why each
anomaly occurred. However, further investigation into the rea-
sons for failures and peculiarities in the evaluation metrics may
lead to interesting discoveries about how we should be effec-
tively assembling and evaluating nucleic acid sequencing data
from a diversity of species.

We predict that assembly metrics could have been further
improved with longer read lengths of the original data since
MMETSP data had only 50 bp read lengths, although this would
have presented Keeling et al. [31] with a more expensive data
collection endeavor. A study by Chang et al. [25] reported a con-
sistent increase in the percentage of full-length transcript recon-
struction and a decrease in the false-positive rate, moving from
50 to 100 bp read lengths with the Trinity assembler. However,
regardless of length, the conclusions we draw would likely re-
main the same that assembling data with new tools can yield
new results.

The DIB re-assemblies, including the additional biologi-
cally relevant information, are likely to be meta-transcriptomes.
RNA sequences generated from the MMETSP experiments are
likely to contain genetic information from more than the tar-
get species, as many were not or could not be cultured ax-
enically. Thus, both the NCGR assemblies and the DIB re-
assemblies, including the additional biologically relevant infor-

mation, might be considered meta-transcriptomes. Sequencing
data and unique k-mer content likely include bacteria, viruses,
or other protists that occurred within the sequenced sample. We
did not make an attempt to decontaminate the assemblies.

The evaluation metrics described here generally serve as a
framework for better contextualizing the quality of protistan
transcriptomes. For some species and strains in the MMETSP
dataset, these data represent the first nucleic acid sequence in-
formation available [31].

Automated and programmable pipelines can be used to process ar-
bitrarily many RNAseq samples
The automated and programmable nature of this pipeline was
useful for processing large datasets like the MMETSP as it al-
lowed for batch processing of the entire collection, including re-
analysis when new tools or new samples become available (see
[60]). During the course of this project, we ran two re-assemblies
of the complete MMETSP dataset and one subset as new ver-
sions of Trinity were released (Supplementary Notebook 2 [43]).
Each re-analysis of the complete dataset required only a single
command and approximately half a CPU-year of compute. The
value of automation is clear when new data from samples be-
come available to expand the dataset, tools are updated, or many
tools are compared in benchmark studies. Despite this, few as-
sembly efforts completely automate their process, perhaps be-
cause the up-front cost of doing so is high compared to the size
of the dataset typically being analyzed.

For the purposes of future benchmarking studies, a subset
of 12 “high” and 15 “low” performing samples were identified
based on the evaluation metrics: number of contigs, longest con-
tig length, unique k-mers (k = 25), and % complete BUSCO (eu-
karyota) (Supplementary Fig. S4 [43]).

Analyzing many samples using a common pipeline identifies taxon-
specific trends
The MMETSP dataset presents an opportunity to examine
transcriptome qualities for hundreds of taxonomically diverse
species spanning a wide array of protistan lineages. This is
among the largest set of diverse RNA-seq data to be sequenced.
In comparison, the Assemblathon2 project compared genome
assembly pipelines using data from three vertebrate species
[61]. The BUSCO paper assessed 70 genomes and 96 tran-
scriptomes representing groups of diverse species (vertebrates,
arthropods, other metazoans, fungi) [55]. Other benchmarking
studies have examined transcriptome qualities for samples rep-
resenting dozens of species from different taxonomic groupings
[62, 63]. A study with a more restricted evolutionary analysis of
15 plant and animals species [63] found no evidence of taxo-
nomic trends in assembly quality but did find evidence of dif-
ferences between assembly software packages [59].

With the MMETSP dataset, we show that comparison of as-
sembly evaluation metrics across this diversity provides not only
a baseline for assembly performance but also highlights partic-
ular metrics that are unique within some taxonomic groups. For
example, the phyla Ciliophora had a significantly lower percent-
age of ORFs compared to other phyla. This is supported by re-
cent work that has found that ciliates have an alternative triplet
codon dictionary, with codons normally encoding STOP serving
a different purpose [37–39], thus application of typical ORF find-
ing tools fails to identify ORFs accurately in Ciliophora. Addition-
ally, Dinophyta datasets had a significantly higher number of
unique k-mers and total contigs in assemblies compared to the
assemblies from other datasets, despite having the same num-
ber of input reads. Such a finding supports previous evidence
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from studies showing that large gene families are constitutively
expressed in Dinophyta [64].

In future development of de novo transcriptome assembly
software, the incorporation of phylum-specific information may
be useful in improving the overall quality of assemblies for dif-
ferent taxa. Phylogenetic trends are important to consider in the
assessment of transcriptome quality, given that the assemblies
from Dinophyta and Ciliophora are distinguished from other as-
semblies by some metrics. Applying domain-specific knowledge,
such as specialized transcriptional features in a given phyla,
in combination with other evaluation metrics can help to eval-
uate whether a transcriptome is of good quality or “finished”
enough to serve as a high-quality reference to answer the bi-
ological questions of interest.

Conclusions

As the rate of sequencing data generation continues to increase,
efforts to programmatically automate the processing and evalu-
ation of sequence data will become increasingly important. Ul-
timately, the goal in generating de novo transcriptomes is to cre-
ate the best possible reference against which downstream anal-
yses can be accurately based. This study demonstrated that re-
analysis of old data with new tools and methods improved the
quality of the reference assembly through an expansion of the
gene catalog of the dataset. Notably, these improvements arose
without further experimentation or sequencing.

With the growing volume of nucleic acid data in central-
ized and decentralized repositories, streamlining methods into
pipelines will not only enhance the reproducibility of future
analyses but will facilitate inter-comparisons of both similar and
diverse datasets. Automation tools were key in successfully pro-
cessing and analyzing this large collection of 678 samples.

Availability of source code and requirements

Project name: Re-analysis of MMETSP: Marine Microbial Eukary-
ote Transcriptome Sequencing Project
Home page: https://github.com/dib-lab/dib-MMETSP
Operating system: Linux
Programming language: Python
Other requirements: fastqc (v0.11.5), trimmomatic (v0.33),
khmer (v2.0), trinity, dammit (v1.0.dev0), transrate (v1.0.3), busco
(v3)
License: 3-clause BSD

Availability of supporting data

The datasets supporting the results presented here are available
in zenodo and GigaDB [58, 59, 65]. Pipeline code generated and
used for this re-analysis is in zenodo and GigaDB [41, 65]. Origi-
nal raw RNA-seq data generated by Keeling et al. (31) [31] can be
found at NCBI BioProject PRJNA231566.
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