Skip to main content
. Author manuscript; available in PMC: 2020 Mar 1.
Published in final edited form as: IEEE Trans Neural Syst Rehabil Eng. 2019 Jan 31;27(3):400–410. doi: 10.1109/TNSRE.2019.2896659

Table II.

Performance obtained by the proposed SeqSleepNet, the developed baselines, and existing works on the MASS dataset. We mark the proposed SeqSleepNet in bold, the developed baselines in italic, and existing works in normal font. SeqSleepNet-L indicates a SeqSleepNet with sequence length of L, a similar notation is used for E2E-DeepSleepNet baseline.

Method Feature type Num. of subjects Overall metrics Class-wise sensitivity Class-wise selectivity

Acc. κ MF1 Sens. Spec. W N1 N2 N3 REM W N1 N2 N3 REM
Multi-output Systems SeqSleepNet-30 ARNN + RNN learned 200 87.1 0.815 83.3 82.7 96.2 89.0 59.7 90.9 80.2 93.5 90.7 65.1 88.9 84.2 90.7
SeqSleepNet-20 ARNN + RNN learned 200 87.0 0.815 83.3 82.8 96.3 89.4 60.8 90.7 80.3 92.9 90.0 65.1 89.1 84.0 90.8
SeqSleepNet-10 ARNN + RNN learned 200 87.0 0.814 83.2 82.4 96.2 88.6 59.9 91.2 79.4 93.0 91.3 64.9 88.6 85.1 90.2
E2E-DeepSleepNet-30 CNN + RNN learned 200 86.4 0.805 82.2 81.8 96.1 89.2 55.8 90.5 83.1 90.3 88.8 62.6 88.8 82.0 91.1
E2E-DeepSleepNet-20 CNN + RNN learned 200 86.2 0.804 82.2 82.0 96.1 88.4 57.0 89.9 84.1 90.4 89.0 62.1 89.0 81.1 91.2
E2E-DeepSleepNet-10 CNN + RNN learned 200 86.3 0.804 82.0 81.6 96.1 88.4 55.6 90.3 83.4 90.6 88.8 62.0 89.0 82.3 90.2
M-E2E-ARNN ARNN learned 200 83.8 0.767 77.7 77.0 95.3 85.0 37.4 89.2 79.2 94.2 86.5 61.4 86.5 82.6 81.9
Multitask 1-max CNN [8] CNN learned 200 83.6 0.766 77.9 77.4 95.3 84.6 41.1 88.5 79.7 93.3 86.3 55.2 86.9 83.0 83.3
DeepSleepNet2 [9] CNN + RNN learned 62 (SS3) 86.2 0.800 81.7 - - - - - - - - - - - -
Dong et al. [25] DNN + RNN learned 62 (SS3) 85.9 - 80.5 - - - - - - - - - - - -

Single-output Systems E2E-ARNN ARNN learned 200 83.6 0.766 78.4 78.0 95.3 86.6 43.7 87.8 80.9 91.2 86.3 57.6 87.2 82.3 82.4
1-max CNN [8] CNN learned 200 82.7 0.754 77.6 77.8 95.1 84.8 46.8 86.4 82.0 88.6 86.2 49.8 87.4 80.2 84.2
Chambon et al. [13] CNN learned 200 79.9 0.726 76.7 80.0 95.0 81.1 64.2 76.2 89.6 89.0 86.7 41.0 92.4 73.1 82.6
DeepSleepNet1 [9] CNN (only) learned 200 80.7 0.725 75.8 75.5 94.5 80.0 51.9 85.5 69.0 91.1 87.5 46.2 85.3 84.9 79.7
Tsinalis et al. [10] CNN learned 200 77.9 0.680 70.4 69.4 93.5 82.3 30.5 86.8 61.7 85.8 77.5 44.7 80.6 80.0 80.0
Chambon et al. [13] CNN learned 61 (SS3) 83.0 - - - - - - - - - - - - - -
DeepSleepNet1 [9] CNN (only) learned 62 (SS3) 81.5 - - - - - - - - - - - - - -
Dong et al. [25] DNN (only) learned 62 (SS3) 81.4 - 77.2 - - - - - - - - - - - -
Dong et al. [25] RF hand-crafted 62 (SS3) 81.7 - 72.4 - - - - - - - - - - - -
Dong et al. [25] SVM hand-crafted 62 (SS3) 79.7 - 75.0 - - - - - - - - - - - -