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Abstract

Purpose of review: This review demonstrates the growing body of evidence connecting DNA
methylation to prior exposure. It highlights the potential to use DNA methylation patterns as a
feasible, stable, and accurate biomarker of past exposure, opening new opportunities for
environmental and gene-environment interaction studies among existing banked samples.

Recent findings: We present the evidence for association between past exposure, including
prenatal exposures, and DNA methylation measured at a later time in the life course. We
demonstrate the potential utility of DNA methylation-based biomarkers of past exposure using
results from multiple studies of smoking as an example. Multiple studies show the ability to
accurately predict prenatal smoking exposure based on DNA methylation measured at birth, in
childhood, and even adulthood. Separate sets of DNA methylation loci have been used to predict
past personal smoking exposure (postnatal) as well. Further, it appears that these two types of
exposures, prenatal and previous personal exposure, can be isolated from each other. There is also
a suggestion that quantitative methylation scores may be useful for estimating dose. We highlight
the remaining needs for rigor in methylation biomarker development including analytic challenges
as well as the need for development across multiple developmental windows, multiple tissue types,
and multiple ancestries.

Summary: If fully developed, DNA methylation-based biomarkers can dramatically shift our
ability to carry out environmental and genetic-environmental epidemiology using existing
biobanks, opening up unprecedented opportunities for environmental health.
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Introduction

Heritability analyses for most complex disorders show that at least some portion of disease
liability is due to environmental factors[1], often a large component of risk. The specific
health consequences of environmental exposures have been well established for many
toxicants and outcomes[2, 3]. Yet, many environmental risk factors have not yet been
discovered, despite evidence that they play a role in disease. Environmental epidemiology’s
goal of identification and characterization of non-heritable risk factors is critical, as these
factors provide actionable insights about modifiable causes of disease that can lead to better
prediction, prevention, treatment, and policy.

A major limitation to further discovery in environmental epidemiology has been the need for
timing-specific exposure information and prospective outcome data. This is a great
challenge, particularly for exposures influencing risk on outcomes years to decades later,
and for exposures that are difficult to measure or occur prior to feasible study enroliment,
such as prenatal or preconception exposures. Some prospective cohort studies do begin prior
to pregnancy, or early in pregnancy, and follow new babies through life (e.g.,[4-9]).
However, these study designs take years to accumulate outcomes, often with attrition or low
enrollment numbers given the timing of enrollment and the length of commitment.
Retrospective measurement of exposure is notoriously difficult, given the potential for recall
bias in self-report, the lack of information in administrative data such as electronic health
records, particularly for toxicants, and the short half-lives of many toxicants — such that
biomarker measurement weeks or years later is irrelevant to amounts of exposure at the time
of vulnerability.

Thus, there is a critical need in environmental epidemiology for measurement tools that can
accurately capture past exposure, particularly prenatal and early life exposures. One
emerging area of promise is the ability to measure toxicant content of shed baby teeth,
available at middle childhood, but able to inform exposures that occurred in utero[10, 11].
While this is a promising avenue, it does require availability of baby teeth and is to date,
relatively expensive with few labs able to perform detailed measurement. Among the other
emerging options is the potential for blood, or other readily available tissue samples, to
provide past exposure proxy information. This could be transformational for environmental
epidemiology and genetic epidemiology. If one can use biosamples already in biobanks,
such as UK biobank[12] or the vast genetic consortia banks (e.g.,[13]) to estimate prior
exposure with accuracy, there would be ample power to ask environmental exposure
questions not previously possible and to truly integrate genetic and environmental
information in these large sample sets.

One promising possibility for a blood (or convenience tissue)-based biomarker of past
exposure that could enable environmental and gene-environmental work in existing
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biosamples is the potential for DNA methylation patterns to mark prior exposure. As we
show in this review, there is now a substantial body of evidence that DNA methylation
measured in blood, and other tissues, is associated with prior exposure, and that this
association may be strong enough to enable an accurate predictor of exposure that is timing
and toxicant specific. More work must be done to establish such biomarkers for specific
exposure, but here we show evidence from discovery epigenome-wide association studies
(EWAS) for several exposures and timing, paving the way for such biomarker development.
Such discoveries must be further evaluated in prediction models to establish their biomarker
utility. As an example, we elaborate on the work done with the association between prenatal
smoking exposure and DNA methylation patterns, which has moved from EWAS discovery
to biomarker development. The results show promising accuracy, reproducibility, specificity
to exposure, and persistence over many years. We also discuss DNA methylation patterns as
a cumulative exposure biomarker, or biomarker of aging, through what has been termed
“DNA methylation clocks”. Through this review, we hope to present these findings as
examples of the opportunities that exist for environmental and genetic-environmental
epidemiology through DNA methylation-based biomarkers and call for more work to be
done in the field to realize this potential.

Suitability of DNA methylation as a biomarker of past exposure

DNA methylation is a type of epigenetic mark with several inherent properties that make it
well suited for exposure biomarker purposes. DNA methylation involves the covalent
addition of a methyl or hydroxylmethyl group to cytosine nucleotides in human DNA, and
thus, it is relatively stable and not easily degraded with long-term storage. It also does not
require any burdensome up front sample collection or processing methods. These properties
are particularly important when considering new methods to extract past exposure
information from existing biobanks and repositories. While chemically stable, DNA
methylation is a dynamic process that can be modified by environmental context and over
time; a critical feature of any exposure biomarker. It provides a mechanism for cells and
organisms to respond to their environment without changing the DNA sequence. Finally,
because DNA methylation is quantitative in nature, it may capture “biological dose” and/or
effects of exposure mixtures.

There are several advantages to using DNA methylation as a biomarker of exposure relative
to prospectively or retrospectively collected exposure data, metabolites, gene expression, or
objective wearable devices. More traditional exposure ascertainment methods can pose
several problems. Prospective collection of exposure data is ideal but is costly and can be
inefficient for diseases with lower prevalence rates or those with long lag times between
exposure and development of disease. Retrospective collection of exposure data is subject to
recall bias or misclassification and is impossible to collect for certain exposures (e.g. metals
toxicants). The emergence of objective wearable devices can overcome many of these issues
but have only recently come online, and thus, don’t enable utilization of existing large-scale
biobanks. Use of molecular biomarkers of exposure has been mainstream for decades. For
some exposures, metabolites have been the gold standard measurement tool to collect
accurate highly reliable information about exposure. For example, cotinine, a major
metabolite of nicotine, is widely recognized as the optimal collection metric to obtain
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smoking status[14, 15]. Untargeted metabolomic assays also have the potential to capture
exposure mixtures and quantities. However, one of the major limitations to using metabolites
as biomarkers of past exposure is their short half-life. The half-life of most metabolites,
including cotinine, is on the order of hours to days[16—-18]. Metabolites collected from
untargeted assays can also be sensitive to dietary intake differences and sample collection
protocols that may vary within and across large biobanks. Laboratory and analytic methods
to best address these issues are still under development. Exposure-related transcriptome
changes have also been observed. Isolating high quality RNA suitable for gene expression
profiling can be challenging in an epidemiologic and biobank resource setting because it is
less stable than DNA and more subject to degradation with longer-term storage or
suboptimal collection protocols. New molecular biomarkers that are long-lived, specific,
stable, and that can be reliably measured in existing banked samples are needed,; as
evidenced in detail below, DNA methylation meets these criteria.

DNA methylation is associated with past exposure, across multiple

domains

With the emergence of affordable genome-scale epigenetic technologies it is now feasible to
measure DNA methylation in a large number of samples and perform epigenome-wide
association studies (EWAS) to discover methylation differences, at specific CpG sites in the
genome, associated with particular exposures or outcomes[19]. This technological advance,
coupled with a strong interest in identifying molecular changes related to environmental
exposures has led to a rapid increase in environmental epigenomics studies. A wide-range of
exposures have now been linked to epigenetic changes in studies where both types of data
were measured at the same time; these have been extensively reviewed elsewhere[20-22]. In
this review, we focus on EWAS showing DNA methylation patterns, measured across the
lifespan, reflect past exposures. As summarized in Table 1, methylation changes have been
linked to past exposure, across a wide-range of environmental domains.

Prenatal exposure to smoking and alcohol.

Several EWAS have identified site-specific changes in DNA methylation levels at birth
related to prenatal exposure to maternal smoking[23-27] and alcohol use[28] (Table 1).
Several genomic regions have shown suggestive differences in cord blood DNA methylation
levels related to maternal drinking habits during early pregnancy[28]. However, studies of
prenatal alcohol exposure and DNA methylation are limited by sample size and window of
pregnancy timing. Additional genome-wide significant findings may emerge with increased
sample sizes and/or more resolved alcohol exposure metrics in the future. For prenatal
smoking exposure, site-specific changes in DNA methylation have been detected in
peripheral blood obtained from infants[29], older children[23, 24, 26, 30, 31] and
adolescents[24]. Associations between later life blood DNA methylation and prenatal
smoking exposure persist even after adjusting for postnatal and personal smoking
exposures[24, 26]. Smoking and drinking are thought to have similar social determinants
and correlated patterns of use; however, the associated DNA methylation findings published
to date have not been consistent across these exposures, indicating DNA methylation
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signatures may be exposure-specific and not merely capturing a social determinant
construct[23, 28, 31].

Nutrition and supplementation.

As shown in Table 1, a number of studies have observed DNA methylation changes in
samples collected - from birth through adulthood - related to differences in peri- and prenatal
exposure to nutrient intake and nutritional supplements [32-39]. Differences in maternal
nutrient intake during peri-conception and pregnancy through diet and food availability have
been linked to DNA methylation changes, at specific genes, in blood and buccal samples
obtained from their offspring at birth, infancy, and childhood[34-38]. A number of studies
have leveraged data from cohorts dating back to the 1960°s when the first randomized
control trials were carried out to assess the impact of folic acid and/or docosahexaenoic acid
(DHA\) supplementation on birth and child outcomes. Saliva DNA methylation profiles
collected in 47-year old adult offspring of the Aberdeen Folic Acid Supplementation Trial
(AFAST) participants showed differences related to whether their mothers received folic
acid supplementation during pregnancy or were in the placebo group[32]. A randomized
controlled trial for Docosahexaenoic acid (DHA), an omega-3 fatty acid, observed
differentially methylated genomic regions among infants whose mothers received DHA
relative to those that did not receive the supplement. Furthermore, the methylation
differences were also shown to be present in peripheral blood samples collected at 5 years of
age[39].

Prenatal toxicant exposures.

In the past year, DNA methylation changes have been linked to air pollutant exposure in the
prenatal time period (Table 1). More specifically, a multi-study EWAS meta-analysis
identified CpG loci showing significant methylation changes in cord blood, at birth, related
to prenatal nitrogen dioxide (NO5) exposure levels. Interestingly, prenatal NO, associated
methylation changes were also observed in peripheral blood obtained from older children.
The NO5 exposure levels at the time of blood sample collection in the older children were
substantially lower than those the children experienced during pregnancy, arguing that their
presence in childhood samples was not likely due to continued postnatal exposure or current
NO, exposure status[40]. More evidence in this area is likely to transpire as additional
studies with unified prenatal air pollutant and DNA methylation data emerge. In addition to
site-specific changes in DNA methylation, a significant global decrease in the total genomic
amount of 5-hydroxymethyl, a specific type of DNA methylation, was observed in birth and
early childhood blood samples among children with elevated prenatal exposure to
mercury[41].

Prenatal exposure to adversity.

Several social adversity exposures have been associated with long-term changes in DNA
methylation (Table 1), although, they have mainly focused on candidate genes. For example,
candidate-gene based work, from the historic Dutch Hunger Winter study, revealed DNA
methylation levels at the /GF2 gene locus differ significantly between individuals with
prenatal exposure to the 194445 famine relative to their unexposed same-sex siblings[42].
These changes were detected in blood samples provided 60 years after their prenatal
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exposure to famine. Exposure to severe maltreatment during early childhood has also been
linked to methylation changes in saliva. Significant decreases in DNA methylation at the
NR3C1 gene locus were observed among preschool age children exposed to stress/
maltreatment in the six months prior to biospecimen collection compared to unexposed
children with similar economic status[43].

Maternal conditions in pregnancy.

There is also evidence that exposure to adverse maternal health conditions during pregnancy
are related to methylation changes at birth through adolescence (Table 1). A meta-analysis of
19 cohorts reported 86 site-specific changes in DNA methylation, in cord blood, related to
maternal body mass index (BMI) at the start of pregnancy[44]. Of those, 72 sites showed a
similar association, direction, and magnitude of effect in peripheral blood samples obtained
in adolescence[44]. DNA methylation levels among infants born to women with an active
eating disorder during pregnancy differed from those whose mothers had an active eating
disorder (ED) prior to conception and non-ED controls[45]

Adult exposures and later measurement.

Several studies have reported long-lasting DNA methylation patterns in later adulthood
biospecimens related to past earlier adulthood exposures. Similar to prenatal exposures,
most findings to date are for behavioral and lifestyle types of exposures including smoking
and alcohol use (Table 1). This is likely due to lack of unified exposure and methylation data
in the same samples for other, more difficult, to obtain exposures. In world-wide population
samples, meta-EWAS have identified thousands of loci where peripheral blood methylation
levels differ by current, former, and never smoker status[46—48]. Joehanes et al, found that
methylation values among former smokers that quit smoking 30 years prior to collection of
methylation measurements in blood samples, still had not reached levels comparable to
individuals that never smoked[46]; thus, DNA methylation changes associated with past
exposures can be long-lived. Further, smoking-related methylation values appear to capture
additional valuable information about past exposures: time-since quitting and number of
pack-years smoked[46-48]. This has important implications for the potential to use DNA
methylation signatures to serve not only as a simple dichotomous exposure biomarker but
also as a biomarker that can be used to determine specific windows and doses of exposure.
Similar differences in methylation related to smoking status, time since quitting, and pack-
years have also been documented in buccal samples[48], another highly accessible and
available tissue source. However, a comparison of DNA methylation patterns among
hundreds of former drinkers compared to never drinkers, ~4 years after alcohol cessation,
showed only marginal differences between the two exposure groups[49]. Epigenetic changes
related to nutrition in adults have also been observed (Table 1). Males exposed to a short-
term high fat overfeeding diet showed epigenetic changes that persisted for 6-8 weeks after
the men resumed their normal diets[50].

Longitudinal DNAmM data.

To date, three studies have reported repeated measures of DNA methylation and associations
with exposure information; two were focused on DNA methylation signatures of prenatal
smoking exposure and the third examined the effects of maltreatment. Longitudinal analysis
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of methylation profiles at prenatal smoking-associated CpG sites showed similar differences
in DNAm related to prenatal smoking status at 18 months [51], 7, and 17 years of age[24]
even after accounting for any postnatal smoking exposures in the older children[24].
However, in adolescence, there were 3 CpG sites that showed reversion back to methylation
levels observed among adolescence with no prenatal exposed to maternal smoking[52]. This
suggests that signatures of prenatal exposure developed solely in cord blood samples may
fail to account for important differences in methylation stability in the postnatal period.
Thus, the development of a robust epigenetic biomarker of past exposure will need to take
this into account and evaluate methylation patterns at multiple post-exposure time points.
The third study examined baseline and longitudinal changes in saliva methylation levels over
a period of 6 months, among preschool age children, to assess the effects of maltreatment (at
baseline) on methylation at NR3CI1[43]. Children with no history of maltreatment showed
little variation in methylation across the 2 time points. However, children with a history of
maltreatment had significantly higher levels of methylation at baseline and significantly
decreased methylation 6 months later. This suggests looking for differences in methylation
variation among exposed and unexposed individuals, as opposed to mean methylation shifts,
may be a fruitful and important avenue for future studies.

Cumulative exposures, aging, and epigenetic “clocks”

In addition to serving as a biomarker for discrete intervals of exposure, DNA methylation
signatures have also been reported to capture continuous cumulative levels of exposures
including toxicant and behavioral. For example, measures of global DNA methylation levels
in LINE-1 elements were significantly decreased among men with increased cumulative
exposure to lead, as assayed via patella bone K-Xray which is a well-established traditional
biomarker of long-term lead exposure[53]. In addition, several studies of adult smokers have
consistently demonstrated DNA methylation patterns at specific sites accurately reflect the
cumulative amount and duration of current and prior smoking[46-48].

A number of DNA methylation “clocks” have been developed to reflect gestational[54-56],
pediatric[57], and adult[58-63] chronologic ages, a type of demographic exposure, that can
also be thought of as a cumulative exposure. These methylation clocks have been widely
used to predict a number of adverse health outcomes demonstrating the utility of DNA
methylation exposure biomarkers in epidemiology studies, more broadly[64-67]. For
example, the adult-derived epigenetic clock has been shown to better predict all-cause
mortality than examination of traditional risk factors or chronological age[68].

Biomarkers require predictive modeling beyond EWAS discovery analyses

EWAS findings continue to emerge and provide valuable insights into the biologic targets of
environmental exposures. However, the main output from EWAS isn’t directly informative
or useful as a predictive biomarker. Results are typically per-CpG, rather than a collective
“signature”. Further, discovery analyses typically rely on general associations between
exposed versus unexposed samples. A predictive modeling approach is needed to develop a
useful biomarker. Accuracy parameters such as sensitivity, specificity, and area under the
ROC curve (AUC) are more relevant for biomarker development[69, 70]. Further, a

Curr Epidemiol Rep. Author manuscript; available in PMC 2020 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Ladd-Acosta and Fallin Page 8

collection of CpGs associated with the particular exposure will necessarily have better
predictive properties than a single CpG. Selection of this collective list, modeling of the
prediction algorithm, and evaluation of prediction performance is necessary. This approach
has been taken in the development of epigenetic clocks described above. Choices for CpG
selection include simply taking all CpGs meeting a particular statistical threshold in EWAS,
or building machine-learning models using techniques such as support vector machines or
elastic net[71]. Prediction algorithms can then include all CpGs equally, or weighted by their
association with the exposure, or other characteristics. The output may be a probabilistic
exposure membership (dichotomous, with associated probability), or a methylation-based
exposure “score”[52, 72].

Prenatal smoking as an example

For the most well-studied and replicated exposure — prenatal smoking - work in this area has
already begun and can be used as an exemplary model for the field to be extended to other
types of exposures. The first site-specific differences in DNA methylation related to prenatal
exposure to smoking were reported in 2012 by Joubert et al[27], where EWAS revealed 26
CpG sites with exposure-associated DNA methylation differences achieving genome-wide
significance. Not long after, studies emerged replicating the findings in additional birth
samples and adding a hand full of new loci[24-26]. Many also showed similar DNA
methylation patterns associated with prenatal smoking exposure, but when measured in
blood samples from older children, ranging in age from 5-17 years[24, 26, 30, 31], even
after accounting for parental and personal postnatal smoking exposures[24, 26].

Ladd-Acosta et al[31] were the first to use predictive modeling to evaluate how well DNA
methylation levels, measured in blood samples from 5-year old children, at the originally
reported 26 CpG sites associated with prenatal smoking exposure, could predict prenatal
exposure to smoking from childhood, rather than cord blood. Their support vector machine
classifier, with 10-fold cross validation, predicted the children’s exposure to sustained active
maternal smoking in pregnancy with 87% accuracy when compared to maternal report of
smoking during pregnancy (Table 2). Receiver operating characteristic (ROC) curves also
showed the specificity of the model was high; prediction of prenatal smoking exposure using
permuted random sets of 26 loci never achieved greater than 60% accuracy and the prenatal
smoking classifier was not able to predict exposure to maternal alcohol or medication use
with higher than 56% accuracy[31]. The following year, Reese et al[72] developed a single
numeric methylation score, based on DNA methylation measured in blood, and showed
good correspondence to prenatal cotinine levels consistent with sustained exposure to active
maternal smoking. In an independent test set of cord blood samples, the methylation score
was able to predict prenatal exposure to sustained smoking with 91% overall accuracy[72]
(Table 2). A recent cord blood methylation meta-analysis, spanning 13 world-wide studies
and 6,685 samples, showed consistency with previous findings and expanded the set of loci
significantly associated with prenatal smoking from dozens to 2,965 CpG sites[23].
Nominally significant differences in methylation were also observed in older children
(n=3,187) for every CpG site identified at birth[23]. More recently, Richmond et al[52],
developed a methylation-based smoking score using meta-EWAS findings and evaluated its
ability to predict prenatal smoking exposure in an independent set of blood samples
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collected 30 years after pregnancy (Figure 1; Table 2). The first score they derived was based
on 568 loci that reached genome-wide significance in cord blood at birth (associated with
prenatal smoking exposure) and a second score was based on 19 sites detected in blood from
older children at genome-wide significance (associated with prenatal smoking)[23]. Given
the age of the participants at time of blood collection and methylation measurements, it is
possible that the offspring themselves smoked; therefore, the authors also computed a
methylation score for personal (postnatal) smoking exposure using 2,623 sites identified as
significantly associated with current smoking status in a large adult smoking meta-
analysis[46]. As shown in Figure 1 and Table 2, the classification accuracy of the prenatal
exposure methylation score, based on 30-year old adult blood specimens, was highest when
using the 19 locus methylation score method that had been derived using middle childhood
methylation data (AUC=0.72). Somewhat unexpectedly, the cord blood derived score had a
lower overall prediction accuracy (AUC = 0.69). This highlights the importance of including
childhood samples in discovery EWAS and for including loci identified in childhood
samples in prenatal biomarker development, if later life biosamples are the intended use.
Importantly, they also showed current smoking exposure scores can’t predict prenatal
smoking exposure with high accuracy (AUC = 0.57). Thus, these classifiers appear specific
to prenatal exposure. This is consistent with previous observations that there is some, but not
complete, overlap of loci associated with prenatal smoking exposure and personal adolescent
or adult smoking exposures[26, 46].

Finally, separate DNA methylation patterns have been shown to predict prior adult personal
smoking exposure. A 4-CpG model using predictive generalized linear models has been
shown to predict prior personal smoking status among adults[73]. The 4-locus model was
highly accurate in an independent test sample with an AUC = 0.83[73] (Table 2).
Furthermore, they showed DNA methylation is a better long-term biomarker of exposure
than cotinine. The prediction model using cotinine levels was able to accurately predict
former adulthood smoking in only 47% of the samples compared to 83% when DNAmM was
used as a biomarker of personal smoking history[73] (Table 2). While associations between
DNAm levels and specific dose, duration, and time since quitting have been observed in
adults[46-48], these more detailed exposure classes have not been pursued in published
predictive analyses to date.

Need for additional evidence

The smoking exposure examples demonstrate the potential for DNA methylation-based
biomarkers of prior exposure. Multiple studies show the ability to accurately predict prenatal
exposure based on DNA methylation measured at birth, in childhood, and even adulthood.
Separate sets of DNA methylation loci can be used to accurately predict past personal adult
exposure as well. Further, it appears that these two types of exposures, prenatal and previous
personal exposure, can be isolated from each other. There is also a suggestion that
quantitative methylation scores may be useful for estimating dose. If fully developed, such
biomarkers, across multiple exposures and DNA measurement windows, can dramatically
shift our ability to carry out environmental and genetic-environmental epidemiology using
existing biobanks. However, much more work must be done. First, studies must move from
site-by-site discovery EWAS approaches to classification approaches. The field must
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establish best practices for selecting CpGs that create accurate and generalizable classifiers.
Multiple feature selection algorithms are available, and multiple metrics of predictive
accuracy exist. The influence of QC pipelines on accuracy must also be considered, as has
been done in other omics classifier work[74]. Perhaps most importantly, the accuracy and
utility of DNA methylation biomarkers of exposure must be explored across ancestries and
tissue matrices. Because DNA methylation at many CpG sites is, in part, genetically
controlled[75, 76], it is likely that DNA methylation signatures of exposure may vary by
ancestry. Additionally, the effects of environmental exposures on the epigenome can be
influenced by underlying genotypes[77—-81]. Genetic heterogeneity is likely to be
particularly important among genes that establish, maintain, and regulate DNA methylation
as well as for genes involved in exposure metabolism and detoxification. Thus, studies that
assess potential genetic modification of epigenetic signatures of exposure are also needed.
Tissue type will also play a critical role. While it is not necessary that a biomarker be on the
causal path of an exposure to the ultimate health outcome of interest, it may still be true that
different DNA methylation sites show predictive accuracy in different cell types. This is
because the base level and variability of DNA methylation varies by cell type, and thus the
opportunity for additional variation that captures exposure is likely to be heterogeneous
across tissue types. This has already been established for epigenetic clocks, where patterns
from single tissue types do not fully overlap in their age prediction accuracy[60]. These
caveats to not diminish enthusiasm for this potentially influential area for epidemiology, but
do call attention to the rigorous work ahead.

Conclusions:

The ability to obtain measures of environmental exposures in existing samples and biobanks
will enable new large-scale analyses to investigate modifiable environmental risk factors for
disease as well as their interaction with genes. Both inherent properties and empiric evidence
support the potential for DNA methylation to serve as a stable, long-term biomarker of past
exposures across a range of environmental domains. Predictive models and methylation
based exposure scores are emerging and have shown high accuracy in their ability to
predicting former prenatal and adulthood personal smoking exposures. To fully realize the
potential of DNA methylation as exposure biomarkers, continued large-scale EWAS and
development of predictive models, across time points, tissue types, and ancestry are needed.
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Figure 1. DNA methylation biomarkers, regardless of timing of sample collection, can be used to
predict prenatal smoking.

As reported in Richmond et al[52], adult biosamples can accurately predict prenatal
smoking, even after accounting for post-natal (own) smoking. Predefined sets of CpG DNA
methylation loci can be used for prediction. Derived reference sets from infant cord blood
and from middle childhood blood are available (top). The CpG set derived from childhood
samples achieves slightly better prediction parameters (bottom).
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