Skip to main content
. 2018 Jul 17;2(3):036102. doi: 10.1063/1.5022841

TABLE II.

Mechanical characterisation of the fibrin hydrogels produced in this study.

Fibrin conc. (mg/ml) PEG-peptide (molar ratio) Oscillatory measuresa Creepd
tan δb G′ (Pa)c G (Pa)e τ (s)e (JmJ0)/J0f η (Pa s)
6.25 0.03 ± 0.02 305 ± 203
PEG-pep1 (1:10) 0.02 ± 0.01 256 ± 90
PEG-pep3 (1:20) 0.05 ± 0.04 46 ± 15
PEG-pep2 (1:20) 0.02 ± 0.01 226 ± 52
PEG-pep1 (1:20) 0.03 ± 0.01 119 ± 74
12.5 0.06 ± 0.01 490 ± 90 420 ± 90 1.8 ± 0.7 0.10 ± 0.02
PEG-pep1 (1:10) 0.05 ± 0.01 540 ± 200 540 ± 100 0.9 ± 0.3 0.01 ± 0.05
PEG-pep3 (1:20) 0.04 ± 0.01 750 ± 300 620 ± 120 1.6 ± 0.3 0.21 ± 0.15
PEG-pep2 (1:20) 0.07 ± 0.01 420 ± 80 360 ± 40 0.4 ± 0.1 0.20 ± 0.04 (5 ± 2) × 104
PEG-pep1 (1:20) 0.07 ± 0.01 470 ± 60 390 ± 60 0.7 ± 0.1 0.23 ± 0.12 (5 ± 0.1) × 104
25 0.05 ± 0.03 1450 ± 280 1240 ± 90
PEG-pep1 (1:10) 0.05 ± 0.01 1250 ± 200 1050 ± 190
PEG-pep3 (1:20) 0.05 ± 0.02 1360 ± 460 1080 ± 40
PEG-pep2 (1:20) 0.07 ± 0.02 1030 ± 90 840 ± 80 1.9 ± 0.02 0.21 ± 0.14
PEG-pep1 (1:20) 0.08 ± 0.03 800 ± 40 690 ± 50 0.7 ± 0.1 0.14 ± 0.02 (12 ± 1) × 104
50 0.07 ± 0.04 2860 ± 680 2370 ± 290
PEG-pep1 (1:1) 0.05 ± 0.02 2460 ± 20 2200 ± 270
PEG-pep1 (1:10) 0.06 ± 0.02 1470 ± 220 1230 ± 50
PEG-pep3 (1:20) 0.06 ± 0.02 2100 ± 350 1640 ± 110
PEG-pep2 (1:20) 0.08 ± 0.03 1260 ± 380 1100 ± 340 2.1 ± 0.2 0.28 ± 0.03
PEG-pep1 (1:20) 0.48 ± 0.17 5 ± 3 4 ± 1 0.4 ± 0.1 0.72 ± 0.27 260 ± 150
a

Stress: 5 Pa.

b

Calculated as G″/G′, averaging their values over the 0.01–100 Hz or 0.1–10 Hz frequency range; samples labelled with the symbol showed a minor drift of G′ with frequency (n =3).

c

Average value at a frequency of 1 Hz (n =3).

d

Stress: 5 Pa, duration: 10 min (n =3).

e

G=1/J was obtained from the modified Standard Linear Solid (SLS) model34 Jt=J0+J1+J2=J0+J11exptτ+tη, which also provided τ and η.

f

J0 represents the purely elastic compliance at the beginning of the creep phase and Jm the maximum compliance reached at the end of the creep phase (compliance at 10 min). The parameter (JmJ0)/J0 provides an information all-in-all similar to tan δ (viscoelastic and viscous vs. elastic contributions); when it can be calculated, it appears to be more sensitive than tan δ.