
Quantifying brain microstructure with diffusion MRI: Theory and 
parameter estimation

Dmitry S. Novikov1,*, Els Fieremans1,†, Sune N. Jespersen2,‡, and Valerij G. Kiselev3,§

1Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, 
NY, USA

2CFIN/MINDLab, Department of Clinical Medicine and Department of Physics and Astronomy, 
Aarhus University, Aarhus, Denmark

3Medical Physics, Deptartment of Radiology, Faculty of Medicine, University of Freiburg, Germany

Abstract

We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an 

overarching physical context of coarse-graining over an increasing diffusion length scale. From 

this perspective, we view research on quantifying brain microstructure as occurring along the three 

major avenues. The first avenue focusses on the transient, or time-dependent, effects in diffusion. 

These effects signify the gradual coarse-graining of tissue structure, which occurs qualitatively 

differently in different brain tissue compartments. We show that the transient effects contain 

information about the relevant length scales for neuronal tissue, such as the packing correlation 

length for neuronal fibers, as well as the degree of structural disorder along the neurites. The 

second avenue corresponds to the long-time limit, when the observed signal can be approximated 

as a sum of multiple non-exchanging anisotropic Gaussian components. Here the challenge lies in 

parameter estimation and in resolving its hidden degeneracies. The third avenue employs multiple 

diffusion encoding techniques, able to access information not contained in the conventional 

diffusion propagator. We conclude with our outlook on the future directions which can open 

exciting possibilities for designing quantitative markers of tissue physiology and pathology, based 

on methods of studying mesoscopic transport in disordered systems.

1. DIFFUSION MRI THROUGH A BIRD’S EYE

One of the most astonishing things about the world in which we live is that there 

seems to be interesting physics at all scales. …  To do physics amid this 

remarkable richness, it is convenient to be able to isolate a set of phenomena from 

all the rest, so that we can describe it without having to understand everything. 

Fortunately, this is often possible. We can divide the parameter space of the world 

into different regions, in each of which there is a different appropriate description 
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of the important physics. Such an appropriate description of the important physics 

is an “effective theory”

H. Georgi, Effective Field Theory [1]

Diffusion MRI (dMRI) is a macroscopic physical measurement of the voxel-averaged 

stochasticmotion of nuclear-spin-carrying molecules (typically water). This measurement 

occurs in a structurally complex tissue microenvironment such as the brain. Diffusion in 

complex media has been studied for about a century in a variety of fields, and is part of a 

broad class of transport phenomena in disordered systems.

Our goal in this review article is to place biophysical dMRI modeling into a broader physical 

context. Our overarching theme will be that of coarse-graining and effective theory, which 

will allow us to present and discuss neuronal tissue models of diffusion from a unifying 

perspective.

1.1. Mesoscopic Bloch-Torrey equation as an effective theory

One of the key 20th century advances in understanding the physics of complex systems was 

achieved by the development of effective theory, a paradigm to describe dynamics that 

involves only a handful of the so-called relevant degrees of freedom, or relevant parameters, 

thereby ignoring myriads of other, “irrelevant” ones [2–4]. This way of thinking was spurred 

by attempts to describe systems with an ever greater number of degrees of freedom, and a 

subsequent realization that it is plain impossible to keep track of all of them at once.

The more complex the system, the more the challenge of building an adequate theory shifts 

towards identifying which (few) parameters to keep, and which ones (almost all!) to ignore. 

Over time, selecting relevant parameters and formulating an adequate effective theory has 

become synonymous with the notion of understanding the system’s behavior.

Having NMR as an example, the quantum-mechanical couplings of a very complex multi-

spin Hamiltonian, together with all molecular degrees of freedom describing rotations, 

vibrations and translations, relevant at the nm and ps level, average out to produce effective 

parameters such as the relaxation rate constants R1 and R2, and the diffusion coefficient D, 

at least for the most common NMR measurements. The parameters R1 and R2 emerge in 

Bloembergen–Purcell–Pound theory and enter the Bloch equations describing the 

semiclassical evolution of macroscopic magnetization [5, 6]. Reducing a myriad of variables 

describing molecular microenvironment to just a few relevant parameters has been a major 

scientific achievement of the 1940s–1960s NMR, and has formed the basis of effective 

theory of nuclear magnetization in liquids.

The step from NMR in uniform liquids to biological tissues has brought along a new 

challenge, which our community is only beginning to fully embrace. This challenge is 

associated with the above effective parameters R1(r), R2(r) and D(r) acquiring spatial 
dependence at the scale ~ 0.1 – 10 µm, set by the cellular architecture, much coarser than 

molecular dimensions. These spatial variations become relevant at the corresponding ~ 1 – 

1000 ms time scales of dMRI, — much slower than the ps time scales on which the local 

relaxation rate constants and the diffusion coefficient emerge.
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From the physics standpoint, the spatial variations of R1(r), R2(r) and D(r) (with the latter 

including boundary conditions associated with cell membranes), occur at the mesoscopic 
scale, Fig. 1. The term “mesoscopic” originated in condensed matter physics some decades 

ago [7], signifying focussing on the intermediate scales (“meso”), in-between elementary 

(say, atomic or molecular), and macroscopic (associated with the sample size or the 

measurement resolution). By design, this term is relative, depending on which spatio-

temporal scales are deemed small and large.

For dMRI, the mesoscopic scale corresponds to tissue heterogeneities at the scale defined by 

the MRI-controlled diffusion length, L(t) Dt 1 − 50μm, which is the root mean squared 

molecular displacement for times t ~ 1 – 1000 ms. In the dMRI literature, it is commonly 

referred to as the microstructure scale. This scale is commensurate with immense structural 

complexity of tissue architecture.

At the mesoscale, quantum degrees of freedom become irrelevant (at least for the dMRI 

purposes), and the dynamics of transverse magnetization m(t, r) (a two dimensional vector, 

represented by a complex number) can be captured by the mesoscopic Bloch-Torrey 
equation

∂tm(t, r) = ∂r[D(r)∂rm(t, r)] − [R2(r) + iΩ(t, r)] m(t, r) . (1.1)

Here Ω(t,r) is the Larmor frequency offset that may include externally applied diffusion-

sensitizing Larmor frequency gradients g(t), Ω(t, r) = Ω(r) + g(t)r, and the static Ω(r) arises 

from the intrinsic mesoscopic magnetic structure of tissues due to paramagnetic ions such as 

iron, myelin susceptibility in the white matter, or due to added contrast agent. While we 

focus on the transverse magnetization in what follows, the full version of the above equation 

includes the longitudinal magnetization components with m being a three-dimensional 

vector. Further extension can incorporate multicomponent m to describe the interplay 

between different proton pools, e.g., to describe magnetization transfer [8, 9].

The mesoscopic Bloch-Torrey equation (1.1) is an adequate effective description at the µm 

level, commensurate with typical diffusion length scales probed with dMRI. It is a 

mesoscopic equation in the sense that it involves scales in-between the quantum-mechanical 

molecular dynamics on the nm scale and the measurable signal in mm-sized MRI voxels. 

While the averaging up to the mesoscopic scale is already performed in its r-dependent 

parameters, it is our task to perform the remaining averaging over a macroscopic voxel V 
inherent to the observed (complex-valued) signal S[t, g(t)] ∝ ∫ V dr m(t, r), for which the µm-

level spatially varying R1(r), R2(r), and diffusive properties produce the observable 

deviations from mono-exponential relaxation and Gaussian diffusion. It is because of this 

averaging that addressing the mesoscopic tissue complexity requires bringing the tools and 

intuition from condensed matter and statistical physics, in contrast to the quantum-

mechanical description at the molecular level [5, 6] and classical electrodynamics-based 

considerations used in designing MR hardware.

The overarching goals of “microstructural”, or “mesoscopic” MRI modeling are
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i. To identify the relevant tissue-specific parameters, which contribute to R1(r), 

R2(r), D(r), Ω(r), and survive in the voxel-averaged signal (i.e., to build an 

appropriate effective theory for the macroscopic signal);

ii. To suggest optimal ways to probe them (i.e., to solve the corresponding 

parameter estimation problem).

Notice that to keep our terminology reasonably rigorous, we separated modeling into theory 
and parameter estimation (sometimes called “fitting”); hence our title. These two facets of 

modeling require very different tools and ways of thinking, as we will see below in Sections 

2 and 3, respectively.

1.2. Coarse-graining and emergent phenomena

Equation (1.1) is an example of an effective theory — i.e., an approximate description that 

emerges by averaging out the dynamics at the smaller spatial and temporal scales. It 

illustrates a general principle: pretty much every dynamical equation in physics is an 

effective theory (governed by an effective Hamiltonian or an effective action), i.e., it has 

emerged by identifying “collective” phenomena involving many-particle interactions at a 

more elementary level [1–4].

Over the past century, physicists have come to realize that, at each level of complexity, the 

effective theory and its relevant parameters can look very different [2], giving rise to the 

hierarchy of scales and of the corresponding emergent phenomena, from the most 

microscopic to the most macroscopic. Interactions between quarks and gluons give rise to 

protons and neutrons, so that their charge and mass can be viewed as effective parameters 

emerging by averaging over the quark/gluon degrees of freedom. Interactions between 

protons and neutrons forms a nucleus; interactions between nuclei and electrons give rise to 

all of chemistry, whereby the details of interactions between protons and neutrons inside 

nuclei become irrelevant. Interactions between molecules, coarse-grained over nm scale, 

give rise to hydrodynamics, statistical mechanics and eventually, to biology, and so on.

It is remarkable that, for instance, there is not a hint of classical hydrodynamics at the level 

of the Schro¨dinger and Dirac equations describing the atomic structure; the large-scale 

hydrodynamic description emerges after a highly nontrivial averaging over the 

corresponding quantum degrees of freedom of many molecules. Refined methods such as 

renormalization [3, 4] were crafted specifically to single out relevant parameters from the 

rest upon iterativecoarse-graining [10, 11], which is a procedure that averages the dynamics 

over finer-scale degrees of freedom to derive approximate effective dynamics at the coarser 

scales involving a minimal number of parameters. This way of thinking reveals a fascinating 

hierarchy of natural phenomena [2].

For quantifying tissue microstructure by measuring diffusion, transverse relaxation or 

magnetization transfer with MRI, the mesoscopic Bloch-Torrey equation (1.1) contains all 

relevant physical processes. This effective theory is as fundamental for the mesoscopic MRI, 

as the Schro¨dinger equation is for the non-relativistic quantum mechanics, or the Navier-

Stokes equation is for the classical hydrodynamics. It is always the starting point for 
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developing biophysical models relating the NMR signal to the mesoscopic tissue 

architecture.

1.3. Diffusion as coarse-graining

Diffusion in heterogeneous media is a beautiful and simple example of coarse-graining. It 

can be thought of as a gradual “forgetting”, or homogenizing over the increasing diffusion 

length. To illustrate this concept, consider a two-dimensional model example of a two-scale 

mesoscopic structure, represented by randomly placed impermeable disks of two different 

radii, embedded into an NMR-visible space with diffusion coefficient D0, Fig. 2. To be 

specific, let us assign sizes, typical to cell dimensions: the small disks have radius rsmall = 1 

µm and the large ones are 20 times larger. In a (hypothetical) tissue, this could describe 

diffusion in the extra-axonal space transverse to a fiber tract, hindered by two types of 

axons. Here we consider diffusion as a physical phenomenon; its relation to dMRI is 

discussed below in Sec. 1.4.

At time t → 0, each water molecule only senses its own immediate environment; all 

molecules see the same “intrinsic” diffusion coefficient D|t=0 = D0, which is of the order ~ 1 

µm2/ms. (For pure water at 37°C, D0 = 3 µm2/ms.)

As time increases (top row of Fig. 2), molecules get restricted by the walls of both small and 

large disks. As small disks have much higher net surface area than the large ones, the 

hindrance occurs mostly due to the small ones. Hence, the decrease of the resulting voxel-

averaged diffusion coefficient would happen on the scale of a few ms, mostly dominated by 

the geometry of the small disks at the scale ~ 1 µm.

At t ≳ 100 ms (bottom row), when the diffusion length L(t) strongly exceeds the small disk 

size, the effect of the small disks has become coarse-grained (while the effect of the large 

disks is not). Now, we can view the medium in-between the large disks as a homogeneous 

“effective medium”, with some effective diffusion coefficient Dsmall < D0 given by the 

macroscopic (“tortuosity”) limit of a medium with the small disks only. It is important to 

note that if we did not have access to shorter times and could only resolve the diffusion 

times corresponding to the lower row of panels, there would be no way to identify the 

presence of the small disks — their effect has been homogenized,1 and their numerous 

parameters (e.g., size, coordinates) have become “irrelevant”, with their only role in 

renormalizing D0 down to Dsmall.

Hence, from time t ≳ 100 ms on, we can adopt the coarse-grained description which only 

involves the large disks, immersed in a uniform medium with diffusion constant Dsmall. The 

corresponding Eq. (1.1) would have the effective D(r) varying at the scale associated with 

large disks, with D(r) ≃ Dsmall outside them, and the short-distance spatial harmonics of 

D(r) filtered out as it is obvious from Fig. 2; in Section 2, we will rigorously justify and use 

this intuitive picture. The measured diffusion coefficient would further decrease with t at the 

1An experienced reader can recall the possibility to apply strong gradients q ∼ 1/rsmall to detect the small disks. This, however, 
practically requires sensitivity to short t ∼ 1/(Dsmall q2), cf. Sec. 1.6 below.
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scale of a few hundred ms, corresponding to being hindered by the large disks — the 

remaining restrictions.

Eventually, at even longer t ≳ 1000 ms, the effect of the large disks also becomes coarse-

grained, and the whole sample looks as if it were homogeneous with some macroscopic 

diffusion coefficient D∞, such that 0 < D∞ < Dsmall < D0. From this t onwards, one cannot 

distinguish this sample from a uniform medium with diffusion constant D∞.

Our example shows that the hallmark of coarse-graining over larger-and larger-scale 

mesoscopic structure is the time-dependence of the overall diffusion coefficient. In the view 

of this time dependence, it will be convenient to work with the instantaneous diffusion 

coefficient,

Dinst(t) = ∂
∂t

δx2(t)
2 , δx(t) = x(t) − x(0), (1.2)

defined as the rate of change of the mean squared molecular displacement δx2(t)  in a 

particular direction x. (For simplicity, we assumed that our sample in Fig. 2 is statistically 

isotropic. For anisotropic samples, the diffusion tensor components will acquire the time 

dependence.)

The average …  in the definition (1.2) is actually a double average: (i) over the Brownian 

paths in the vicinity (of size ~ L(t)) of any given initial point r0 ≡ r(t)|t=0, yielding the local 

coarse-grained diffusivity value D(r0); and (ii) over the ensemble of random walkers (spins) 

originating from all possible initial points r0. Because of the ensemble average, the 

measured diffusion characteristics, such as Eq. (1.2), describe a macroscopic sample as a 
whole. They do not belong to any given Brownian path, but rather emerge as a result of 

averaging (i) over all possible Brownian paths that could be taken by a given molecule, and 

(ii) over the initial positions of all molecules in a sample.

Upon taking into account increasing length scales, the effective voxel-averaged Dinst(t) flows 
towards the tortuosity limit D∞, starting, as in our example, from the “microscopic” D0 > 
D∞. We used the term “to flow” because the above picture mimics the renormalization 
group flow [3, 4] according to which the gradual evolution of a physically important 

parameter, such an elementary particle charge or an effective mass, occurs as a function of 

the coarse-graining length scale, from the high-energy = short-distance scale, down to the 

low-energy parameters relevant for the macroscopic description.2

Looking back, there was nothing special about requiring the disks to be impermeable (the 

black regions could have corresponded to some medium with diffusion coefficient D1 ≠ D0); 

2We also note that the renormalization group flow can have fixed points, i.e., microscopic parameter sets for which the effective 
parameters do not change with the increasing coarse-graining scale. Approaching the asymptotically normal diffusion with a finite 
D∞ is a Gaussian fixed point, which is what happens for most structural arrangements; one can say that diffusion is most tissues is a 
continuous family of Gaussian fixed points (for each realization of microscopic tissue architecture). An example of a non- Gaussian 
fixed point is the so-called anomalous diffusion, cf. Sec. 1.9.
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we could have used objects of a non-disk shape, and/or with non-sharp boundaries. 

Generally, as long as the random walkers can, in the limit t → ∞, reach any point in a given 

“compartment”, the above coarse-graining picture applies to this compartment. If a voxel 

contains multiple non-exchanging compartments, it applies to them separately, with the net 

signal given by a sum of their contributions.

A similar physical picture qualitatively applies to the effects of spatially varying transverse 

relaxation rate constant R2(r) — e.g., if the black and white regions in Fig. 2 instead 

represented different local molecular-level R2 values, and spins were able to diffuse 

everywhere. The above argument would then lead to an effective R2(r) entering Eq. (1.1) for 

times t exceeding the corresponding coarse-graining time scale. For instance, for t ≳ 100 ms, 

the effect of small disks would homogenize to produce a uniform R2,small rate constant in-

between the large disks, and so on, leading to the time-dependent overall observed “rate 

constant” R2(t) from a voxel (clearly, not a constant — hence, quotation marks), 

asymptotically approaching the macroscopic limit R2|t→∞ at very long t. Likewise, if the 

mesoscopic structure in Fig. 2 represented spatially varying susceptibility χ(r), inducing the 

corresponding Ω(r), the resulting voxel-wise “rate constant” R2
∗(t) would also become time-

dependent. In this case, it will increase with t, approaching the R2
∗(t)|t ∞ macroscopic value 

as a result of the gradual coarse-graining [12].

We note that all the above mentioned quantities — Dsmall and R2,small; D∞ and R2|t→∞;

R2
∗(t)|t ∞ — are nonuniversal, i.e., they depend on the numerous structural details, such as 

packing geometry (e.g., periodic versus random arrangement); they would change if the 

disks were instead squares, etc. Certainly, these quantities are not given by a simple 

averaging of the microscopic D(r) or R2(r) over the sample. However, the initial values 

Dinst(0) and R2(0) are given by the sample-averaged D(r) and R2(r), correspondingly, since 

at t → 0 (practically, at times just exceeding the ps time scale necessary for the local D(r) 

and R2(r) to emerge), each spin senses only its immediate environment.

The picture of gradual coarse-graining over an increasing diffusion length has a number of 

important consequences:

1. The mesoscopic Bloch-Torrey equation (1.1) can be fully determined only after 

the relevant spatio-temporal scales are specified, since its parameters R2(r), Ω(r) 

and D(r) are effective and, hence, scale-dependent.

2. Generally, the observed voxel-averaged diffusion coefficient and the effective 

relaxation “rate constant” would depend on time t because of the presence of the 

mesoscopic structure (such as Dinst(t) decaying from D|t=0 down to D∞ in our 

example of Fig. 2). This time t can be set by the measurement sequence, and 

varying it provides a unique window into the tissue architecture at the scale of 

the corresponding diffusion length L(t).

3. This brings us to the fundamental challenge of interpreting such time 

dependencies in terms of the mesoscopic structural complexity. Practically, we 

must figure out which features in the effective R2(r), Ω(r) and D(r) remain 
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observable after the voxel-wise averaging as a result of a macroscopic acquisition 

(cf. Section 2). This is the overarching task — and justification — for the 

theoretical efforts in our community.

4. If a measurement is too slow to track the transient processes, we are left (in each 

non-exchanging compartment) with the t → ∞macroscopic Bloch-Torrey 

equation, i.e., Eq. (1.1) with uniform effective parameters D(r) → D∞, R2(r) → 
R2(t)|t→∞, Ω(r) → 〈Ω(r)〉. Its solution becomes trivial — mono-exponential 

relaxation and Gaussian diffusion (cf. Section 3); i.e., coarsegraining leads to the 

universal t → ∞ dynamics, albeit with nonuniversal macroscopic parameters 

such as D∞. The mesoscopic information is now lost, as the signal is 

indistinguishable from that in a uniform medium. Effective macroscopic 

parameters are in general different from the intrinsic mesoscopic ones; for 

instance, D∞ can be notably lower than the intrinsic water or axoplasmic 

diffusion coefficient.

1.4. dMRI signal as the diffusion propagator; qt Imaging

So far we managed to get away with looking at a single equation (1.1) and wave hands based 

on drawing parallels with concepts developed in physics. It is now time to introduce basic 

notations; the content of this subsection should be familiar to anyone actively working in 

dMRI.

In what follows, for simplicity we will confine ourselves only to the mesoscopic structure as 

related to diffusion, and will assume the relaxation effects to be trivial (at least in each tissue 

compartment), setting R2(r) → R2, and a uniform voxel-wise Larmor frequency, Ω(r) → 
〈Ω〉. (The nontrivial R2(r) and Ω(r) modify apparent diffusion metrics [13–16]; this is 

beyond the scope of our review.) This allows us to factorize the magnetization 

m(t, r) ≡ e
−R2t − i Ω t

ψ(t, r), where ψ(t, r) is not subjected to the relaxation and frequency 

shift and obeys the following equation

∂tψ(t, r) = ∂r[D(r)∂rψ(t, r)] − ig(t)rψ(t, r) . (1.3)

We focus here on the most easily interpretable measurement with very narrow (i.e., short) 

gradient pulses.3 As we now discuss, serendipitously, this measurement accesses the 

propagator of the mesoscopic diffusion equation, which (cf. Sec. 1.3) describes evolution of 

particle density ρ(t, r)

∂t ρ(t, r) = ∂r[D(r)∂rρ(t, r)] . (1.4)

3The focus on narrow pulses helps one to gain physical intuition. Finite pulse-width δ for relatively weak gradients has an effect of a 
low-pass filter, filtering out the frequencies ≳ 1 /δ, acting on the narrow-pulse solution [17–19], cf. models of restricted [20–22] and 
hindered [23–26] diffusion relevant for the brain. For strong gradients, long pulses lead to the localization regime, Sec. 1.10. 
Arbitrarily-shaped pulses in the Gaussian phase approximation will be considered in Sec. 2.2.
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The fundamental solution of Eq. (1.4), or diffusion propagator 𝒢t; r, r0
, satisfies this equation

∂t𝒢t; r, r0
= ∂r[D(r)∂r𝒢t; r, r0

] + δ(t)δ(r − r0) (1.5)

with the point-like and instant source at r = r0. The source term corresponds to the solution 

with zero particle density for t < 0 and with the initial condition δ(r r0) instantly appearing 

at t = 0. The solution is thus proportional to the unit step function, θ|t>0 = 1 and θ|t<0 = 0, 

such that ∂tθ(t) = δ(t).

The propagator t;r,r0 is a fundamental quantity describing the diffusion process around the 

point r0, with a meaning of the probability distribution function (PDF) of molecular 

displacements r – r0 over time t. (This PDF can be sampled using Monte Carlo simulations 

by releasing random walkers all at once from the point r0.) Of course, since the local tissue 

structure is different around each initial point r0, the propagator 𝒢t; r, r0
 depends on the 

points r0 and r separately.

The fundamental connection between the diffusion process (1.4) and the NMR measurement 

stems from the gradient-dependent phase of ψ(t, r) as described by Eq. (1.3). In the limit of 

narrow pulses g(τ) = q [δ(τ – t) – δ(τ )] and the initial condition as in Eq. (1.5), the 

magnetization ψ(t, r) differs from 𝒢t; r, r0
 by the position-dependent phase e

−iq(rt − r0)

acquired during the gradient application. The diffusion-weighted signal, which is a net 

magnetization ∫ dr m(t, r) in a voxel,

S(t, q)
S(t, q) q = 0

=
dr0drt

V e
−iq(rt − r0)

𝒢t; rt, r0
≡ Gt, q (1.6)

becomes equivalent to a spatial Fourier transform of the voxel-averaged propagator

Gt, r ≡ 𝒢t; r0 + r, r0 r0
=

dr0
V 𝒢t; r0 + r, r0

. (1.7)

In Eq. (1.6) we divided by the voxel volume V, such that the unweighted signal (the right-

hand side) is normalized to unity. A thorough discussion can be found e.g., in ref. [27].

Note that exact “local” propagator 𝒢t; rt, r0
 is not translation invariant, i.e., it depends on the 

absolute coordinates rt, r0 (and time t). The voxel-averaging in Eq. (1.6) automatically 

restores translation invariance, which means that the measured propagator tt is parameterized 

by the two variables: the spatial displacement r ≡ rt – r0 and the diffusion time interval t 
(equivalently, by q and t).
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Hence, the parameter space of dMRI fundamentally consists of q and t, Fig. 3 (here we 

dropped the directionality in q to not overload the picture). Literally speaking, mapping the 

diffusion propagator in the space of q and t can be referred to as qt Imaging.4 For multiple 

diffusion encoding, which maps a more complex object than the diffusion propagator 

(Section 4), the parameter space in principle depends on the multiple q and t intervals.

The so-called b-value [30] has historically become the often single-quoted measurement 

parameter. However, it only defines the measurement if diffusion is Gaussian in every 
compartment, in which case the diffusion propagator

Gt, q
(0) = θ(t)e−Dq2t ≡ θ(t)e−bD, b ≡ q2t (1.8)

in each compartment is determined solely by the parameter combination q2t. Schematically, 

the contour lines of constant b are outlined in Fig. 3. In general, for anisotropic tissues such 

as brain white matter, Gaussian diffusion in each compartment is described by the diffusion 

tensor, bD → bijDij, where the b-matrix [31] bij = qiqj t.

The Gaussian limit (1.8), and its more general anisotropic Gaussian limit, are hallmarks of 

“full” coarse-graining, which occurs in the t → ∞ limit, cf. Fig. 2. In this case, no matter 

how structurally complex the tissue, it can be modeled as a sum of (anisotropic) Gaussian 

signals. Section 3 will be devoted to the picture of multiple Gaussian compartments (the 

Standard Model), cf. the column of pictures at long t in Fig. 3.

1.5. Hierarchy of diffusion models based on coarse-graining: The three regimes

From the unifying coarse-graining point of view, we can now categorize biophysical models 

of diffusion, Fig. 4, into the fol lowing three regimes. In either of the regimes, the theoretical 

treatment simplifies. The regimes can be arranged according to the increasing diffusion 

length L(t) relative to characteristic mesoscopic tissue length scales:

i. No coarse-graining has yet occurred. If the local D(r) varies in space over the 

correlation length scale lc, then for L(t) ≪ lc and qlc ≫ 1, each molecule senses 

its own, locally homogeneous D(r). In this high-resolution limit [27], the signal 

S(b) ≃ ∫ dD𝒫(D)e−bD is a Laplace transform of the histogram (D) of all the local 

values D(r). A more relevant to biology situation occurs when instead of smooth 

D(r) variations, there are sharp barriers. The relevant parameter is then the net 

surface-to-volume ratio S/V of all barriers (e.g., cell walls). For times such that 

L(t)S/V ≪ 1, one observes the S/V universal short-time limit of the diffusion 

coefficient [32].

ii. Coarse-graining over the structural disorder [33] results in the power-law 

approach t−ϑ of the instantaneous diffusion coefficient Dinst(t) towards the t → 

4cu-tie imaging, or qtI (noun): A noninvasive medical imaging technique for spatio-temporal mapping of the diffusion propagator in 
soft tissues to quantify tissue structure below the nominal MRI resolution. Of course, it is nothing but the familiar q-space imaging 
[17, 28, 29] sampled at various t, but don’t we all need a new acronym once in a while?

Novikov et al. Page 10

NMR Biomed. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∞ limit D∞. Here, the power-law exponent ϑ is connected to the large-scale 

behavior of the density correlation function of the hindrances to diffusion, and to 

the spatial dimensionality, yielding qualitatively distinct behavior along [33, 34] 

and transverse [23, 34] to the neurites in the brain. In Section 2 we argue, 

following ref. [33], that the more heterogeneous, or “disordered”, the sample is, 

the slower the approach (the smaller the exponent ϑ). Conversely, in ordered 

media, such as in the model of perfectly ordered membranes [33, 35], the 

approach of Dinst(t) towards D∞ is exponentially fast.

iii. Complete coarse-graining. Diffusion in each non-confining tissue compartment 

has approached its t → ∞ Gaussian (tortuosity) limit, as discussed above (cf. 

also a more detailed discussion in Sec. 1.9 below). If there is no exchange 

between compartments, we obtain the most common, “multi-exponential” model. 

For neuronal tissue, the compartments are anisotropic due to the presence of 

effectively one-dimensional neurites. In Section 3, we introduce the “Standard 

Model” of neuronal tissue that accounts for the neurites with associated extra-

neurite space, and with an orientation dispersion (Fig. 8). While known under a 

plethora of names and acronyms [36–48], from the physics stand-point, this is 

practically the same model, with differences in the parameterization of the 

neurite orientation distribution function and variations in the descriptions of the 

extracellular space, as well as in the model parameter estimation procedures and 

employed parameter constraints.

The crossover between regimes (i) and (ii) occurs when the diffusion length, L(t), is 

commensurate with the characteristic length scale of the structural disorder. The 

instantaneous diffusion coefficient Dinst(t) decreases with time within this crossover; while 

no general results are available there, it can be studied using numerical simulations.

1.6. How to become sensitive to short length scales?

Working in the t → ∞ limit (iii) can only give us compartment volume fractions and their 

diffusion coefficients. Coarse-graining has already occurred and apparently washed out all 

traces of other microstructural parameters.

Determining characteristic µm-level length scale(s) lc, such as the correlation length of the 

arrangement of tissue building blocks (e.g., disk radii in Fig. 2), is in principle possible 

using deviations from the Gaussian signal shape. In the spirit of Fig. 3, varying either t or q 
can yield the sensitivity of the diffusion signal (propagator) to the length scale, via the 

diffusion length D(t)t [cf. Eq. (1.12) below], and via 1/q, respectively. However, as we now 

discuss, these theoretically distinct ways are not that different in practice, because attaining 

q ~ 1/lc at times t ≫ tc practically requires sensing the signal contributions that are small at 

least as some positive power of the small ratio tc/t ≪ 1, where tc lc
2/D(tc).

Varying t amounts to literally observing the diffusive dynamics for short times, when the 

coarse-graining has not yet fully occurred, such as during the regimes (i) and (ii) above. In 

our example in Sec. 1.3, to identify the presence of the small disks, one could try, e.g., 

detecting time dependence in Dinst(t) or in D(t) at t rsmall
2 /D0. The random permeable barrier 
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model [51, 53], a candidate for diffusion transverse to myofibers and for one-dimensional 

hindrances along the neurites [33], allows one to trace the effect of coarse-graining in 

Dinst(t) or in D(t) across all the regimes (i) – (iii).

Varying q, by employing strong narrow gradients (with width δ ≪ tc so that q is well-defined 

[17–19, 21, 23–26]), can in principle allow one to unravel the coarse-graining, i.e., to 

observe features at q ~ 1/lc even when t ≫ tc.5 However, the price to pay for accessing such 

fine structures is the suppression of the signal. To give an example [68], consider diffusion in 

a porous medium with connected pores and isolated grains, cf. Fig. 3 (center-top drawing). 

For long diffusion times, the pore structure is effectively coarse-grained (similar to diffusion 

in-between the small grains in Fig. 2). While having the overall Gaussian-like envelope 

Gt, r
(0)  with D ≈ D∞, the diffusion propagator Γ(r)Gt, r

(0)  (up to an overall normalization) 

replicates the pore shape on the fine scale of the order of lc, Fig. 3, with the density 

correlation function Γ(r) of the pore space arising due to voxel averaging. Correspondingly, 

in q-space,

Gt, q ≈ Gt, q
(0) + 1

ϕ∫ ddq′
(2π)d Gt, q − q′

(0) Γ(q′) (1.9)

where the first term originates from sample-averaged Γ(r) ≡ ϕ, the pore water fraction, and 

represents the average spin density spread, while the product [Γ(r) − ϕ]Gt, r
(0)  becomes a 

convolution (the second term) of this envelope with the correlation function in q-space (i.e., 

the pore space power spectrum) Γ(q). The longer the time, the sharper is the Gaussian 

propagator Gt, q
(0)  in q-space, and the less is the blurring of the pore correlation function 

induced by the convolution. However, longer times result in a stronger power-law 

suppression of this nontrivial convolution term, whose magnitude can be estimated as ~ 

[lc/L(t)]d in d dimensions. This estimate comes from noting that we are essentially averaging 

the pore density fluctuations over the “diffusion volume” Ld(t); for the short-range disorder 

in the grain placement, these fluctuations, ~ 1 at the scale ~ lc, become uncorrelated at the 

scales much beyond lc.

When a tissue consists of non-exchangeable compartments of different nature, one can tune 

the experiment to focus on one or the other. Consider an example of a tissue consisting of a 

non-confining compartment (e.g., the extra-cellular space), and a fully confining, i.e., 

restricted one (e.g., cells of size a). The diffusional coarse-graining in the latter stops at the 

time ta ~ a2/D. The whole medium possesses two relevant scales, L(t) and a, which are 

markedly different for long times when L(t) ≫ a. An experimentalist working in this limit 

has a choice of selecting the wave number q of diffusion measurements (the strength of 

diffusion weighting). The choice q ∼ 1/a (diffusion diffraction [69]) enables measuring the 

size of the restricted compartment, but strongly suppresses the signal from the permeable 

5In the language of emergent phenomena, Sec. 1.2, this would be analogous, e.g., to using neutron scattering (with large wave vectors 

q ≳ nm−1) to resolve atomic structure of the fluid, for which the coarse-grained (large t and r ≫ 1/q) continuous description is 
classical hydrodynamics.
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one. The choice q ~ 1/L(t) enables observation of diffusion dynamics in the permeable 

compartment. The signal from the restricted compartment remains unsuppressed, such that 

both the signal attenuation ln S ~ (qa)2 ≪ 1 and the diffusivity D(t) ~ a2/t ≪ 1 become 

negligible; one can then formally treat such a compartment as Gaussian with its diffusion 

coefficient D → 0. This leads to the picture of zero-radius “sticks” in the brain (neurites 

with zero diffusivity in the transverse direction), cf. Sec. 3.1 below.

1.7. Models versus representations

Models are pictures (Fig. 4), exemplifying a rough sketch of physical reality, specified by 

their assumptions meant to simplify nature’s complexity. This simplification relies on 

averaging over the irrelevant degrees of freedom, and keeping only a handful of relevant 

parameters describing the corresponding effective theory. Model assumptions are therefore a 

claim for the relevant parameters. They are more important than mathematical expressions, 

as they prescribe a parsimonious way to think about the complexity. Model validation is 

thereby validation of our frame of thinking.

A representation could be defined as a model-independent mathematical expression used to 

store, to compress, or to compare measurements. It can be realized as a function with a few 

adjustable parameters or a set of coefficients for a decomposition in a basis (cf. Fig. 5 for a 

few most commonly used representations in dMRI). In contrast to models, representations 

are as general as possible, and have very little assumptions. As there are infinite ways to 

represent a continuous function, the choice of representation is often dictated by 

convenience or tradition. Practically, not all representations are equivalent because one only 

uses a few basis functions rather than an infinite set; from this standpoint, sparser 

representations are more favorable. By construction, representations do not carry any 

particular physical meaning and hence do not immediately invoke any picture of physical 

reality; one can say that representations are formulas.

A detailed discussion on the choices between modeling and representing can be found in ref. 

[70]. In this Review, we mostly focus on models; however, there exists one fundamentally 

important representation that we will cover now.

1.8. The cumulant expansion as a default representation

The ubiquitous nature of Gaussian diffusion, at least for sufficiently long times, has 

prompted a Taylor expansion [18, 71]:

lnG(t, q) ≃ − Di j(t)qiq j + 1
6(Dt)2W i jkl(t)qiq jqkql − … (1.10)

in the powers of q, describing the deviation from the Gaussian form (1.8). The summation 

over the repeated coordinate indices i, j, … = 1…3 is implied throughout; D = 1
d Dii is the 

mean diffusivity used for normalization. The symmetric tensor Wijkl is called the diffusional 
kurtosis tensor, while the kurtosis in a given direction, n, is defined as 

K(n) = D2W i jklnin jnknl/(Di jnin j)
2 [71].
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The propagator expansion (1.10) stems from the corresponding cumulant expansion in 

probability theory noticed almost a century ago by Fisher and Wishart [72, 73]. For 

diffusion, only even orders in this series are nonzero due to the time-reversal symmetry in 

the absence of the bulk flow. Typically, the Taylor series (1.10) converges within a finite 

radius in q which is model-dependent [74, 75].

A general diffusion propagator will have all even cumulant terms Dij(t), Wijkl(t), … nonzero 

and diffusion time-dependent [18, 27]. Experimentally we often access only a few first 

terms, especially when using low diffusion weighting on clinical systems. (We assume the 

narrow-pulse limit throughout. In Sec. 2.2 we discuss in detail how the lowest order of the 

ideal cumulant series (1.10) is modified by the arbitrary gradient shape).

Upon coarse-graining, for a given tissue compartment the higher-order terms Wijkl, … flow 

to zero, such that the signal approaches the Gaussian form (1.8) as t→ ∞. In this limit, the 

higher-order cumulant terms of the net diffusion propagator can originate only from the 

partial contributions from different tissue compartments (since a sum of Gaussians is non-

Gaussian).

For any t, the series (1.10) generates the cumulants x jx j… c
 (see e.g., refs. [18, 72, 73] for 

definition) of the PDF of molecular displacements6 (1.6), via taking derivatives at q = 0, 

such as

xix j ≡ drxix jGt, r = − ∂2

∂qi∂q j q = 0
dr e−iqrGt, r . (1.11)

Based on such averages, it is conventional to define the cumulative diffusion coefficient

D(t) =
x2(t)
2t , (1.12)

or, more generally, the cumulative diffusion tensor

Di j(t) =
xi(t)x j(t)

2t (1.13)

(a symmetric 3 × 3 matrix with 6 independent parameters in 3 dimensions). These objects 

are defined in terms of the average rate of change of the mean-squared molecular 

displacement over the whole interval [0, t] (in contrast to the instantaneous rate of change 

(1.2) above).

6Since Gt,r is written in terms of the relative displacements r = rt – r0, we re-denote δxi(t) → xi(t) in Eq. (1.12) to simplify the 
notation, and drop the dependence on the initial position in the view of the translational invariance property (1.7).
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The linear estimation problem for Dij(t), referred to as the diffusion tensor imaging (DTI), 
has been solved by Basser et al. [31]. It requires7 a diffusion measurement along at least 6 

non-collinear gradient directions in addition to at least one more, e.g., the b = 0 

(unweighted) image.

Likewise, the linear estimation problem for both the diffusion and kurtosis tensors, via the 

expansion up to ~ q4 ~ b2, called diffusion kurtosis imaging (DKI), has been introduced by 

Jensen et al. [61, 76]. It involves the 4th order cumulant xix jxkxl c
 related to Wijkl(t). The 

number of parameters are now 6 + 15 = 21, hence one needs at least two b ≠ 0 shells in the 

q-space, and at least 15 non-collinear directions. The weights for unbiased estimation of 

diffusion and kurtosis tensors for non-Gaussian MRI noise were found recently [77].

A general method to calculate the number of parameters for a given order lc of the cumulant 

series (1.10) in 3 dimensions is based on the SO(3) representation theory (known in physics 

as theory of angular momentum in quantum mechanics). A term ~qlc of even rank lc is a 

fully symmetric tensor, which can be represented as a sum of the so-called symmetric trace-

free (STF) tensors of ranks lc, lc 2, …, 2, 0 [78]. Each set of 2l + 1 STF tensors of rank l 
realizes an irreducible rep resentation of the SO(3) group of rotations, equivalent to a set of 

2l + 1 spherical harmonics Ylm [78]. Hence, the total number nc of nonequivalent 

components in the rank-lc cumulant tensor is

nc(lc) =
l = 0, 2, …

lc
(2l + 1) = 1

2(lc + 1)(lc + 2), (1.14)

so that nc = 6 for DTI (lc = 2) and nc = 15 for DKI (lc = 4).

Suppose we truncate the cumulant series (1.10) at an (even) term of rank lc = lmax. Hence 

we determine all the parameters of cumulant tensors (diffusion, kurtosis, …) of ranks 2, 4, 
…, lmax. The total number of independent parameters in the truncated series

Nc(lmax) =
l = 2, 4, …

lmax
nc(l) = 1

12 lmax
3 + 5

8 lmax
2 + 17

12 lmax (1.15)

corresponding to Nc = 6, 21, 49, … for lmax = 2, 4, 6, … Hence, DTI yields 6 parameters, 

DKI yields 21, etc. (Here we did not include the proton density S|b=0 in our counting.)

The cumulants Dij, Wijkl, … of the signal obtained via Taylor-expanding its logarithm in the 

(even) powers of qi, or equivalently, in the powers of b, correspond to the cumulants of the 

genuine PDF of molecular displacements r = rt – r0 only in the narrow pulse limit, and in 

7DTI, contrary to a widespread misconception, does not assume Gaussian diffusion, as it merely provides the lowest-order cumulant 
term Dij, and tells nothing about the higher-order terms in the series (1.10). DTI applicability is thus dictated by the kurtosis term W to 
have negligible bias on the estimated Dij, and the employed b-range is practically set by balancing the bias when b is too large and 
precision loss when b is too small.
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the absence of the mesoscopic magnetic structure (uniform R2 and Ω). When the finite 

gradient pulse duration δ is comparable to the time scale of the transient processes, the 

measurement acts as a low-pass filter with a cutoff frequency ∼ 1/δ [17–26].

1.9. Normal or anomalous diffusion?

For finite t, the diffusion propagator in a heterogeneous medium is never Gaussian. The 

existence of domains with slightly different “local” D(r) at a given coarse-graining scale 

necessarily yields the time-dependent Dinst(t), as well as the higher-order terms in q, such as 

q4, in the Taylor expansion of ln G(0)(t, q) [27, 33]. Upon coarse-graining, these terms 

gradually flow to zero, and Dinst(t) D∞, such that diffusion becomes Gaussian 

asymptotically as t → ∞ in each separate non-confining tissue compartment. This was the 

picture of Sec. 1.3, cf. Fig. 2. In particular, we implied that the diffusion coefficient 

decreases, as a result of the coarse-graining, towards its finite tortuosity asymptote Dinst(t) 

t→∞ ≡ D∞ >0 How reliable is this picture? What does it take to destroy it?

Existence of finite D∞ is equivalent to mean squared displacement x2(t) ≃ 2D∞t growing 

linearly with time for sufficiently long t, — this is a direct consequence of the definition 

(1.2). One says that diffusion asymptotically becomes “normal”, i.e., the PDF of molecular 

displacements over a sufficiently large t approaches normal (Gaussian) distribution, cf. Eq. 

(1.8) with D → D∞. Of course, if there are two or more non-exchanging tissue 

compartments, the total distribution will be non-Gaussian (as a sum of Gaussians with 

different D∞), but this non-Gaussianity is in a sense trivial; the total D∞ would still exist 

(given by a weighted average for the corresponding compartment values) [39], and the 

scaling x2(t) t at large t would hold.

There exists a radical alternative, when x2(t) tα for t → ∞, with exponent α ƒ= 1 — the 

so-called anomalous diffusion [79]. According to the definition (1.2), D∞ = 0 for α < 1 

(sub-diffusive behavior), and D∞ = for α > 1 (super-diffusive behavior). In other words, 

observation of anomalous diffusion is equivalent to stating that the macroscopic diffusion 
coefficient D∞ does not exist. (The trivial case D(t) ∼ a2/t for a confining compartment of 

size a is not considered anomalous; x2 a2, α = 0.)

The absence of D∞ in a non-confining medium is always a drastic claim: it is potentially 

exciting yet should be thoroughly validated, because the underlying physical assumptions 

yielding α ≠ 1 are generally quite peculiar and exceptional, as we discuss below. In neuronal 

tissue, one always observes finite D∞ in non-confining compartments (e.g., in the extra-

cellular space), Section 2, hence diffusion is empirically never anomalous [23, 33, 34] for 

brain dMRI.8

8We are not reviewing the MRI literature on anomalous diffusion, since our goal here is to discuss models which are relevant to 
observable diffusion effects in neuronal tissue. A curious reader can find occasional claims of anomalous diffusion, or dMRI signal as 
a stretched-exponential. We are not aware of examples of a constructive derivation of the non-Gaussian fixed point [3, 4] starting from 
the stationary mesoscopic disorder with properties relevant to the brain. Hence, these claims can merely be viewed as postulates 
“proven” by fitting in a finite range of t or q. If the model’s functional form contradicts the physics of the signal, the estimated 
parameters will depend on the range of t and q, thereby characterizing the particular measurement scheme, rather than the tissue [70].
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From the point of coarse-graining, anomalous diffusion means that the sample never quite 

looks homogeneous — for example, a fractal has a self-similar structure, which implies 

similar statistics of static structural fluctuations at every length scale. In other words, when 

the coarse-graining over some scale has taken place, a larger scale looks statistically similar, 

so that the already averaged structural features are never forgotten, since they are reproduced 

again and again. In contrast, the structure in Fig. 2 implies that this memory is forgotten for 

each of the two length scales, correspondingly on the two well-defined time scales.

Tissues empirically do not look self-similar; usually, when we look at a histological slide 

without a scale bar, we can still roughly say at which resolution the sample is imaged 

because usually cell size is well defined (for a given tissue type) — otherwise, medical 

students would not pass their pathology exams. For instance, when we look at cross-sections 

of white matter tracts, the majority of axons are of the order of ~ 1 µm in diameter [80–84], 

and the section does not look the same when magnified by factors of 10, 100, or 0.1, 0.01, 

etc. A more quantitative statement can be made by studying large-distance scaling behavior 

of the density-density correlation function of the tissue structure; recent investigation [23] 

confirms that the structural fluctuations in white matter tracts are short-range (and not 

diverging at large length scales).

When can anomalous diffusion arise? In a broader context, this fundamental question has 

been extensively studied for the Fokker-Planck equation

∂tψ(t, r) = ∂r[D(r)∂rψ(t, r)] − ∂r[v(r)ψ(t, r)], (1.16)

where in addition to the “diffusive” flow j(t, r ) = D(r)∂ ψ(t, r) (Fick’s law), one considers 

mesoscopic random flow b ecause o f s ome s tationary l ocal “ velocity”, or “force” field v 
(r) ( imagine a ctive s treams, s uch a s vortices or currents in an ocean [85]). Equation 

(1.16) arises as a conservation law ∂tψ= −∂r · j, where the total flow

j = − D(r)∂rψ(t, r) + v(r)ψ(t, r) .

It turns out that the presence of the random flow term v(r) with short-range spatial 

correlations can drastically change the dynamics in dimensions d ≤ 2 and drive the system 

away from the Gaussian diffusion. In dimension d = 1, random force field c auses s ub-

diffusive b ehavior δx2 ln4t, a famous result by Sinai [86]. In d = 2 dimensions, 

superdiffusive behavior occurs when the flow v (r) i s solenoidal, div v(r) = 0, and sub-

diffusive if it is potential, curl v(r) = 0 [85, 87–89].

In the absence of the random forces, v 0, small fluctuations in D(r) do not destroy the 

“trivial” Gaussian fixed point in dimensions d > 0 [90, 91] (cf. footnote 2). In other words, 

for the spatial short-range disorder in D(r) to become relevant (i.e., to increase under the 

renormalization group flow), and for the anomalous diffusion to take over, the spatial 

dimension should formally be d = 0. What this tells is that it is very difficult, without the 

flow term, to break the Gaussian fixed point of the finite D∞, at least starting from the weak 
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disorder in D(r). Extremely strong disorder, which is specially tuned, can induce the 

percolation transition [92] D∞ → 0; another possibility for destroying finite D∞ is to create 

the disorder in the mesoscopic D(r) with anomalously divergent spatial fluctuations [93, 94]. 

To the best of our knowledge, neuronal microstructure is compatible neither with a 

percolation transition, nor with diverging structural fluctuations [23].

Another class of phenomena where anomalous diffusion takes place corresponds to systems 

with slow dynamics, originating from a broad distribution of time scales, such that the 

waiting time distribution p(τ) ~ 1/τ1+µ between “hops” of random walkers has a power-law 

tail whose first moment diverges, 0 < µ < 1. Such broad distributions can emerge, e.g., in 

highly disordered amorphous solids, where escape times τ from various “traps” for electrons 

are distributed as a power law, first postulated by Scher and Montroll [95]. For the traps, the 

long tail in p(τ ) can arise due to an exponentially strong dependence of the activation rate 

τ−1 e
−E /kBT

 on the energy barrier E at temperature T, such that a relatively flat distrubution 

p(E) can result in the Le´vy-like p(τ) = p(E(τ))/τ. Hopping with traps may lead to anomalous 

transport [96] and fluorescence [97]. Anomalously slow dynamics also occurs in viscoelastic 

systems where elementary components are strongly coupled (Rouse polymer chain [98] of 

monomers tied to each other by elastic springs and undergoing Langevin dynamics). The 

simulated dynamics of single protein molecules [99] and of colloidal tracers restricted by 

crowded dynamical environments such as an F-actin network [100] can exhibit such a broad 

distribution of time scales [101]. While an active area of investigation, the anomalously slow 

dynamics is always characterized by strong disorder (e.g., broadly distributed traps) and/or 

interactions among the random walkers (e.g., parts of a polymer).

To recap, coarse-graining over an increasing diffusion length L(t) provides a physical picture 

for time-dependent diffusion in mesoscopically disordered samples. This picture implies 

gradual “forgetting” of the memory about the structural heterogeneities. In an overwhelming 

majority of systems, the macroscopic dynamics is characterized by a Gaussian fixed point, 

the absence of long-term memory, and an asymptotically normal diffusion. In short, 

diffusion is almost always non-Gaussian, but almost never anomalous. In the brain, it is not 

anomalous specifically because the density fluctuations of brain structural units do not 

diverge at large scales, traps for water molecules with broad distribution of escape times do 

not seem to exist, and the “active” flow effects (microstreaming, axonal transport) are 

negligible [102].

1.10. dMRI methods beyond the scope of this review

Before proceeding to review brain dMRI models, we would like to mention what we have 

left out, because of limited relevance to brain dMRI as of today, and/or due to exhaustive 

coverage elsewhere.

On the methodological front, the leitmotif of the review is the language of coarse-graining, 

Fig. 2. It is most intuitive for modeling structurally disordered systems, typical for biology, 

cf. modeling the time-dependent diffusion in Section 2, based on including all the 

restrictions into the spatially varying D(r) in Eq. (1.1). This took precedent to approaches to 

fully confining or periodic geometries, conventionally solved by formulating Eq. (1.1) as the 
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Laplace equation with boundary conditions, thoroughly reviewed in ref. [103] in the context 

of diffusion in porous media.

We also left out the physics of the localization regime, where diffusion in a strong constant 

gradient suppresses the signal everywhere except next to pore walls, within the gradient-

dependent dephasing length Lg = (D0/g)1/3, which leads to signal decay [104–106]

−lnS L2(δ)/Lg
2 D0

1/3g2/3δ. This is an example where effects of non-narrow pulses lead to 

decoupling of the gradient magnitude g and the gradient pulse width δ in the narrow-pulse 

combination q = gδ. The “edge enhancement” also amplifies the role of the permeability of 

the walls [107]. Brain structures seem to be too small for the edge effects to be relevant, but 

such phenomena can become important in body dMRI.

Playing with δ, e.g., using short-wide pulse combinations, we or one can map the Fourier 

transform of the shape of the confining pore [108, 109], which again requires prohibitively 

strong gradients for the narrow axons and dendrites in the brain, but is applicable in porous 

media NMR. The relevance of pulse width δ would add an extra dimension to the phase 

diagram in Fig. 3.

Detailed review of practical aspects of dMRI measurements and biological applications are 

beyond our scope here. The reader is referred to the review [110] for implementation details 

of dMRI measurements, recent reviews of dMRI in white matter [111] and in cancer [112], 

as well as to other articles in this Special Issue.

2. TIME-DEPENDENT DIFFUSION IN NEURONAL TISSUE

Everything should be made as simple as possible, but not simpler

Albert Einstein

The intuition of Sec. 1.3 suggests that the time-dependence of the diffusion coefficient 

defined as either Eq. (1.2) or Eq. (1.12), is a hallmark of the mesoscopic structure, and the 

associated time scale can be translated into the corresponding mesoscopic length scale. 

Identifying µm-level tissue length scales is the ultimate test of our ability to “quantify 

microstructure” — after all, how else would we know that we are indeed sensitive to the 

micro-structure? The focus of this Section is on determining tissue properties on such length 

scales.

Fundamentally, observation of the time dependent over-all D(t) is significant because it tells 

that diffusion is non-Gaussian in at least one of the tissue compartments. Indeed, at the 

lowest order 𝒪(q2) of the cumulant expansion (1.10) of the signal S = ∑ fiSi, contributions 

from non-exchanging tissue compartments Si add up, such that the total diffusion coefficient 

is a weighted average:

D(t) = f iDi(t), f i = 1 . (2.1)
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An overall time-dependent D(t) necessarily means that at least one of Di depends on t. In 

turn, the time-dependent Di(t) must necessarily lead to a nonzero kurtosis and higher-order 

cumulants [27] in the ith compartment, arising from the same mesoscopic heterogeneity 

which has not yet been fully coarse-grained — and, hence, may still be possible to quantify. 

Conversely, if diffusion is Gaussian in all tissue compartments, all Di = const, and the 

overall diffusion coefficient is time-independent. The overall kurtosis is then a nonzero 

constant just because a sum of Gaussians is not a Gaussian.9

We begin this Section by reviewing experimental data on the time-dependent diffusion 

coefficient and kurtosis in brain, and then discuss the two physically distinct regimes of 

time-dependence, according to the hierarchy of Sec. 1.5: the short-time regime (i), and the 

long-time regime (ii) approaching the asymptotically Gaussian diffusion in each non-

exchanging compartment.

Certainly, we are almost never in a pure limit experimentally — rather, we are typically in 

some crossover, e.g., in-between the regimes (i) and (ii). However, it is still important to 

understand the behavior of the system in certain limits where it can be modeled with more 

confidence. Performing experiments in such limits provides a way to validate models 

through observing definitive functional dependencies on the measurement parameters [70]; 

thus-identified relevant degrees of freedom for tissues can then be incorporated into more 

complex theories of the crossover behavior relevant to a broader range of dMRI studies, and 

for clinical translation.

2.1. Time dependent diffusion in the brain: Is there an effect?

Empirically, observing time-dependence of diffusion in brain tissue has been challenging 

because this effect occurs at time scales associated with diffusion across length scales 

featuring neurites (i.e., axons and dendrites). Typically, their diameters as well as the 

heterogeneities along them (e.g., spines, beads) are of 1 µm size, hence, the corresponding 

diffusion times are expected to be of the order of a few ms. Such short times are quite 

difficult to access, especially on human systems. Besides, the time-dependence is generally 

slow — which is theoretically expected due to its power-law character [33], as discussed 

below in Sec. 2.4 — therefore requiring a sufficiently broad range of times to detect.

Time-dependence of the cumulative D(t), Eq. (1.12), in brain tissue has been demonstrated 

using pulse gradient spin echo (PGSE) in several ex vivo studies for a range of diffusion 

times encompassing 20 250 ms [56, 114–116]. In vivo, time-dependent diffusion in both 

longitudinal and transverse directions was also observed in rat corpus callosum at t ranging 

from 9 to 24 ms [117], though another study yielded no change in the mean diffusivity of 

healthy and ischemic feline brain with respect to t between 20 − 2000 ms [118].

In the human brain, it has been unclear for quite some time whether in vivo time-dependent 

diffusion properties can be observed. While several in vivo studies report no observable 

9This argument can also be extended onto the regime of slow exchange between compartments, since Eq. (2.1) turns out to be valid in 
that regime in the long-t limit, following the coarse-graining argument [39] for generalizing the Kärger model [113] to media with 
mesoscopic disorder. If the overall D = const (i.e., the full coarse-graining is achieved in each of the compartments), and the overall 
kurtosis K(t) still depends on t, this t-dependence arises due to exchange [39, 61].
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change over a broad range of diffusion times [119, 120], Horsfield et al. [121] reported time-

dependent diffusion in several white matter regions at times ranging from 40 to 800 ms. Very 

recently, in vivo pronounced time-dependence in the longitudinal diffusivity and less 

pronounced time-dependence in the transverse diffusivity has been reported in several WM 

tracts of healthy human volunteers for relatively long diffusion times, t = 45 600 ms, on a 

standard clinical scanner using stimulated echo acquisition mode (STEAM)-DTI [34]. 

Subsequently, a similar effect in the transverse direction to WM tracts was observed with 

STEAM-DTI in the range t = 48 − 195 ms [122].

Oscillating gradient spin echo (OGSE) diffusion-weighted sequences are able to probe 

shorter diffusion time scales compared to conventional PGSE, and have clearly 

demonstrated time-dependent diffusion in the brain, including the observation of time-

dependent diffusivities in vivo in normal and ischemic rat brain cortex [123], as well as ex 
vivo in rat WM tracts [124]. By combining OGSE and PGSE, Pyatigorskaya et al. [125] 

observed time-dependent diffusion coefficient and a non-monotonic time-dependent kurtosis 

(with a maximum value K ≈ 0.6 at t ≈ 10 ms) in healthy rat brain cortex at 17.2 T, and Wu 

and Zhang [126, 127] recently observed time-dependence in mouse cortex and 

hippocampus. In humans, Baron and Beaulieu [128] found eight major WM tracts and two 

deep gray matter areas to exhibit time-dependent diffusion using OGSE and PGSE, and Van 

et al. [129] reported a similar effect with OGSE in human corpus callosum. Furthermore, 

works using double diffusion encoding (cf. Section 4) indirectly point at the time-dependent 

nature of diffusion in brain tissue.

Overall, while it is common to assume that diffusivities are approximately diffusion time-

independent for t ≳ 10 ms, the experimental data described above clearly demonstrates time-

dependent diffusion both at short and long times. In what follows, we describe the 

underlying theory for both limits and discuss the corresponding biophysical interpretation 

and potential for applications.

2.2. The second-order cumulant

2.2.1. Gaussian phase approximation—In Sec. 1.4, we derived a general relation 

(1.6) between the dMRI signal and the diffusion propagator in the narrow-pulse limit. For 

gradient pulses g(t) of arbitrary shape, there is no such simple relation; the signal S[g(t)] is a 

functional of g(t) (i.e., a mapping of a function to a number). To obtain an explicit 

dependence of S on g(t), one treats the gradient term in Eq. (1.3) perturbatively in g(t), 

generalizing the cumulant series (1.10). Here, we will stay at the level of 𝒪(g2), the so-called 

Gaussian phase approximation (GPA), and describe the family of diffusion coefficients 

which define the second-order cumulant and carry the same information content, yet can be 

accessible using different techniques, Fig. 6.

The GPA approximates the dMRI signal [17–19]

S[g(t)] = e−iφ ≈ e
− 1

2 φ2
(2.2)
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up to the second cumulant of the accumulated phase

φ(t) =
0

t
dt′g(t′)r(t′) = −

0

t
dt′q(t′)v(t′), (2.3)

where we introduced the time-dependent wave vector

q(t) =
0

t
dt′g(t′) (2.4)

such that the Larmor frequency gradient g is given by its time derivative, g = ∂tq. The first-

order cumulant φ ≡ 0 in the absence of the net flow. The balanced gradient condition sets 

q(t)|t>T ≡ 0 at the end t = T of the gradient train interval. Eq. (2.4) generalizes the definition 

of q for narrow-pulse gradients, where q remained constant during an interval 0 < t < T, cf. 

the propagator Eq. (1.6) with t = T. Writing φ2  as a double integral, and averaging over the 

Brownian paths, we obtain

−lnS[q(t)] ≃ 1
2 0

t
dt1dt2q(t1) v(t1)v(t2) q(t2), (2.5)

where we from now on dropped the explicit vector notation of q and v (the corresponding 

tensor indices can be easily restored; one can think about isotropic media for simplicity).

We can see that the diffusion process at the 𝒪(q2) level is fully characterized by the 

autocorrelation function v(t1)v(t2)  of molecular velocity, an even function of t1 – t2 in 

stationary media due to time translation invariance and time reversal symmetry of the 

Brownian motion.

For uniform media, v(t1)v(t2) = 2D0δ(t1 − t2), which can be thought of as one of the 

equivalent definitions of the diffusion constant D0. Technically, there is no such thing in 

nature as a zero-width δ(t1 – t2); we can use this approximation for simple liquids since the 

correlation time for forgetting the memory about the molecular collisions is of the order ~ 1 

– 10 ps, orders of magnitude below our ms-level time scales. We can say that diffusion in 

simple liquids is thereby Markovian (has no memory) on the relevant NMR time scales. This 

leads to the standard expression –ln S = bD0 with b = 0
T q2(t)dt, generalizing Eq. (1.8).

2.2.2. The dispersive diffusivity—For general mesoscopic media, microstructure 

introduces Xtemporal correlations in positions and velocities of random walkers. For 

instance, if a walker just hit a wall, then its velocity will correlate negatively with the 

velocity just before the hit (since reflection and moving away from the wall is preferred), 

and this memory will last during the time depending on the wall geometry and the presence 
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of other restrictions. To characterize such correlations, let us introduce the retarded velocity 

autocorrelation function [27]

𝒟(t) ≡ θ(t) v(t)v(0) , (2.6)

where θ(t) is the unit step function, cf. Sec. 1.4. In terms of 𝒟(t), Eq. (2.5) reads

−lnS[q(t)] ≃ dt1dt2q(t1)𝒟(t1 − t2)q(t2), (2.7)

where the double integration can be extended over all real values of t, since q(t) is nonzero 

only on a finite interval.

The time translation invariance of 𝒟 allows us to rewrite the double intergral in the t-domain 

as a single integral in the ω-domain, by introducing the Fourier transform of 𝒟(t), the 

dispersive diffusivity10 [27, 131]

𝒟(ω) =
0

∞
dt eiωt v(t)v(0) . (2.8)

Eq. (2.7) can now be written in terms of the Fourier-transformed qw = ∫ dt eiωtq(t), as11

−lnS[qω] ≃ ∫ dω
2π q−ω𝒟(ω)qω . (2.9)

Here, only Re𝒟(ω) contributes, as Im𝒟(ω), odd in ω, yields zero after being integrated with 

an even function |qω|2. Equivalently, Im𝒟(ω) does not contain extra information as it can be 

restored using the Kramers-Kronig relations [134].

The representation (2.9) underscores that, knowing the velocity autocorrelator 𝒟(ω), one can 

evaluate the diffusionweighted signal to 𝒪(g2) for any gradient waveform g(t). Conversely, 

by selecting a particular form of q(t) according to its Fourier representation qω, one 

effectively allocates particular weights to different Fourier harmonics 𝒟(ω) contributing to 

the measured signal (2.9).

The dispersive diffusivity (2.6) and (2.8), and the cumulative (1.12) and instantaneous (1.2) 

diffusion coefficients, are related to each other via non-local transformations in the time 

domain

10The real part, Re𝒟(ω), corresponds to the quantity called “D(ω)” in the NMR literature [130].
11For anisotropic media, and for arbitrary q-space trajectories [132, 133], the integrands in Eqs. (2.7)–(2.9) are 
qi(t1)𝒟i j(t1 − t2)q j(t2), vi(t)vj(0) and q−ω, i𝒟i j(ω)qω, j respectively (with the sums over repeated indices)
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Dinst(t) = ∂
∂t [tD(t)], (2.10)

𝒟(t) = ∂
∂t Dinst(t) = ∂2

∂t2
[tD(t)], (2.11)

and in the frequency domain12 [19, 27, 131], Fig. 6:

Dinst(t) = ∫ dω
2π e−iωt 𝒟(ω)

−i(ω + i0) , (2.12)

D(t) = 1
t ∫ dω

2π e−iωt 𝒟(ω)
[ − i(ω + i0)]2 . (2.13)

Conversely, the dispersive diffusivity 𝒟(ω) can be found either by a Fourier transform (2.8) 

of the retarded velocity autocorrelator 𝒟(t), Eq. (2.6), or from the time-dependent diffusion 

coefficient (1.12), measured by ideal narrow-pulse gradients, via

𝒟(ω) = D0 +
0

∞
dt eiωt ∂t

2[tD(t)], (2.14)

where D0 ≡ D(t)|t=0 (cf. Eq. (D3) in Appendix D of ref. [27]). These relations are 

summarized in Fig. 6.

We underscore that the three diffusion metrics: the dispersive diffusivity 𝒟(ω); the retarded 

velocity autocorrelator 𝒟(t); and the time-dependent diffusion coefficient 𝒟(t) contain the 

same amount of information about the medium, and thus can be expressed via each other 

[27]. However, the practical feasibility of their measurement may differ greatly. Generally 

speaking, long times are most conveniently accessed using pulse-gradient or stimulated 

echo-based methods [135], while short times are best measured in the frequency domain 

using oscillating gradients.

2.2.3. Oscillating gradients—The oscillating gradient (OG) method, typically with a 

refocussing pulse in the middle of the periodic gradient train (OGSE), was pioneered by 

Gross and Kosfeld in 1969 [136], and was first utilized to measure properties of biological 

tissue (muscle) by Tanner in 1979 [137] and applied to porous media later on [138, 139]. 

12The addition of i0 in the denominators preserves causality (retarded response character) of integrated quantities, see Appendix A for 
details.
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This sequence is useful for accessing short diffusion times, since the diffusion weighting 

accumulates over N oscillation periods, b = Nb1 [123, 131], cf. Eq. (B5) in Appendix B. In 

this way, the (short) diffusion time 2 π/ω gets decoupled from the (long) duration T = N · 2 

π/ω of the total gradient train. It can be shown [27, 131], that in the limit of large number N 
≫ 1 of oscillations, OGSE measures the real part Re𝒟(ω) of the dispersive diffusivity (2.8). 

In Appendix B, we derive the 2nd-order cumulant expression in terms of 𝒟(ω) for OGSE 

with finite N.

To compare pulse gradient with oscillating gradient methods, a practical question arises: 

What is the diffusion time in terms of the OGSE frequency (and vice-versa)? How can we 

plot results of both types of measurements in the same axes?

Unfortunately, in the view of relations (2.10) – (2.14), there is no universal answer to the 

above question. The relation between D(t) and Dinst(t) on the one hand, and 𝒟(ω) on the 

other, is mediated by the Fourier transform, which is non-local in ω. In other words, the 

conversion between ω and t depends on the functional form of either diffusivity — i.e., on 

the tissue properties. Without understanding the system’s physics (embodied by the 

functional form of the diffusivity), we are limited to the relations between macroscopic 

properties:

𝒟(ω) ω 0 = D(t) t ∞ = Dinst(t) t ∞ ≡ D∞ . (2.15)

Below, as we describe different models, we will demonstrate examples of such conversion 

for different functional forms of 𝒟(ω) and D(t), e.g., Eqs. (2.18) and (2.36).

2.3. The short-time limit, regime (i): Net surface area of restrictions

2.3.1. Theory—The qualitative picture of the S/V limit [68] was given in Sec. 1.5(i). 

Quantitatively, the short-t expansion of the diffusion coefficient (1.12) proceeds in powers of 

L(t)S/V, where L(t) = 2D0t is the diffusion length:

D(t) = D0 1 − 4
3 πd

S
V D0t + 𝒪(t) , (2.16)

and S/V is the surface-to-volume ratio of the restrictions in d spatial dimensions. Identifying 

the t term practically involves very short diffusion times. Even for a red blood cell 

suspension, this limit was barely observable in the time domain [140]; for the brain, with 

structural features even smaller than the red blood cell size, getting to this limit using PGSE 

is practically impossible due to very low b-values for short t.

Hence, regime (i) is best accessed using OGSE. The corresponding functional form of 𝒟(ω)
for Eq. (2.16) was recently derived in the N → ∞ limit [131]
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Re𝒟(ω) ≃ D0 1 − 1
d 2

S
V

D0
ω . (2.17)

For a finite total number N of oscillations, Eq. (2.17) is modified, see Appendix C, by a 

correction factor c, Eq. (C5), in front of the 1/ ω term. This factor approaches its N → ∞ 
limit c → ∞ rather fast, c –1 ~ 1/N, such that c–1 < 0:05 as long as N ≥ 4 for the cos, and N 
≥ 10 for the sin waveforms.

From directly comparing Eqs. (2.16) and (2.17), the relation between OGSE frequency v = 

ω/2π and diffusion time t = Δ (in the narrow-pulse PGSE limit) is as follows [131]:

S/V limit (i): t = 9
64 ⋅ 1

ν . (2.18)

We note that Eq. (2.18) differs from the empirical relation (see, e.g., ref. [123])

wrong yet widely used: t = 1
4ν , (2.19)

which in fact is almost always incorrect [cf. Eq. (2.36) below]. Relation (2.19) originates 

from matching the b-value between one OGSE period and PGSE of the same duration. Since 

the whole notion of the b-value stems from Gaussian (i.e., time-independent) diffusion, it is 

not surprising that merely matching the diffusion attenuation between PGSE and OGSE for 

the constant D falls below the accuracy needed to define the diffusion time for the nontrivial, 

time-dependent case.13

2.3.2. Applications—Probing the short-time limit either in the time domain (Eq. (2.16)) 

or the frequency domain (Eq. (2.17)) potentially allows for decoupling the geometric effects 

of the surface-to-volume ratio S/V and the free diffusivity D0. Recently this limit has been 

demonstrated in phantoms using both PGSE [142] as well as OGSE [143]. For in vivo brain 

measurement, OGSE provides the most practically feasible method, with the 1/ ω
dependency as the signature functional form (2.17) of this regime. In the healthy brain, this 

signature has so far never been observed, since presumably the achievable oscillation 

frequencies are still too low as compared to those needed to identify the effect of the 

restrictions from neurite walls with typical radius of curvature ~ 1 μm, requiring diffusion 

times much below 1 ms (i.e., frequencies v ≫ 1 kHz).

The search for the 1/ ω regime has prompted using brain tumors with roughly spherical 

cells of larger size (about 10 µm), such that the required frequency range can be potentially 

13The often quoted relation t = Δ –δ/3 for the diffusion time of a finite-width PGSE is a myth for the same reasons. One can only say 
that the measurement gives D(t) with t ≈ Δ (with the accuracy of this approximation controlled by δ). More rigorously, the effect of 
finite pulse width δ creates a low-pass filter [17, 19] on 𝒟(ω), whose effect is again modeldependent, see, e.g., Eq. (24) in ref. [23], as 
well as refs. [24–26, 141], for the examples of this filter effect on the models of 𝒟(ω) relevant for brain.
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accessible. Recently, the 1/ ω functional form was observed by Reynaud et al. [144] in a 

mouse glioma model in the frequency range up to ω/2π = 225 Hz, which for the first time 

enabled the separation between the geometric (S/V) and “pure” diffusive (D0) tumor 

features. Further combining the OGSE and PGSE methods has lead to the POMACE [145] 

and IMPULSED [146] methods for quantifying cell size and extra-cellular water fraction, cf. 

topical review [112].

2.4. Approaching the long time limit, regime (ii): Structural correlations via gradual 
coarse-graining

2.4.1. Theory—Over time, random walkers probe the spatial organization of the sample’s 

microstructure, which makes the time-dependence of the diffusion metrics intricately tied to 

an increasingly large number of structural characteristics. Technically, finding D(t) or 𝒟(ω)
analytically in a realistic complex sample is nearly impossible as it amounts to including the 

contributions from the spatial correlations of the local diffusion coefficient D(r) and of the 

positions of all restrictions up to an infinitely high order.

The intuition based on coarse-graining, Sec. 1.3, turns out to be helpful in solving this 

problem in the long time regime [33], when the diffusion coefficient (1.2) gradually 

approaches its macroscopic (tortuosity) value (2.15). As mentioned in Sec. 1.3, in the limit t 
→ ∞, any non-confining tissue compartment effectively looks completely uniform.

Let us step back just a bit from t → ∞ and consider t long enough (yet finite) for the sample 

to look almost homogeneous from the point of the diffusing molecules, Fig. 2,—no matter 

how heterogeneous it is in reality (e.g., at the cellular scale). In this limit, the problem of 

finding the diffusion propagator maps onto a much simpler problem of finding the diffusion 

propagator in a weakly heterogeneous medium (which is the corresponding effective theory), 

characterized by the diffusion equation (1.4) with

δD(r)
D∞

≪ 1, δD(r) ≡ D(r) − D∞ . (2.20)

This problem admits a perturbative solution [27, 33], with Eq. (2.20) defining a small 

parameter, as long as the macroscopic (tortuosity) limit (2.15) exists, 0 < D∞ < ∞ (i.e., 

diffusion is not anomalous, which is practically always the case for dMRI in tissues, cf. Sec. 

1.9). The lowest order in δD(r) vanishes, and the second order in the parameter (2.20) yields

Dinst(t) ≃ D∞ + 1
d

(δD(r))2
L(t)

D∞
(2.21)

in d spatial dimensions.

The last term in Eq. (2.21) involves the variance of the slowly-varying D(r) at a given 
coarse-graining length scale defined by the diffusion length L(t). This variance decreases as 

a result of self-averaging, i.e., when different diffusing molecules on average begin to 
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experience more and more similar mesoscopic structure with an increasing L(t), such that 

any sample begins to approximate the ensemble of different disorder realizations of D(r) 

more and more precisely. The always positive “fluctuation correction” to D∞ (the last term) 

elucidates why the diffusion coefficient can only decrease with t; observation of its increase 

with diffusion time is a red flag for imaging artifacts.

To be more rigorous, Eq. (2.21) can be expressed as [33]

Dinst(t) |t ≳ t0
≃ D∞ + 1

D∞d∫ ddk
(2π)d ΓD(k)e

−D∞k2t
, (2.22)

in terms of the power spectrum ΓD(k) = ∫ dr e−ikrΓD(r) of the underlying effective D(r)|L(t0)

coarse-grained over the diffusion length L(t0) corresponding to some sufficiently long time 

scale t0, for which the relative deviation (2.20) from D∞ is sufficiently small. The 

correlation function

ΓD(r) = δD(r + r0)δD(r0) r0
(2.23)

embodies the fluctuation correction in Eq. (2.21). We can see that diffusion indeed acts as a 

Gaussian filter (cf. Fig. 2 in Sec. 1.3), with a filter width L(t) D∞t, over the effective 

medium defined via the correlation function of the weakly heterogeneous D(r).

Hence, for sufficiently long t, Eqs. w(2.21) and (2.22) become asymptotically exact with 

L(t) → ∞, no matter how strongly heterogeneous the “true” (microscopic) D(r) is. From 

the renormalization group flow standpoint, we can say that the time-dependent corrections 

(last terms of Eqs. (2.21) and (2.22)) to the asymptotically Gaussian propagator become 

irrelevant as a result of integrating out the fluctuations of the locally varying D(r) over larger 

and larger scales. Likewise, the kurtosis and higher-order cumulants in this compartment 

will decay to zero, as governed by similar fluctuation terms.

How to relate the time-dependence (2.21) and (2.22) to the mesoscopic structure? Here, one 

realizes [33] that the coarsegrained D(r)|L(t) depends on the similarly coarse-grained local 

density n(r)|L(t) of mesoscopic restrictions to diffusion (e.g., the disks in Fig. 2). Hence, the 

variance of D(r)|L(t) entering Eq. (2.21) is proportional to a typical density fluctuation 

〈(δn)2〉|L(t) of the restrictions in a volume of size Ld(t) in d dimensions (this becomes valid 

when the deviations δn(r) |L(t) = n(r) |L(t) − n  from the mean sample density n  become 

small). This proportionality, asymptotically exact at small k (i.e., after coarse-graining over 

large distances, cf. Eq. (2.22) for long t), leads to the proportionality

ΓD(k) ∝ Γ(k), k 0 (2.24)
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between the correlation functions (power spectra) of D(r) and of the underlying structure 

n(r),

Γ(r) = n(r + r0)n(r0) r0
. (2.25)

The structural correlation function can behave qualitatively distinctly at large distances, i.e., 

small k:

Γ(k) kp, k 0. (2.26)

The structural exponent p in Eq. (2.26) defines the structural universality class to which a 

sample belongs, according to its large-scale structural fluctuations embodied by its 

correlation function (2.25). The greater the exponent p, the more suppressed are the 

structural fluctuations at large distances (low k); conversely, negative p signify strong 

disorder, where the fluctuations are stronger than Poissonian (for which p = 0). Hence, p 
characterizes global structural complexity, taking discrete values robust to local 

perturbations. This enables the classification of mesoscopic disorder [33], and its relation to 

the Brownian dynamics, as we now explain.

From Eq. (2.22) it directly follows that the time-dependent instantaneous diffusion 

coefficient (1.2) approaches the finite bulk diffusion constant D∞ as a power law

Dinst(t) ≃ D∞ + const ⋅ t−ϑ, ϑ > 0, (2.27)

with the dynamical exponent [33]:

ϑ = (p + d)/2 (2.28)

related to the statistics of large scale structural fluctuations via the structural exponent p, and 

to the spatial dimensionality d.

To illustrate the above general relations, consider Poissonian disorder (uncorrelated 

restrictions, e.g., completely randomly placed disks in Fig. 2). Their density fluctuation 

within the “diffusion volume” Ld scales as the inverse volume, 〈(δn(r))2〉 1/Ld(t) t−d /2

according to the central limit theorem. Equivalently, Γ(k) → const ~ k0 as k → 0, i.e., the 

exponent p = 0. As a result, when restrictions are uncorrelated (or, more generally, short-
range disordered, i.e., have finite correlation length in their placement), the instantaneous 

diffusion coefficient approaches its macroscopic limit as

Dinst(t) ≃ D∞ + const ⋅ t−d /2 (2.29)
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in d dimensions, i.e., ϑ = (0 + d)/2. This is the intuitive picture behind the formal results 

[147, 148].

The approach described in ref. [33] generalizes this picture onto any universality class of 

structural disorder and enables identifying relevant structural fluctuations b y m easuring the 

dynamical exponent (2.28). This exponent manifests itself in the power law tail of the 

molecular velocity autocorrelation function (2.6)

𝒟(t) t−(1 + ϑ) (2.30)

and in the dispersive diffusivity,14 Eq. (2.8),

𝒟(ω) ≃ D∞ + const ⋅ (iω)ϑ (2.31)

whose real part is accessible with OGSE, Sec. 2.2.3.

Relation (2.28) provides a way to determine the exponent p (or the effective dimensionality 

d) and, thereby, the structural universality class, using any type of macroscopic time-

dependent diffusion measurement. Local properties, contributing to biological variability, 

affect the non-universal co-efficients, e.g., the values of D∞ and the prefactor of t−ϑ in Eq. 

(2.27), but not the exponent ϑ. The latter exponent is universal, i.e., is independent of 

microscopic details, and is robust with respect to variations between samples of a similar 

nature. From the point of dMRI in biological tissues, the exponent (2.28) is robust with 
respect to biological variability.

We can also see that the stronger the fluctuations (the smaller the exponent p), the smaller is 

the dynamical exponent ϑ, i.e., the slower is the approach to D∞. Physically, this happens 

because it takes longer for the coarse-graining to self-average the sample’s structural 

fluctuations. Conversely, if a sample is regular (a periodic lattice, formally equivalent to p 
→ ∞), the approach of D∞ will happen exponentially fast (i.e., faster than any finite 

inverse power law) [33].

The above approach exemplifies the power of an effective theory way of thinking, where, to 

make fairly general statements about the relation between the diffusive dynamics and the 

structural disorder, we did not have to solve the full non-perturbative problem (starting from 

the microscopic restrictions n(r)), but instead ended up solving a relatively simple problem 

of finding lowest-order corrections [27, 33] to Gaussian diffusion in a weakly heterogeneous 

medium.

Note that the undefined constants in Eqs. (2.27) and (2.31) are different. It is possible to find 

a more precise correspondence between the time-dependent terms in Dinst(t) and 𝒟(ω) by 

using Eq. (2.12) followed by contour integration in the complex plane of ω, yielding

14The dispersive terms reads iω ln(–iω) for the special case of ϑ = 1, hence Re𝒟(ω) will depend on ω as |ω|, cf. ref. [23].
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t−ϑ π /2
Γ(ϑ)sinπϑ

2
⋅ ωϑ, ϑ < 1 (2.32)

(here Γ(ϑ) is Euler’s Γ-function; cf. also ref. [33], compare Supplementary Eqs. [S17] and 

[S18].)

The above “conversion” between PGSE and OGSE works for Dinst(t). However, the 

cumulative D(t) follows the behavior (2.27) only for ϑ < 1; for ϑ ≥ 1, the PGSE D(t) 
expansion at long t will begin with the 1/t term, due to the integral in inverting the relation 

(2.10),

D(t) = 1
t 0

t
dτDinst(τ) (2.33)

converging at short t for the t−ϑ term with ϑ > 1 in Dinst(t). Therefore, the structure-specific 

dynamical exponent (2.28) is masked in PGSE if it exceeds unity; to reveal it, one has to use 

Dinst(t), which amounts to differentiating noisy experimental data [33, 142]. The borderline 

case ϑ = 1 has been considered in detail in ref. [23]; the PGSE diffusion coefficient has a (ln 

t)/t tail due to the logarithmically divergent integral in Eq. (2.33),

D(t) ≃ D∞ + A ⋅
ln(t /t c)

t , t ≫ t c max{tc, δ}, (2.34)

whereas the OGSE counterpart is given by

Re𝒟(ω) ≃ D∞ + A ⋅ π
2 ω , ω tc ≪ 1. (2.35)

Here tc lc
2/D∞ is the time to diffuse across the correlation length of the corresponding 

disordered environment (e.g., correlation length of the disordered axonal packing [23] in the 

case p = 0 and d = 2 considered below in Sec. 2.4.2). When the pulse duration δ exceeds tc, 
it starts to play the role of a cutoff time for the power-law tail [23–26].

Finally, we give one more illustration of the absence of any universal relation between PGSE 

diffusion time and OGSE frequency ω = 2πν addressed in Sec. 2.2.3. The PGSE-OGSE 

correspondence, empirically, means that the constants in the tail t−ϑ in D(t), and in the ωϑ 

tail of Eq. (2.31) are equal. According to Eqs. (2.32) and (2.33),

regime (ii): t =
2Γ(ϑ)sinπϑ

2
π(1 − ϑ)

1/ϑ

⋅ 1
2πν , ϑ < 1. (2.36)
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This relation is neither obvious, nor has it anything to do with the empirical Eq. (2.19). For 

example, for ϑ = 1/2 (random permeable barrier model [51] or short-range disorder in d = 1 

relevant for the neurites, Sec. 2.4.2 below), we obtain t = (4/π2)/ν. And besides, Eq. (2.36) 

only applies for ϑ < 1; for media characterized by larger ϑ, the power-law PGSE and OGSE 

tails will not match.

2.4.2. Validation and applications—Probing the diffusivity time-dependence at long 

times potentially allows for identifying the disorder universality class of the mesoscopic 

structure, which then helps to parsimoniously model the relevant features of tissue 

architecture and extract the corresponding tissue length scale(s) and other parameters.

Validation with Monte Carlo simulations:  Equation (2.28) was verified in d = 1 MC 

simulations using different placements of identical permeable barriers, according to periodic, 

short-range, hyperuniform, and strong disorder classes [33]. The same relation for the p = –1 

universality class of random permeable membranes in d = 2 was verified in ref. [51]. The 

borderline “log” case of ϑ = 1 for p = 0 in d = 2 dimensions, Eq. (2.34), was verified in ref. 

[23] in the t-domain. In ref. [149], the same universality class was considered in the ω-

domain, verifying Eq. (2.35) and revealing the dependence of the prefactor A on the degree 

of disorder in fiber packing. Subsequently, the scaling (2.28) was verified with MC along 

synthetic model neurites, dimension d = 1, featuring realistic spines, leaflets and beads 

placed randomly according to the Poissonian statistics, p = 0 [150]. The deviation from the 

ϑ = 1/2 power law at the longest t may be attributed to the periodic boundary conditions for 

a relatively short sample. In the same setting, Eq. (2.17) transverse to the neurites was 

verified for the sub-ms times, regime (i).

A more empirical approach [151] was employed for diffusion of cell-specific metabolites up 

to t = 2 s that was measured by diffusion-weighted MR spectroscopy in vivo. Due to the 

broad time range, the D(t)-dependence was more pronounced, in comparison to the earlier 

measurements [152] for the narrower t-ranges. Distinct tissue morphologies were recognized 

by comparing with large-scale MC simulations for particles diffusing in many synthetic cells 

generated as tree-like structures, by varying statistics of the number of processes, branches, 

and segment lengths. While the simulations matched the measurements, the relevant 

structural degrees of freedom and the associated functional forms of the t-dependence were 

not unequivocally identified.

Validation in phantoms:  The exponent (2.28) corresponding to the short-time disorder, p = 

0, has been demonstrated in d = 2 dimensions in an anisotropic fiber phantom mimicking the 

extra-axonal space [23] (ϑ = 1, leading to the ln t singularity in the PGSE D(t), Eq. (2.34)), 

as well as more recently in a d = 1-dimensional phantom [142] for which ϑ = 1/2 for p = 0 

and ϑ = 3/2 for hyperuniform placement of permeable membranes (p = 2).

Cortical GM was probed with OGSE in rat [123] and mouse [126, 127], Fig. 7. It was 

suggested [33], that the apparent ωϑ behavior with ϑ = 1/2 can be explained by the 

dominance of the effectively d = 1-dimensional diffusion along the narrow neurites with the 

short-range disorder (e.g., spines, beads, varicosities) along them [153–155]. The 

varicosities are known [156, 157] to become more pronounced in ischemia, which is 
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consistent with the increase in the structural disorder-induced coefficient in front of the ω-

dependent term in Eq. (2.31). Conversely, assuming short-range disorder (e.g., in the 

varicosity placement), the power law exponent ϑ = 1/2 then validates the effectively d = 1-

dimensional diffusion along the so-called “sticks” (narrow channels used to model the intra-

neurite space), cf. Sec. 3.1 below.

Human WM was probed in vivo in both the longitudinal [34] and transverse directions [34, 

122]. The time-dependence of longitudinal diffusivity suggests restrictions are present along 

axons, which, similar to the GM case above, augments the commonly used “hollow tube” 

model for diffusion inside and outside neurites (cf. Sec. 3.1). The “hollow tube” filled with 

some effective Gaussian medium with diffusion coefficient D∞ becomes an effective theory 

technically valid only in the t → ∞ regime (iii); for finite t, non-Gaussian effects (time-

dependent D(t) and higher-order cumulants) will be present.

Recent quantitative analysis [34] based on Eq. (2.27) for d = 1, revealed that this time-

dependence is compatible with short-range disorder in the placement of restrictions along 

axons. Intriguingly, the corresponding correlation lengths of about 3 − 7 µm are similar to 

those reported in the literature for varicosities along axons [153–155], suggesting them as 

potential sources for the reduction of the longitudinal diffusivity with time. Varicosities are 

often found to be rich in mitochondria and could therefore form obstacles for the diffusion 

along the fibers, or they could act as temporary traps for the longitudinal diffusion. 

Additional potential sources of the short range disorder could be axonal undulations [141, 

158], or functional gap junctions unevenly spaced between 20 and 60 μm along the myelin 

sheath in sciatic nerve [159].

Note an interesting observation that the reduction in the diffusivity in acute stroke patients 

occurs predominantly along the axons when measured at the frequency ω/2π = 50 Hz, while 

the decrease in both the longitudinal and transverse directions directions is observable for 

the diffusion time 40 ms [160]. Originally explained by axonal beading, this effect has to be 

taken into account in more general models of the diffusion response to tissue damage.

2.4.3. Axonal diameter mapping—Quantifying µm-level structure of neuronal tracts 

in vivo has been brought to the forefront of neuroscience research primarily due to the 

axonal diameter mapping (ADM) concept, developed within the CHARMED and AxCaliber 

frameworks ([57, 58, 161]) and their extensions [59, 162]. Their common theme is the focus 

on the intra-axonal compartment (assuming no exchange) as the source of the diameter 

sensitivity, while typically approximating axons as impermeable cylinders, and building on 

exact solutions [17, 21, 103, 138]. Water diffusion in the extra-axonal space in all of the 

above approaches is approximated as Gaussian (time-independent).

Large overestimation of axonal diameters, by factors 3–15 in humans, cf., e.g., refs. [59, 

163], provoked a debate [164– 166] about the feasibility of the method. It has been since 

recognized that ADM may be confounded by two issues.

The first ADM issue is the smallness of the signal attenuation for typical, i.e., thin axons. 

The attenuation inside a cylinder up to 𝒪(g2) (GPA) is given by van Gelderen’s formula 
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[118] that depends on the PGSE sequence timings ∆ and δ. However, in the practically 

relevant case δ ≫ r2/D0, the dependence on ∆ drops out, hence the diffusion time is not 

actually being used to probe the cylinder diameter. This is the Neuman’s limit [21], in which 

the attenuation

−ln S
S0

≃ 7
96

g2r4 ⋅ 2δ
D0

≈ 4.3 ⋅ 10−6 (2.37)

is proportional to the total time 2δ the gradients are on. The proportionality to the time 2δ 
can be understood in terms of the mapping onto the transverse relaxation in the diffusion-

narrowing regime, where ∼ (gr)2 · r2/D0 is the effective R2
∗ rate constant [26]. The above 

attenuation was evaluated for typical values of the Larmor frequency gradient g = 0:0107 

(μm · ms)–1 corresponding to 40 mT/m; free axoplasmic15 D0 = 2:4 μm2/ms; pulse duration 

δ = 10 ms, and a typical inner diameter 2r = 1 μm [80–84].16

Likewise, the OGSE attenuation −ln S
S0

≃ b ⋅ Re𝒟(ω) in the relevant ωr2/D0 ≫ 1 limit [cf. 

Eqs. (B5) and (B7) in Appendix B]

−ln S
S0

= 7
96

(g0
2/2)r4 ⋅ T

D0
(2.38)

becomes independent of the OGSE frequency ω and of the OGSE initial phase ϕ, since b ~ 

T/ω2 and Re𝒟(ω) ω2. The analogy with Eq. (2.37) becomes obvious if we realize that, 

following the mapping onto the transverse relaxation in the presence of an (oscillating) 

gradient g = g0 cos(ωt – ϕ), what matters is the total time 2δ → T the gradients are on (here 

T = N · 2π/ω is the total OGSE train duration), and the time-averaged gradient power 

g2 g2(t) = g0
2/2. In other words, in the low-frequency limit, OGSE is just the Neuman’s 

limit (2.37) albeit with the reduced average gradient amplitude, since the gradients are not at 

their peak value all the time. This yields that OGSE is not beneficial to map small 

compartment sizes, and does not provide any independent parameter combination, in the 

limit ωr2/D0 ≪ 1 (cf. Appendix B). Obviously, the most optimal setting is to keep the 

diffusion gradient at its maximum all the time 2δ ≲ T2, cf. Eq. (2.37). Practical resolution 

15This value is based on the observation [167] that axoplasmic diffusion coefficient in squid giant axon is 20% below the water 
diffusion coefficient at the same temperature, and is consistent with the recent estimate of Da ≈ 1.9 – 2:4 μm2/ms along axons in 
human WM at t = 50 ms obtained by suppressing extra-axonal compartment using either high b [168] or planar diffusion encoding 
[141], which sets a lower bound for D0. Another large axon study in excised lamprey spinal cord [169] reported a similar deviation of 
about 25% for the longitudinal diffusion coefficient from the free water diffusion coefficient. A somewhat larger value was reported in 
excised pig spinal cord [170]. Alternatively, using NAA as an intracellular reporter molecule, the ratio for the in vivo measured 
parallel diffusion coefficient in the corpus callosum relative to its diffusion coefficient in dilute aqeous solutions, ranges from 0.4 up to 
0.46 [36], corresponding to estimates of water Da ~ 1.2 – 1.8 μm2/ms.
16Here we consider brain; axons are about factor of 5 thicker in the spinal cord, and the ADM prospects are much better there [124, 
171–174], due to the r4 scaling in Eq. (2.37); see, however, the need for beyond-GPA corrections discussed below.
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limits for axonal radii depending on the SNR and fiber geometry were considered for both 

pulse-gradient and OGSE sequences [175–177].

The second ADM issue is potentially more significant. Had the above smallness been the 

only problem, we would just not see any dependencies of intra-axonal signal on 

experimental parameters. Yet the fits of ADM model to data do show definitive trends in the 

estimated “apparent diameters” —for instance, with the gradient strength [163]—suggesting 

some unaccounted physical phenomenon. This has prompted taking into account the coarse-

graining outside [23] randomly packed axons. The (ln t)/t term (2.34) from the extra-axonal 

space appears to completely overwhelm the weak attenuation (2.37) in simulations [23] and 

in the recent D(t) measurements transverse to human WM fiber tracts [34, 122]. This reveals 

an exciting unexpected mesoscopic effect: The structural disorder in axonal packing within a 

WM fiber bundle completely changes the interpretation of ADM at low to moderate 

diffusion weightings. Furthermore, recently observed logarithmic dependence on the pulse 

duration δ in human WM [26], cf. Eq. (2.34), instead of the linear one, Eq. (2.37), and 

validated in a fiber phantom [25], confirms the mesoscopic extra-axonal origin of the 

“apparent” ADM effects.

The decreasing apparent diameter trend with increasing gradient strength [163] is consistent 

with eventual suppression, as e
−b(D∞ + Alnt /t)

, of the extra-axonal contribution; however, 

since the transverse D∞ ≲ 0.5μm2/ms (cf. Section 3), very large b-values are needed to fully 

suppress this effect [178]. However, when sufficiently strong gradients are used in animal 

settings, the GPA results of van Gelderen [118] and Neuman [21] should be corrected. 

Unfortunately, no analytical solution exists beyond GPA for finite δ. Lee et al. [26] 

estimated that the GPA will break down when g ≳ g∗ = D0/r3 for axons of radius r. This may 

become relevant for large axons: e.g., for r = 3 µm and D0 = 2 µm2/ms, the critical gradient 

g∗ corresponds to 277 mT/m. Furthermore, the next-order 𝒪(g4) correction to the right-hand 

side of Eq. (2.37) will be of the same sign as the main effect, scaling as g4r10δ/D0
3, implying 

that strong gradients cause extra attenuation relative to what GPA predicts. If the GPA is 

used instead of the exact solution, the GPA-derived radii will be overestimated, which may 

explain some residual overestimation of axonal radii in a recent animal study with gradients 

as large as 1.3 T/m [178].

We note that an even stronger dominance of the extraaxonal contribution occurs in the 

OGSE domain, since the fully confined water (within an impermeable cylinder transverse to 

its axis) yields a regular, ω2 contribution to Re𝒟(ω) (Appendix B), whereas the extra-axonal 

water would contribute linearly, as |ω|, cf. Eq. (2.31) with ϑ = 1. The linear term will 

dominate at low ω, in agreement with the linear dispersion observed transverse to fibers with 

OGSE by Portnoy et al. [179] and analyzed in ref. [23]. Such linearity has been also 

observed in rat spinal cord by Xu et al. [124, 172].

The predominance of the |ω| scaling means that using OGSE is not optimal for probing inner 

axonal diameters — not just numerically as discussed after Eq. (2.38), but parametrically! 

However, the |ω| scaling makes OGSE parametrically better for probing the extra-axonal 
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space geometry. We warn that the gradient waveform optimization which does not account 

for the mesoscopic effects in the extra-axonal space may sometimes give unfair preference 

to OGSE [175–177].

Overall, the above mesoscopic effects, measured in vivo on both animal and human 

scanners, may enable a novel kind of structural contrast at the micrometer scale (e.g., axonal 

loss and demyelination), and open up exciting possibilities of monitoring subtle changes of 

structural arrangements within GM and neuronal tracts in disease, aging, and development.

2.5. Mesoscopic fluctuations

When ADM is feasible (e.g., spinal cord, due to much larger r), Neuman’s r4 scaling (2.37), 

together with volume-weighting ∼ r2, gives a large weight to a small number of axons with 

largest diameters, effectively measuring [23]

rNeuman = r6/r2 1/4
, (2.39)

where the averages are taken over the voxel-wise axonal distribution. Hence, the metric 

(2.39) may become susceptible to the mesoscopic fluctuations governed by the tail of the 

distribution (practically, for sufficiently small voxels in which such fluctuations can be 

pronounced). Additionally, sampling fluctuations confound the comparison of dMRI 

measurements with histology, — where the metric derived based on, e.g., Eq. (2.39) can be 

strongly sample-dependent, especially if small fields of view are utilized.

This general phenomenon of rare structural configurations determining the measurement 

outcome has parallels with similar effects found in hopping conduction in disordered 

semiconductors, kinetics of reaction-diffusion systems, and other phenomena in disordered 

media [92, 180, 181]. In our case, an incidentally large number of thick axons may 

significantly skew the intra-axonal attenuation for a particular voxel. This could lead to 

strongly enhanced variations (relative to those expected based on the measurement noise 

alone) in the corresponding parametric maps.

The issue of the mesoscopic flucutations is fundamental, and the separation of the effects of 

biological variabiilty from the randomness in measurement outcomes due to the thermal 

noise requires model-independent ways of estimating local noise level [182, 183], as well as 

precisely quantifying the tails of the corresponding distributions of biophysical tissue 

parameters (e.g., of the axonal diameter distribution [80–84]).

3. THE t → ∞ LIMIT, REGIME (III): MULTIPLE GAUSSIAN 

COMPARTMENTS

All science is either physics or stamp collecting

Ernest Rutherford
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The flamboyant century-old quote of a founder of the atomic age could be excusable, as 

scientific disciplines other than physics in his days were mostly collecting empirical 

information. Today, with so much more knowledge about the world and the associated 

abundance of data, Rutherford’s quote could as well sound “All science is either physics or 

fitting”. While the purpose of physics remains to identify relevant parameters and to produce 

an explanation (an effective theory), and its instance for a particular measurement — a 
model [70], the complexity of models and the amount of data have turned parameter 
estimation into a field on its own, if not into a multitude of fields, employing a wealth of 

approaches, known under different names and incorporating advanced tools of statistics, 

machine learning and artificial intelligence. Within MRI, modern parameter estimation 

approaches are tied to the idea of undersampling, typically of the k-space data, which 

spurred the applications of compressed sensing [184, 185] and MR fingerprinting [186].

Tissue microstructure mapping presents its own set of parameter estimation challenges. As 

we will illustrate in this Section, while from the physics standpoint, the dMRI models in the 

t → ∞ regime become trivial (a sum of Gaussians = exponentials in b), their number of 

parameters, and the inherent degeneracy of the fitting landscape in face of the typically low 

SNR of dMRI acquisitions, have turned parameter estimation into an active area of 

investigation. In other words, the problem remains largely unsolved — even with a densely 

sampled q-space, and fully sampled k-space. So far, arguably, most intellectual efforts in the 

regime (iii) (as defined in Sec. 1.5) have been spent on the “fitting” rather than on the 

“physics”. This Section is hence primarily about the parameter estimation aspect of 

modeling (cf. Sec. 1.1).

Below, after introducing the stick compartment in Sec. 3.1, we formulate the overarching 

Standard Model of diffusion in neuronal tissue as a sum of anisotropic Gaussian 

compartments (Sec. 3.2, Figs. 4 and 8), and then discuss challenges of its parameter 

estimation, Sec, 3.3, focussing on its degeneracies. We subsequently review works involving 

constraints on the Standard Model parameters (Sec. 3.4), followed by the unconstrained, 

rotationally-invariant methods (Sec. 3.5), and conclude this Section with a summary of 

unresolved issues (Sec. 3.6).

3.1. Neurites as “sticks”

3.1.1. Theory and assumptions—In this Section, we assume that the t → ∞ regime 

(iii) has been practically achieved, and neglect the time-dependent power-law “tails” 

describing the approach of the diffusion coefficient to its tortuosity limit, discussed in 

Section 2.17

Full coarse-graining in the intra-neurite space then leads to the most anisotropic Gaussian 

compartment possible — the so-called “stick” compartment — first introduced by Kroenke 

et al. [36] and Jespersen et al. [37] in 2004–2007. Its main features are:

17Mathematically speaking, a power-law approach, being scale-invariant, means that the t → ∞ regime is never fully achieved — 
there is no time scale that tells us where we can neglect the residual non-Gaussian effects in each compartment. However, practically, 
their detection limit is set by a finite SNR.
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1. A stick is a cylinder whose radius r is negligible compared with the “free” 

diffusion length D0t at given t. Equivalently, the transverse diffusion 

coefficient inside neurites Da
⊥ ≃ r2/4t 0.01μm2/ms for typical t 100 ms is 

negligible compared to D0 ≈ 2.4 µm2/ms,18 and hence can be set to zero,Da
⊥ 0. 

In other words, the measurement is insensitive to neurite radii (cf. discussion in 

Sec. 2.4.2).

2. The longitudinal diffusion inside a neurite becomes Gaussian, with the 

macroscopic (tortuosity) asymptote Da. Of course, Da, being the effective coarse-

grained parameter, can be notably reduced relatively to the intrinsic axoplasmic 

diffusion coefficient D0, cf. Section 2. The parameter Da takes into account all 

restrictions, such as varicosities (beads) and undulations, along the (average) 

neurite direction. Hence, it can have important biophysical and diagnostic value 

in the cases when the structure along neurites changes, e.g., in acute stroke [156, 

157, 160] and in Alzheimer’s disease [187].

3. Exchange between intra- and extra-neurite water can be neglected, at least at the 

time scales t used in clinical dMRI. Measuring exchange times in vivo is very 

difficult, making this assumption hard to validate. The consensus so far has been 

that this assumption holds for WM tracts, where sticks represent (myelinated) 

axons (and possibly some glial processes). The filter-exchange study in [188] 

supports the presence of two compartments in healthy brain WM with the 

exchange time of about 1 s, consistent with assuming negligible exchange on the 

clinical t ~ 100 ms time scale. At which t this assumption might break for glial 

cells, dendrites in GM, or for unmyelinated axons, is a subject of investigation. It 

was hypothesized [189] that transcytolemmal water exchange in astrocytes is 

fast, since inhibition of aquaporin-4 significantly reduced the diffusion 

coefficient already for t < 25 ms, without modifying tissue histology. However, 

recent work [190] of measuring T1 in the presence of fast extra-cellular flow for 

cultures of astrocytes and neurons grown on beads puts the intracellular 

residence time around 570 and 750 ms, correspondingly. Likewise, MR 

relaxation measurement [191] in the live rat brain organotypic cortical cultures 

yields the net cellular water efflux rate 2.02 s−1, with a significant fraction (~34 – 

45%) of this exchange rate attributed to active transcytolemmal exchange related 

to the Na+-K+-ATPase activity.

From the modeling standpoint, the stick compartment is the defining feature of dMRI 

inherent to the neuronal tissue, as compared to all other kinds of soft tissues. It is chiefly 

responsible for the anisotropy of the diffusion propagator in the brain (at least, in the white 

matter), and in spinal cord (where finite axonal radii can be detected, see footnote 16).

The diffusion propagator for a stick pointing in the unit direction n, measured in the unit 

gradient direction g,

18See footnote 15 in Section 2
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Gn(g, b) = e
−bDa(g ⋅ n)2

(3.1)

is determined by cosθ ≡ g ⋅ n, where θ is the angle between g and n. The signal is not 

suppressed for g ⊥ n and decays fast with b when g | |n. Hence, when bDa ≫ 1, the stick 

dMRI response (3.1) becomes a thin “pancake”, non-negligible when n ⋅ g ≲ (bDa)−1/2

nearly transverse to g, whose angular thickness scales as δθ 1/ bDa [168, 192, 193]. Both 

estimates follow from setting the argument of the exponential to unity.

3.1.2. Validation of the picture of sticks—An extensive review of dMRI validation 

studies is beyond the scope of this article. However, given the essential role sticks play in 

dMRI models, we mention the following two kinds of results.

First, metabolites, such as N-Acetylaspartic acid (NAA), intrinsic to the intra-neurite space, 

can be used to identify the stick compartment, as reviewed by Ackerman and Neil [152]. A 

seminal NAA study was performed by Kroenke, Ackerman and Yablonskiy [36], who 

demonstrated a very good agreement between the dMRI signal from large voxels in rat brain 

averaged over three gradient orientations, at diffusion times t = 50 − 100 ms, and the 

isotropically averaged stick signal,

dn Gn(g, b) = π
4bDa

erf bDa , (3.2)

where erf is the error function. Taking a large voxel, which presumably has all neurite 

orientations, and subsequently averaging over 3 directions, maps the signal to that from a 

completely random stick arrangement, first considered by Callaghan [54] in 1979, and 

subsequently by Yablonskiy et al. [55] in 2002 for 3He diffusion in the lung, resulting in Eq. 

(3.2) (Fig. 4). The agreement with the theory (3.2) was very good in the whole range 

0 < b ≲ 20ms/μm2 [36]. Recent directional NAA imaging by Ronen et al. [194], quantifying 

the dMRI signal anisotropy, agrees well with the structure tensor [195] derived from the 

axonal histology in the corpus callosum.

Second, for the water dMRI, identifying a distinct functional form inherent to the stick 

compartment can also validate the pictures of sticks at sufficiently large b, when the extra-

neurite signal becomes exponentially suppressed (because the extra-neurite diffusion 

coefficient is nonzero in any direction), while the intra-neurite signal is only suppressed as a 

very slowly decaying power-law ~ b−1/2, scaling as the width of the pancake-shaped stick 

response function (3.1), cf. Eq. (3.2) and refs. [168, 192, 193]. The recently observed [168, 

193] power-law water signal attenuation in human WM in vivo, isotropically averaged over 

multiple gradient directions g,
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S |bDa ≫ 1 ≃ β ⋅ b−α + γ, (3.3)

with exponent α = 1/2, provides a unique signature of axons as sticks for water dMRI. The 

isotropic average (cf. Sec. 3.5.1 below) of the signal makes it equivalent to that from 

isotropic set of sticks, cf. Eq. (3.2) above, with erf approaching 1 at large b.

Either detectable axonal diameter values, or a notable exchange rate between intra- and 

extra-axonal water, would destroy the very particular stick-related b−1/2 scaling (3.3). In 

particular, the analysis in ref. [168] shows that, had the axonal diameters been notably higher 

than their histological estimates of ~1 µm [80, 81, 83], as the ADM results often show (cf. 

Sec. 2.4.2), the power law exponent α would differ from 1/2 for b ≤ 10 ms/µm2. Hence, 

human dMRI measurements are practically insensitive to axonal diameters even with 

gradients of 80 mT/m employed, confirming the first stick assumption in Sec. 3.1. The 

human measurement [168] also revealed that the immobile water fraction, not decaying with 

b for any direction, is below detection limit. The same conclusion was made independently 

using isotropic diffusion weighting [196]. Small and slightly negative γ, of about 1%, is a 

signature of the breakdown of zero-radius stick picture relevant at very high b [168].

A low, but measurable transverse intra-axonal diffusivity, even in vanishingly thin axons, can 

emerge from deviations of their form from perfectly straight sticks [141, 158]. Measurement 

with suppression of extra-axonal signal in the human brain suggests 2da
⊥ = 0.13 ± 0.04μm2/ms

for the diffusion time about 120 ms, which was obtained as the difference between the trace 

of intra-axonal diffusion tensor and the longitudinal diffusivity, Da [141].

3.2. The Standard Model of diffusion in neuronal tissue

3.2.1. Theory—With the intra-neurite diffusion modeled as a collection of sticks, and the 

isotropically fully restricted water out of the picture, how should we model the remaining 

water? The answer depends on the coarse-graining length scale.

If the diffusion time is as large as needed for water molecules to sample a statistically 

representative part of the extra-neurite space (ENS) within a voxel, then diffusion in this 

space should become Gaussian and be described by the overall ENS diffusion tensor, 

SENS exp(−bi jDi j
ENS), where the b-matrix bij = qiqjt ≡ bgigj depends on the components of 

the unit diffusion gradient g, cf. Eqs. (1.8) and (1.10). The ENS tensor DENS would then by 

definition describe all ENS water, including cerebrospinal fluid (CSF) that could, e.g., 

contribute if a voxel contains part of a ventricle.

Practically, such very long-time limit is never realized for a macroscopic voxel. For typical 

diffusion times t = 50 – 100 ms, the corresponding diffusion length L(t) ~ 10 μm defines the 

coarse-graining window, where the diffusion properties locally become (almost) Gaussian. 

At this scale, the neuronal tissue, at least in the WM, looks as a highly aligned fiber segment 

(fascicle)19, Fig. 8, the leftmost image. Because the fibers are locally coherent at the scale 
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L(t), the local ENS tensor Di j
ENS(r) can differ at the different positions r within a voxel if 

they are separated by distance much exceeding L(t) (for instance, if a voxel contains fiber 

crossings).20 This local microscopic anisotropy of ENS suggests that, strictly speaking, the 

ENS diffusion is never Gaussian — but is rather a sum of local anisotropic Gaussian 

contributions, which are highly aligned with the corresponding local stick arrangements.

These coarse-graining considerations lead to the general picture of anisotropic 

compartments, Fig. 8. The signal measured in the unit direction g, is a convolution21

Sg(b) =
n = 1

dn𝒫(n)𝒦(b, g ⋅ n) (3.4)

between the fiber orientation distribution function (ODF) 𝒫(n) normalized to ∫ dn 𝒫(n) ≡ 1, 

and the response kernel 𝒦 from a perfectly aligned fiber segment (fascicle) pointing in the 

direction n. The kernel 𝒦(b, g ⋅ n) depends on the relative angle θ, cosθ ≡ g ⋅ n(cf. Eq. (3.1). 

The general representation (3.4) gave rise to a number of methods for deconvolving the fiber 

ODF from the dMRI signal for a given |q| = q shell in q-space, using different empirical 

forms of the kernel [198–204].

Following the coarse-graining arguments above, the kernel’s functional form

𝒦(b, ξ) = S0 f e
−bDaξ2

+ (1 − f − f CSF)e
−bDe

⊥ − b De − De
⊥ ξ2

+ f CSF e
−bDCSF , ξ = g ⋅ n,

(3.5)

is a sum of exponential (in b) contributions from the aligned intra- neurite and extra-neurite 

spaces, respectively modeled by a stick compartment, by the axially symmetric Gaussian 

compartment with transverse and longitudinal diffusivities De
⊥ and De

|| and the principal 

direction along the stick, and the CSF compartment, cf. refs. [45–47] and Fig. 8.

The myelin water compartment is typically neglected due to its short T2 time [205] as 

compared to the echo times TE employed in clinical dMRI. We emphasize that the fractions 

f and 1 – f are the relative signal fractions, and not the absolute water volume fractions, due 

to neglecting myelin water, as well as due to generally different T2 values for the intra-and 

extra-neurite compartments [48, 206]. The isotropic CSF compartment has DCSF ≈ 3 

μm2/ms. Because of the ODF normalization ∫ dn 𝒫(n) ≡ 1, the CSF term can be included in 

the kernel or added separately to signal (3.4); we choose to include it in the kernel (3.5), as it 

19cf. footnote 17; effectively, we neglect D(t) – D∞ within each fascicle.
20This picture might be not as definite in GM, where the dendrites are more intertwined, and the concept of the overall ENS tensor 
may be better justified [37, 38]. But then, much less is known about diffusion in GM overall, and the precise knowledge of in vivo 
neurite residence times is still lacking. Therefore, here we mostly discuss SM in the context of WM, leaving GM modeling as one of 
the unresolved problems in Sec. 5.2.
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makes the formulation (3.4) more elegant. In what follows, we will describe in depth the 

two-compartment kernel (3.5) with fCSF ≡ 0.

The overarching model (3.4) and (3.5) includes nearly all previously used models [36–48] 

(at least in the WM) as particular cases, also described in taxonomy studies in refs. [207, 

208] where some of the “models” are actually representations, in the sense of Sec. 1.7. In 

other words, the numerous models (and acronyms), corresponding to the right part of Fig. 4 

in Section 1, describe the same physics, and hence they are really the same model.

Because of the overall popularity and inclusiveness of the above picture, here we suggest to 

call the model (3.4)–(3.5) the Standard Model (SM)22.

We note that a major limitation of the SM kernel (3.5) is using the same scalar parameter 

values for different fiber tracts passing through a voxel (noted, e.g., in refs. [209, 210]), 

which prompted assigning different (albeit constant) fiber responses to different tracts to 

deconvolve the ODF [211–213], as an alternative.

3.2.2. Specificity and relevance of SM parameters—Over the past decade, it has 

become clear that the scalar parameters f, Da, De
|| and De

⊥, and the spherical tensor parameters 

(the spherical harmonics coefficients of the ODF 𝒫(n)), carry distinct biophysical 

significance. Deconvolving the voxel-wise fiber ODF, instead of relying on the empirical 

directions obtained by Fourier-transforming the dMRI signal from the q to r space, in 

principle provides a more adequate starting point for fiber tractography, an essential tool for 

mapping structural brain connectivity and for presurgical planning [214–218].

Furthermore, as illustrated further in Sec. 3.4.1, the ability to estimate scalar parameters of 

the kernel (3.5) would make dMRI measurements specific — rather than just sensitive — to 

μm-level manifestations of disease processes, such as demyelination [219–221] De
⊥ , axonal/

dendritic loss [221–224] (f), beading [225], inflammation and oedema (fCSF, as well as, 

potentially, mostly Da for cytotoxic and mostly De
||, De

⊥ for vasogenic oedema [226]). 

Combining f with the extraaxonal volume fraction derived either from tortuosity modeling 

based on De
⊥ [219, 220] or from the myelin volume fraction via relaxometry, would 

ultimately allow one to determine axonal g-ratio [227]. Since the precise nature and 

pathological changes in microarchitecture of restrictions leading to the scalar parameter 

values are unknown, ideally, to become specific to pathology, one needs to estimate f, fCSF, 

Da, De
|| and De

⊥ separately.

The first attempt to estimate the parameters and to validate the 2-compartment SM was 

performed by Jespersen et al. [38] using direct fitting to an extensive ex vivo data set 

covering bothWMand GM, while parametrizing the ODF using spherical harmonics Ylm up 

22The name is suggested by the tongue-in-cheek analogies with the Standard Model in particle physics. In both communities, SM 
represents the consensus knowledge about the subject, satisfactorily describes (almost) everything, has been out there for a while, and 
yet one really hopes that there is exciting physics beyond it — which is far more difficult to access. Our community has a doubtless 
advantage in that investigations beyond SM are much cheaper (cf. Section 2) than building particle accelerators.
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to l ≤ 4. (The ENS diffusion in this work was described by the overall tensor, whose 6 

components were estimated.) Data was acquired on a 16.4 T magnet using 16 shells with 0 ≤ 

b ≤ 15 ms/μm2 and 144 directions, with acquisition taking over 15 hours. The fraction f 
correlated well with AMG staining for the neurites, and the ODF directionality agreed with 

the histology. Further quantitative comparison of the predictions to histology was carried out 

in [228], where the neurite ODF was determined from Golgi stained cortical neurons in 

immature ferret brains.

While “brute-force” fitting of ~ 20 parameters could work for an extensive data set [38], 

clinical dMRI data is far noisier, with much less q-space coverage. Hence, because of the 

high dimensionality of parameter space and the unfavorable fitting landscape [44], SM 

parameter estimation for Eqs. (3.4)–(3.5) from realistic noisy clinical dMRI data has 

emerged as an overarching challenge (Sec. 3.3), which has until recently been addressed by 

introducing parameter constraints, as discussed further in Sec. 3.4. The open challenge of 

parameter estimation also means that the literature [36–48] differs largely in the ways SM 

parameters have been constrained.

3.3. The challenge: SM parameter estimation

3.3.1. SM parameter count—To quantify the problem’s complexity, we find here how 

many parameters Np the model (3.4) should have — and, hence, how many we have to 

estimate from (noisy) dMRI data. We follow here the treatment in ref. [47].

The answer depends on the maximal power lmax of the diffusion weighting b
lmax/2

q
lmax to 

which an acquisition is sensitive, at a given SNR (by the time-reversal symmetry of 

diffusion, only even lmax are considered). This can be seen either from the cumulant 

expansion (1.10) of lnSg(b), or, equivalently [18], from the Taylor expansion of the signal 

(3.4)

Sg(b)
S(0) = 1 − bMi1i2

(2) gi1
gi2

+ b2

2! Mi1…i4
(4) gi1

…gi4
− … (3.6)

in the fully symmetric moments Mi1…i4
(l) . These moments are proportional to angular 

averages ni1
…ni4

 over the ODF 𝒫(n), as it is evident from expanding the exponential terms 

containing ξ = nigi in kernel (3.5), such that subsequent terms have the form b nin j gig j, 

b2 ni1
…ni4

gi1
…gi4

, etc. The maximal (even) order l of the product ni1
…nil

 always appears 

with the corresponding power bl/2 of the diffusion weighting.

The symmetric tensors ni1
…nil

, after subtracting all possible traces, can be turned into the 

corresponding symmetric trace-free tensors (STF) of rank l [78], which are equivalent to the 
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set Ylm of the spherical harmonics (SH) discussed in Sec. 1.8 above. In other words, the 

ODF averages ni1
…nil

 correspond to the SH coefficients plm of the ODF,

𝒫(n) ≈ 1 +
l = 2, 4, …

lmax

m = − l

l
plmY lm(n) . (3.7)

In particular, the highest-order cumulant C
(lmax)

 or the moment M
(lmax)

 still practically 

resolvable from the signal, sets the maximal order lmax for the even-order SH expansion 

(3.7). The correspondence between lmax in Eq. (3.7) and the maximal order b
lmax/2

 in 

expansion (3.6) embodies the perturbative radial-angular connection in the q-space [47].

We note here an obvious corollary from the radial-angular connection in q-space: 

Oversampling the directions within the low-b shells does not improve angular resolution in 

estimating 𝒫(n) — in other words, optimal q-space coverage should match the sensitivity to 

the power b
lmax/2

q
lmax of the shell radius with the minimal number nc(lmax) of directions 

per shell. Naive sampling, say, 256 directions at b ≈ 1 ms/μm2 would not in principle yield 

better angular ODF resolution than, say, ~ 10 averages of 25 directions. Indeed, the clinical 

dMRI signal at this b-value can be fully described using 𝒪(b) (DTI, lmax = 2), or, at best, 

𝒪(b2)(DKI, lmax = 4) cumulant terms, corresponding to being sensitive to the ODF expansion 

coefficients plm up to l = 2 or l = 4 (containing 5 or 14 parameters). There is no way to 

determine, say, p6m and beyond, if the diffusion weighting is too weak for the b3 terms to be 

discernible at a given SNR.

Coming back to counting the SM parameters, the (minimum) Ns = 4 scalar parameters from 

the kernel (3.5) in the absence of CSF (or Ns = 5 if the CSF compartment is added), are 

complemented by the nc(lmax) – 1 = lmax(lmax + 3)/2 tensor parameters plm, where nc(l) is 

the number of the evenorder spherical harmonics coefficients up to the order l given by Eq. 

(1.14) in Sec. 1.8, and we subtracted one parameter because p00 = 4π is set by the ODF 

normalization. This yields the total SM parameter count

N p(lmax) = Ns + lmax(lmax + 3)/2 (3.8)

such that Np = 9, 18, 31, 48, … for lmax = 2, 4, 6, 8, … already for the two-compartment 

kernel (3.5), without including S(0) and fCSF in the count.

Equation (3.8) reveals that the model complexity grows fast, as lmax
2 , if we are to account for 

the rich orientational content of realistic fiber ODFs in the brain. For an achievable lmax ~ 4 

– 8, the dMRI signal in principle “contains” a few dozen parameters, none of which are 

known a priori.
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3.3.2. How many parameters are necessary?—We can now contrast the SM 

parameter count (3.8) with the number Nc(lmax) [Eq. (1.15) in Sec. 1.8] of independent 

parameters “contained” in the cumulant or moment series truncated at l = lmax. Since Nc(l) ~ 

l3 grows faster with l than Np(l) ~ l2, the moments/cumulants estimated from the signal 

should, beyond some l, contain more than enough information to determine all the 

corresponding SM parameters. Direct comparison of Eqs. (1.15) and (3.8) yields that

Nc(lmax) > N p(lmax) for lmax ≥ 4 (3.9)

for both 2- and 3-compartmental SM. This naive counting would let one believe that, having 

mastered sufficiently precise DKI parameter estimation (lmax = 4), we would be able to find 

all the scalar SM parameters, as well as estimate arbitrary fiber ODF up to p4m, Eq. (3.7).

This intuition, however, is deceptive, as the information content is not evenly distributed 
among all the Nc(lmax) components. It turns out that the minimal order lmax for which the 

moments/cumulants contain enough information to determine all SM parameters is lmax = 6, 

while at the lmax = 4 level, there exists a one-dimensional manifold (for Ns = 4), which can 

look as a single curve, or as two disjoint continuous “branches”, or families, of scalar 

parameters, which exactly match the signal’s moment tensors Mi1i2
(2)  and Mi1…i4

(4)

(equivalently, the diffusion and kurtosis tensors) [46, 47]. The two families of solutions, or 

the two parts of the above one-dimensional curve (“bi-modality”) technically emerge as the 

two branches of a square root in a solution for a quadratic equation. In what follows, we 

illustrate this effect with a toy model of parallel fibers [39, 40] and then show that increasing 

the model complexity does not cure the problem.

3.3.3. A toy model of bi-modality: Parallel fibers—Let us now see how two 

branches appear as solutions of a quadratic equation involving directional diffusion and 

kurtosis values for a very simple ODF of perfectly aligned fibers, for the 2-compartment SM 

case. Here we follow the cumulant-series DKI approach as in ref. [39]; an equivalent 

formulation in terms of the moments, cf. Eq. (3.6), can be found in ref. [47]. A similar 

approach was used to estimate white matter tract integrity (WMTI) metrics from DKI [40] 

and subsequently adapted [229] to enable their estimation with reduced data requirements 

using axially symmetric DKI [230].

Staying at the 𝒪(b2) level (DKI), the overall radial and axial components of the diffusion 

tensor, estimated from an ideally measured signal (the left-hand side), correspond to the 

following combinations of the scalar parameters (the right- hand side):

D⊥ = (1 − f )De
⊥ (3.10)

D = f Da + (1 − f )De, (3.11)
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and for kurtosis components [39, 40]

K⊥ = 3 f
1 − f , (3.12)

K =
3 f (1 − f )(Da − De)

2

D
2 . (3.13)

“Transverse” parameters f and De
⊥ are uniquely determined from K⊥ and D⊥:

f = K⊥

K⊥ + 3
, De

⊥ = 1 + K⊥

3 D⊥ . (3.14)

However, there are two possible solutions in the parallel direction. The duality arises from 

choosing [40, 47] the ζ = ± branch of the square root in Eq. (3.13),

Da − De = ζ . K
3 f (1 − f ) . D , ζ = ± 1. (3.15)

Here K || ∝ Da − De
|| ≡ ζ(Da − De

||), where ζ = sgn(Da − De
||). Note that, since the ground truth 

is unknown, our choice for the branch ζ may differ from the correct one.

From Eqs. (3.11) and (3.15), we find that, not surprisingly, the correct choice of ζ yields the 

true values Da and De
||. However, if the sign choice is wrong, then the “apparent” diffusivities 

do not agree with the true ones:

Da
app = (2 f − 1)Da + 2(1 − f )De, (3.16)

De

app
= 2 f Da + 1(1 − 2 f )De . (3.17)

Note, that in this case, as expected, De
||app

− Da
app = − De

|| − Da , i.e., the difference has the 

same absolute value and the wrong sign. In particular, for f = 1/2, the diffusivities are 

swapped, — i.e we mistake De
|| for Da and vice-versa. Yet the above “apparent” values can 

seem completely biophysically plausible, especially if f ≈ 0.5. From the above derivation it 

is evident that the bi-modality of the parameter estimation originates from having two tissue 
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compartments, and that the branch choice is certainly not obvious based on the parameter 

values estimated at low b.

3.3.4. Bi-modality beyond parallel fibers. Flat directions in the fitting 
landscape—The simplest nontrivial model revealing general degeneracies in parameter 

estimation, NODDIDA (Neurite Orientation Dispersion and Density Imaging with 

Diffusivities Assessment) [44], is a two-compartment SM variant (Ns = 4) that assumes a 1-

parameter Watson ODF shape [42] and sets fCSF 0. In this model, unconstrained nonlinear 

fitting has revealed two families (trenches) of biophysically plausible solutions to fit 

optimization already in the relatively small, (4+1)-dimensional, parameter space, and flat 
directions along them [44].

Hence, NODDIDA exemplifies the two-fold nature of the parameter estimation challenge. 

Beyond the existence of multiple parameter branches (a “discrete” degeneracy, as in the toy 

model above), each of them represents a shallow “trench” (a “continuous” degeneracy) in 

the parameter landscape of nonlinear fitting.

The flatness, or continuous degeneracy, can be formulated as having the number of 

estimated parameters exceeding the number of relations between the parameters obtainable 

from the data. In its simplest form, this problem exists already for the simplest single-

directional fitting with a biexponential function [75]. A normalized biexponential 

S = f e
−bD1 + (1 − f )e

−bD2 has 3 parameters; however, if b is low enough so that we are 

practically only sensitive to the terms ~b and b2 — i.e., when the DKI representation works 

well — we can only estimate 2 combinations of 3 model parameters, and will have a flat 

direction in the corresponding 3-dimensional fitting parameter landscape. (This problem 

persists in the presence of exchange, as discussed in ref. [231].)

The expansion (3.6) of the 2-compartment SM with any ODF into moments has been 

analytically and numerically shown to possess a similar kind of degeneracy. This frame-

work, called LEMONADE (Linearly Estimated Moments provide Orientations of Neurites 

And their Diffusivities Exactly) [46, 47], exactly relates the moment tensors M (l) to SM 

parameters. It turns out that, at the 𝒪(b2) level, there are only 4 independent equations, which 

relate rotationally invariant combinations of moments M (2) and M (4) to 5 SM parameters — 

the 4 scalar ones: f, Da, De
||, De

⊥, and the ODF invariant p2 (that characterizes the ODF 

anisotropy, defined in Sec. 3.5 below). Hence, the existence of the flat trenches in nonlinear 

fitting of NODDIDA is actually completely general; both the discrete bi-modality and the 

continuous trenches follow from the exact relations [46, 47] between the moments and the 

SM parameters, and will be present for any fiber ODF. Hence, it is only capturing the 

moment M (6) that can lift both kinds of degeneracies — as we mentioned briefly after Eq. 

(3.9) above — which is practically quite difficult to become sensitive to.

As for the “discrete” degeneracy, the works [39, 40, 44, 46, 47] have collectively raised the 

fundamental question: Which “branch” of parameters should be chosen, out of at least two 
biophysically plausible ones? In ref. [47], the discrete branch choice was formulated in 
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terms of the the ratio β between ground truth compartment diffusivities falling or not falling 

within the interval

4 − 40
3 < β < 4 + 40

3 , β =
Da − De

De
⊥ (3.18)

determined by the discriminant of a quadratic equation. Note that this condition involves all 

three compartment diffusivities, rather than just the two axial ones as in Sec. 3.3.3. Of 

course, only one branch corresponds to the truth; other(s) should be discarded. Obviously, 

selecting the wrong branch can radically change biophysical and diagnostic implications of 

the estimated parameters. Yet, branch choice is nontrivial, since often times, both parameter 

sets look equally biophysically plausible [40, 47], and it is very difficult to have a precise 

enough idea about the ground truth values, especially of De
⊥ whose precision crucially 

affects β. In Sec. 3.6, we will comment on the branch selection.

3.4. SM parameter estimation using constraints

Due to the challenge explained above (Sec. 3.3) of fitting the SM to noisy dMRI data, 

especially those acquired in clinical setting, most attempts of SM parameter estimation so 

far are based on superimposing additional constraints on both the scalar SM parameters, as 

well as the fiber ODF, to improve robustness of the fitted SM parameters.

An overview of employed models used so far is given in Figure 4. In what follows we 

consider two representative modeling approaches that have been popular because of their 

robustness, which potentially allows for clinical translation, and try to explain the 

quantitative differences in parameter estimates between them in the light of each model’s 

assumptions and consequent biases.

3.4.1. White Matter Tract Integrity metrics (WMTI)—WMTI, as proposed by 

Fieremans et al. [39, 40], extracts the 2-compartment SM parameters by relating the DKI 

components to scalar parameters in the aligned-fiber framework [39], already explained 

above (Sec. 3.3.3). Subsequently, the perfectly aligned approximation was somewhat relaxed 

by allowing for some dispersion within the fiber bundle, as described by an intra-axonal 

diffusion tensor, while the diffusion in the extra-axonal space is still modeled as an overall 

Gaussian compartment [40]. While the advantage of using DKI eliminated the need for 

direct nonlinear fitting to the diffusion signal, two different biophysically plausible solutions 

still exist similar to the two branches as described above (Sec. 3.3.3). In WMTI, the branch 

was chosen as Da < De
|| based on the available data [40]. Parameter histograms corresponding 

to this choice, yielded f ≈ 0.5, Da ≈ 1.2 µm2/ms and De
|| ≈ 2.5μm2/ms in human corpus 

callosum.

Since no specific model is assumed for the tortuosity De
|| /De

⊥, as De
|| and De

⊥ are fitted 

separately, along with Da and f, it was suggested the WMTI parameters could be used to 

disentangle between acute damage such as neurite beading, as reflected in Da [233], and 
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chronic damage including different types of demyelination and axonal loss, reflected in 

changes in the tortuosity, De
⊥ and f [219, 220]. As an in vivo validation, the age-related 

changes in the WMTI metrics were studied during the first two years of healthy brain 

development [232] (Figure 9), showing significant nonlinear increases in f, and De
⊥, related 

to increased myelination and axonal density, while no changes in the longitudinal 

compartment diffusivities, Da and De
||, as expected. Ex vivo animal validation studies 

provided reasonably accurate estimates of f in a mouse model of hypomyelination [234] and 

de-, and remyelination [221, 235]. Furthermore, mouse validation studies demonstrated that 

Da decreased during acute inflammation, while the axonal water fraction f decreased during 

the chronic phase of cuprizone intoxication [236], whereby De
⊥ and f were found to be 

respectively more sensitive to global and patchy demyelination [221]. These validation 

studies suggest increased specificity of the WMTI parameters to microstructural changes as 

compared to empirical diffusion metrics.

However, while the WMTI metrics correlate as expected with the concentration of (purely 

intra-axonal) NAA under the assumption Da < De
|| [237], it should be noted that the measured 

values of Da with low b dMRI protocols in the range of 1.0 – 1.2 µm2/ms are significantly 

lower compared to recently reported values for Da measured in the range of 1.9 – 2.4 

µm2/ms using advanced diffusion protocols providing additional information by varying TE 

[48], diffusion time [170], or using double diffusion encoding [238], cf. Sec. 4, planar [141], 

isotropic [239], or very strong multidirectional (linear) [168] diffusion encoding. Further 

research is warranted to understand whether the discrepancy is due to a wrong choice of 

branch (Da > De
||, cf. Sec. 3.6 below, which would affect primarily estimates of D and De

||, but 

not so much of f or De
⊥), or, alternatively, due to a potential bias when estimating cumulants 

dMRI data over a to large b-range [240] (affecting estimates for all model parameters).

We also note that branch selection (3.18) for the unconstrained problem (3.4)–(3.5) is 

qualitatively similar but quantitatively different from that in the WMTI highly-aligned tracts 

case [39, 40], cf. the toy model of Sec. 3.3.3. While qualitatively, the “wrong branch” in 

both the full model (3.4)–(3.5) and WMTI [40] corresponds, roughly, to swapping of intra- 

and extra-neurite parameters, there is no exact correspondence with the full model that 

includes dispersion; for instance, f and De
⊥ are also different between the branches. The 

difference between WMTI and the full model comes from the fact that in the toy model 

(WMTI prototype), the perfectly-aligned fiber constraint p2 = p4 = 1 has been implemented, 

together with effectively mixing the LEMONADE equations with moments M(4),2m and 

M(4),4m. Therefore, the branch choice based on sgn(Da − De
||) is sufficiently different from 

that of Eq. (3.18). An intermediate case between the two including dispersion was obtained 

in [44, 170], by constraining the ODF to the Watson distribution, effectively mitigating the 

degeneracy by parameterizing all pl in terms of the Watson distribution concentration 

parameter κ.
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3.4.2. Neurite Orientation Dispersion and Density Imaging (NODDI)—NODDI, 

proposed by Zhang et al. [42], is a 3-compartment SM that assumes a Gaussian-like 

(Watson) ODF shape characterized by one [42] or two [241] parameters. In addition, the 

three diffusivities are effectively fixed, in the following way:

1. De
|| = Da

2. Da = 1.7 µm2/ms

3. Mean-field tortuosity model [242],De
⊥/De

|| = 1 − f .

The estimated parameters are f and fCSF, as well as the ODF parameters (one or two 

parameters, depending on the Watson [42] or Bingham [241] distribution used).

Using high resolution ex vivo imaging, it was recently showed that Bingham-NODDI is able 

to capture the cortical fibers known to exhibit fanning/bending in human neocortex [243]. It 

was also shown that NODDI-derived dispersion agrees with histology measures in post-

mortem normal and demyelinating lesions in spinal cord samples [244]. Furthermore, recent 

work from Schilling et al. [245] shows a strong overall correlation between the fiber 

orientation dispersion index (ODI) derived from NODDI versus derived from histology 

based on 3D confocal z-stacks in areas to the size of an MRI voxel in adult squirrel monkey 

brains.

However, the same study [245] also showed a small, but systematic overestimation of the 

true histology-based ODI, as well as a correlation of NODDI-derived ODI with the estimates 

f and fCSF. Furthermore, recent extensive human measurements up to b ≤ 10 ms/µm2 [47] 

also suggest that the above three parameter constraints generally do not hold, and therefore 

may bias the estimates of the fractions and fiber dispersion.

While both NODDI and WMTI rely on the same overarching SM, they have different 

constraints, particularly in terms of the compartment diffusivities (fixed in NODDI, fitted in 

WMTI), the ODF (Watson in NODDI, single bundle in WMTI), and number of 

compartments (3 in NODDI, 2 in WMTI). The effect of these different constraints have been 

evaluated by studying changes in the model parameters through normal human early 

development [232] (Figure 9). In this work, qualitatively similar trends were observed in f, 
in full agreement with expected on-going myelination, fiber classification and asynchrony of 

development. The quantitative estimates, however, are model-dependent, exhibiting biases 

and limitations related to the models’ assumptions. Similarly, changes during the first two 

years in fiber dispersion in the splenium corpus callosum were qualitatively different 

between NODDI and WMTl. This illustration clearly calls for extreme caution when 

interpreting modeling studies based on limited clinical dMRI data, where accuracy is 

typically sacrificed in favor of precision. Indeed, both WMTI and NODDI have made 

assumptions that allowed for a robust, rather than accurate estimation of the SM model 

parameters that are not fixed according to each model. This prompts both for improved SM 

parameter estimation methods (discussed next in Sec. 3.5), as well as for “orthogonal” and 

more comprehensive validation methods to gain better understanding of the relevant tissue 

features of modeling (discussed in Sec. 3.6), prior to applying them to clinical dMRI data.
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3.5. ODF factorization and rotational invariants

Let us now introduce the recently proposed family of approaches to SM parameter 

estimation that do not rely on specifying the ODF shape, by factoring it out in a rotationally 

invariant way. This will enable separation of estimating the scalar and the tensor (ODF) 

parameters. Of course, all the degeneracies of the parameter estimation will persist — and in 

fact, factorization has been used as a tool to prove that the above discussed degeneracies are 

completely general [47].

Much like convolutions become products in the Fourier domain, the convolution (3.4) 

between the individual fiber response and the ODF becomes a product in the “spherical 

Fourier” domain (i.e., the SH basis) [197]:

Slm(b) = plmKl(b) (3.19)

where Kl(b) is the projection of the kernel 𝒦(b, ξ) onto the Legendre polynomial (–1)l/2Pl(ξ) 

[37, 45, 47].

Since any rotation transforms SH components Slm and plm according to a unitary 

transformation belonging to the (2l + 1)−dimensional irreducible representation of SO(3) 

group labeled by “angular momentum” l, 2-norms plm ≡ ∑m = − l
l plm

2 and Slm

(defined likewise) are conserved under rotations, i.e., are rotational invariants. It is thus 

convenient to introduce23 rotational invariants pl = plm /𝒩l and Sl = Slm /𝒩l, where 

normalization 𝒩l = 4π(2l + 1) is chosen so that 0 ≤ pl ≤ 1. Hence, equations (3.19) for the 

(l, m) SH components give rise to the corresponding equations for the rotational invariants 

[45, 47],

Sl(b, x) = plKl(b, x), l = 0, 2, … , (3.20)

where we denoted by x the dependence on the kernel’s scalar parameters x = { f , Da, De
||, …}

to be estimated. The invariant p0≡1 is trivial (ODF normalization); the remaining ODF 

invariants pl, one for each l, characterize its anisotropy irrespective of the chosen basis.

3.5.1. Isotropic l = 0 invariant K0(b)—The l = 0 invariant for Eq. (3.20) has been 

independently introduced as “powder averaging” and “spherical mean” [248– 253]. The 

ODF factorization in this case simply follows from swapping the order of integrations over g
and n:

S0 ∝ dg dn𝒫(n) 𝒦(b, g ⋅ n) = dn𝒫(n) dg 𝒦(b, g ⋅ n) ≡ 0
1dcosθ 𝒦(b, cosθ),

23The idea to operate with a single “energy” L2 norm per each “frequency” band l of SH has been previously applied, e.g., to the 
problem of shape matching in computer graphics [246] and recently for dMRI data harmonization [247].
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since ∫ dg 𝒦(b, g ⋅ n) is independent of fiber direction n due to the “translational invariance” 

on a unit sphere, and the ODF is normalized to ∫ dn 𝒫(n) ≡ 1. The last identity above gives 

the projection of kernel (3.5) onto the l = 0 Legendre polynomial P0(ξ) ≡ 1, where ξ = cos θ 
in our case; for a stick compartment, this projection yields Eq. (3.2) above.

3.5.2. Rotational invariants Kl(b) for l = 2, 4, …—Equation (3.20) formally yields an 

infinite family of rotational invariants Kl(b) [45, 47], one for every l = 2, 4, However, it turns 

out that by far the most useful is the next-order, l = 2 invariant, since the projections of 

e−bDξ2
 onto the Legendre polynomials with l > 2, giving the compartment contributions to 

Kl(b, x), are too slowly varying [37] and thereby adversely affecting the sensitivity to the 

estimated parameters x.

We also note that including the l > 0 invariants in system (3.20) is only possible for 

anisotropic ODFs, with pl > 0. Physically, it is expected since the less symmetric the system, 

the more inequivalent ways it enables for probing it.24 In the brain, the ODF is at least 

somewhat anisotropic; its lowest-order invariant p2 is generally nonzero even in GM.

Parameter estimation based on the ODF factorization via the rotational invariants amounts to 

inverting the nonlinear relations (3.20) with respect to model parameters x and pl. Such 

inversion has so far been technically implemented in four distinct ways:

a. Analytically inverting relations between their Taylor expansions — i.e., 

expressing model parameters in terms of the moments of the signal 

(LEMONADE) [46]. At typical bD ~ 1, the biases in estimating the moments 

cause notable bias in the model parameters.

b. Using the LEMONADE output as initialization for the RotInv solution of Eqs. 

(3.20) via nonlinear fitting using the gradient-descent optimization of the 

corresponding objective function [47]. This notably increases the accuracy of 

LEMONADE.

c. The prevalence method [47]: To avoid the branch selection issue, initialize the fit 

objective function for Eq. (3.20) with a large number (~ 20 – 100) ofrandom 

starting points within the plausible parameter range (e.g., 0 < f, p2 < 1, and 0 < D 
< 3 for all diffusivities), observe that the fit outcomes cluster around a few sets in 

the parameter space, and select the mean of the largest cluster (after excluding 

outcomes outside the bounds). The method works best for large b, say, 

b ≳ 5ms/μm2, since increasing b broadens the basin of attraction of the true 

minimum [44].

d. Machine learning framework: Generate distributions of the invariants based on 

the prior distributions of x, and numerically invert these relations based on the 

training set [45]. The invertibility of these relations requires the resolution of the 

bi-modality problem (section 3.3). In particular, the constraint of close traces of 

24This intuition underlies theory of quantum-mechanical excitations of nonspherical nuclei [254], where analogs of our rotational 
invariants are the corresponding irreducible tensor operators underpinning the Wigner-Eckart theorem.
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intra- and extra-axonal tensors, De
|| + 2De

⊥ − Da < 1.5μm2/ms, was applied 

according to results obtained using isotropic diffusion weighting [196]. While it 

is the fastest data processing method, it is sensitive to the way the training data 

are generated.

Overall, our current experience tells that, no matter the implementation, the sensitivity to 

different scalar parameters varies dramatically (e.g., f is obtained reasonably well while the 

sensitivity to De
|| and De

⊥ is much worse) [45, 47]; with decreasing SNR, methods (a)–(c) 

yield noisier parameter maps while method (d) yields “too clean” maps completely 

dominated by the mean values of parameter priors; branch multimodality manifests itself in 

the need for the branch selection (3.18) in all these approaches.

It is yet difficult to evaluate accuracy of these methods in vivo because of lack of 

understanding of what the ground truth is, and because all these methods are strongly 

dependent on the branch selection/initialization/priors.

The lack of precision (due to the “continuous” degeneracy of shallow trenches) generally 

exists due to the multicompartmental nature of the kernel (3.5) [47]. One can say that any 

standard (directional) dMRI measurement effectively under-samples the scalar part of the 

model (3.4), not providing enough relations between the scalar parameters (cf. Sec. 3.3.4 

above), and over-samples the tensor (ODF) part. In other words, the system’s true 

complexity lies within the kernel’s parameters hidden in functions Kl(b, x), Eq. (3.20) — 

while the ODF is in some sense “on the surface”.

This prompts the need for “orthogonal” measurement schemes [48, 141, 196, 253, 255–258] 

which probe the scalar parameters in different combinations than entering the kernel 

projections Kl(b, x), as we are now going to discuss.

3.6. Open questions: Precision and branch selection

Estimating precise maps of ground truth values, as well as the branch selection (3.18), 

remains an essential problem for quantifying neuronal microstructure, and is currently an 

active topic of research. Recent experiments using advanced dMRI protocols have been 

either employing very strong diffusion gradients (e.g., on unique Connectome scanners with 

gradients up to 300 mT/m) [168], or adding “orthogonal” acquisitions such as extra-neurite 

water suppression by strong unidirectional gradients [257] or planar diffusion weighting 

[141], isotropic diffusion weighting [239, 253, 255, 256, 258, 259], and varying other 

parameters, such as the echo time [48] and the diffusion time [170, 260].

The choice of the branch, and an independent estimation of the compartment diffusivities Da 

and De
|| is of particular interest. Isotropic weighting (spherical tensor encoding) yields

S(b)/S0 = f e
−bDa + (1 − f )e

−b(De + 2De
⊥)

, (3.21)
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which seems to produce relations Da ≈ De
|| + 2De

⊥ due to an empirically small iso-weighted 

kurtosis of signal (3.21) [196, 258]. While this can be interpreted as favoring one of the 

branches, this relation cannot be used as a global constraint: Szczepankiewicz et al. [255] 

show it failing in thalamus (note however that thalamus is a GM/WM mixture). Another 

possibility for using orthogonal measurements to resolve the parameter estimation 

degeneracy is the application of double diffusion encoding (DDE), see Sec. 4, with 

promising preliminary results [238]. In rat spinal cord, DDE seems to indicate the branch-

merging case Da ≈ De
|| [257]. Note that such assumption is made in NODDI (section 3.4.2), 

albeit this model fixes (rather than fits) the compartment diffusivities to equal values. This 

assumption does not seem to universally hold in the human brain [47]. As the ultimate goal 

of bio-physical modeling is to study pathological and other changes (e.g., aging and 

development), it is imperative to estimate the compartment diffusivities independently, 

because changes in one of them may indicate the earliest sign of a pathological or other 

process of interest.

Overall, the Standard Model presents a microcosm of parameter estimation challenges: a 

relatively low SNR in clinical dMRI coupled with both discrete and continuous 

degeneracies, require careful validation and prompt employing the widest possible arsenal of 

measurements, to probe parameters from as many vantage points as possible. Achieving 

compartmental specificity, crucial in studying pathological and other processes, remains a 

difficult but worthy goal.

4. MULTIPLE DIFFUSION ENCODINGS

The whole is greater than the sum of its parts

Aristotle

4.1. MDE basics

Multiple diffusion encoding (MDE) generalizes the Stejskal-Tanner (Sec. 1.4) pulse 

sequence design by adding one or more extra diffusion weighting blocks, as illustrated in 

Fig. 10 for the case of double diffusion encoding (DDE) [132, 261–263]. Figure 10 also 

defines the main pulse sequence parameters for DDE, which in addition to the familiar 

pulse-gradient parameters of each block, includes a mixing time τ.

In the following, we will restrict our attention to the narrow pulse limit. Generally, each 

diffusion weighting block is characterized by an independent diffusion wave vector qn and 

diffusion time25 tn, and the mixing times define delays between blocks. Thus, a rich set of 

experimentally controllable parameters can in principle enable qualitatively different ways 

of probing the microstructure, as compared with the conventional, single diffusion encoded 

(SDE) sequences.

25Set by the corresponding interval Δn between the fronts of the gradient pulses, Fig. 10. For finite pulse width δn, see footnote 13 in 
Section 2.
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The fundamental question of the information content of MDE signal SN relative to a set of 

independently acquired SDEs S1 can be formulated using an example of the DDE signal S2 

(here we ignore the trivial e
−R2t

 factors, assuming the unweighted signal to be normalized to 

unity):

S2(q1, q2, t1, t2, τ) ≡ e
iq1 ⋅ [r(0) − r(t1)] + iq2 ⋅ [r(t2 + τ) − r(t1 + t2 + τ)]

= =? Gt2; q2
Gt1; q1

.

(4.1)

Technically, the above question is as follows: When does the convolution of the local 

propagators (1.5) defined in Sec. 1.4 contain more information than the product of the voxel-

averaged translation-invariant SDE propagators (1.7)?

Let us first outline the three cases when Eq. (4.1) holds, i.e., there is no extra information in 

MDE relative to SDE.

a. Microscopic translation invariance: If 𝒢t; rb,ra ≡ 𝒢t; rb − ra depends only on the 

relative displacement, the above equality holds for any Gt,r. Of course, this is true 

for the Gaussian diffusion, when Gt,q is described by Eq. (1.8), but the statement 

is much broader, since its proof (by change of integration variables r1 = r1b – r1a 

and r2 = r2b – r2a) involves only the translation invariance requirement. 

Practically, this means that the time scales involved in Eq. (4.1) exceed the time 

needed for the coarse-graining to restore sample’s translation invariance, whether 

this implies the Gaussian fixed point (1.8) or its anomalous counterpart, cf. Sec. 

1.9.

b. Long mixing time limit of a single pore: If all spins are confined in the same pore 

of volume V, and τ exceeds the time to diffuse across the pore size, the “mixing” 

propagator 𝒢τ; r2a,r1b
1/V approaches a constant, and Eq. (4.1) again 

factorizes, irrespective of the (non-translation-invariant) functional form of 

𝒢t; rb,ra
.

c. Weak diffusion weighting: Equality (4.1) holds for any 𝒢 at the level of 𝒪(q2)
[264], cf. Sec. 4.2 below. For this statement to hold, it is only required that the 

cumulant expansion (1.10) has a nonzero convergence radius. (This common 

property breaks down for a diffusion propagator of a stretched-exponential form, 

whose assumptions contradict experimental evidence [70].)

Generally, the above requirements do not hold — tissues are microscopically not translation-

invariant, a voxel can contain multiple pores of various shapes (cf. Sec. 4.3 below), and 

diffusion weighting can be strong, so that the 𝒪(q2) terms are relevant. This justifies using 

MDE to obtain extra information.
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To get a feel for the difference between DDE and SDE, it is instructive to consider the long 

mixing time limit τ →∞ in a system of disconnected pores. The average over Brownian 

paths splits into two parts: an average …  over paths within a single pore, followed by an 

average (denoted by an overbar) over pores α = 1; …, with volume fractions wα = Vα/V 

adding to unity. For example, for the SDE signal (1.6):

S1(q1, t) = e
iq1 ⋅ (r(0) − r(t))

paths in pores
≡

pores: α
wα〈e

iq1 ⋅ (r(0) − r(t))
〉paths in α .

For DDE, spin displacements in each of the diffusion-weighting blocks become independent 

of one another within each pore in the limit τ → ∞ 𝒢τ; r2a,r1b
1/Vα if r2a and r1b in Eq. 

(4.1) are from the same pore α with volume Vα, while the probability to hop between pores 

is zero: 𝒢τ; r2a,r1b
≡ 0 if r2a and r1b belong to different pores α ≠ β. This effective 

Kroeneker δαβ eliminates the cross-terms between different pores that are present in the 

right-hand side of Eq. (4.1):

S2(q1, q2, t1, t2, τ) = e
iq1 ⋅ (r(0) − r(t1)) + iq2 ⋅ [r(t2 + τ) − r(t1 + t2 + τ)]

=
α

wα e
iq1 ⋅ (r(0) − r(t1))

α
e

iq2 ⋅ (r(t2 + τ) − r(t1 + t2 + τ))

α
.

(4.2)

Here the subscript “paths in α” was replaced with α for brevity. On the other hand, for the 

product of two SDE’s we have

S1(q1, t1)S1(q2, t2) = e
iq1 ⋅ (r(0) − r(t1))

⋅ e
iq2 ⋅ (r(t2 + τ) − r(t1 + t2 + τ))

=
α

wαwβ e
iq1 ⋅ (r(0) − r(t1))

α
e

iq2 ⋅ (r(t2 + τ) − r(t1 + t2 + τ))

β
≠ S2(q1, q2,

t1, t2, τ) .

(4.3)

The physical meaning of the above equations is as follows: it is not possible in general to 

split the coherent averaging of the product (4.2) over pores into the product of the averages 

(4.3).

The coherent disorder averaging of the propagators in equation (4.4) is also the reason that 

the effective medium theory [27, 33] for the disorder-averaged SDE propagator (1.6) has to 

be further augmented to incorporate the coarse-graining effects for MDE, relevant at finite τ.
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4.2. Equivalence between MDE and SDE at 𝒪(q2)

Historically, DDE was noted to provide a method for determination of compartment 

dimensions [263] at low diffusion weighting in the limit of zero mixing time and long 

diffusion times. Taylor-expanding Eq. (4.2) in this limit, Mitra et al. [263] showed that in a 

system of identical pores

S2(qn1, qn2, t, t, 0 )
t ∞ 1 − 1

3 q2 r2 1 + 2 cos2θ
2 , (4.4)

where θ is the angle between the directions n1 and n2 of the diffusion wave vectors, and 

r2 = ∫ drdr′(r − r′)2/ 2 V2 ≡ ∫ dr(r − rcm)2/V is the pore mean squared radius of gyration 

(rcm is pore center-of-mass), a measure of pore size.

Hence, a measure of the pore size can be determined from the signal dependence on 

diffusion wave vector angle in isotropic systems, or more simply from the signal difference 

between parallel and antiparallel diffusion wave vectors.

Equation (4.4) has since been generalized to take into account, e.g., partial volume, multiple 

concatenations, pulse sequence timings (e.g., finite gradient width) for various geometries 

[265–271]. This has later been demonstrated by several groups in model systems and 

biological samples ex vivo [272–278], and in vivo in humans [277, 279–281].

However, it was recently realized [264] that this property, i.e., the sensitivity (4.4) to pore 

gyration radius, is a general feature of any diffusion-weighted signal at the 𝒪(q2) level, and 

hence it does not rely on information beyond that already contained in the SDE signal, 

which in the same regime behaves as [282]:

S1(q, t)
t ∞ 1 − 1

2 qiq j (xi(t) − xi( 0 ))(x j(t) − x j( 0 )) = 1 − q2 r2 . (4.5)

More generally, it was shown [264] that up to order 𝒪(q2),

lnS2(q1, q2, t1, t2, τ) = − q1iq1 jDi j(t1)t1 + q2iq2 jDi j(t2)t2
+ q1iq2 j[Di j(t1 + t2 + τ)(t1 + t2 + τ) + Di j(τ)τ − Di j(t1 + τ)(t1 + τ) − Di j

(t2 + τ)(t2 + τ)]
+ 𝒪(q4),

(4.6)
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where Dij(t) is the cumulative diffusion tensor, Eq. (1.13). This explicitly demonstrates that 

the signal is fully characterized by the time-dependent diffusion tensor, a quantity which is 

obtainable from the SDE acquired at a few diffusion times.

This statement is valid for any diffusion sequence up to second order in the diffusion wave 

vector [264, 283], and is a consequence of the existence of the cumulant series, whose 

lowest order can be completely reproduced by knowing the diffusion tensor for all t or, 

equivalently, for all ω [18, 131],

lnS = − 1
2 vi(t1)v j(t2) qi(t1)q j(t2)dt1dt2, (4.7)

where q(t) is the time integral of the arbitrary-shaped applied gradient, v is the molecular 

velocity, v = ∂tr, and no bulk flow is assumed as usual. The (symmetric) autocorrelation 

function vi(t1)vi(t2) ≡ 𝒟i j( t1 − t2 ) is constructed out of its retarded counterpart

𝒟i j(t) ≡ θ(t) vi(t)v j( 0 ) = ∂2

∂t2
[tDi j(t)] (4.8)

defined by generalizing Eqs. (2.6) and (2.14) to the anisotropic case.

The function (4.8) is generally nonlocal in t [18, 19, 27, 33, 123, 131, 284, 285]. Figure 11 

illustrates how this nonlocality, integrated in Eq. (4.7), gives rise to the cross-term q1iq2 j

(second line of Eq. (4.6)); this term disappears in the Gaussian diffusion limit, when 

vi(t1)v j(t2) = 2 Di jδ(t1 − t2) is infinitely narrow, and the function (4.8) is concentrated along 

the diagonal. Hence, the cross-term q1iq2 j directly probes the time-dependence of the 

diffusion coefficient in Eq. (4.6), cf. Section 2.

4.3. Extra information relative to SDE at 𝒪(q4) and beyond. Microscopic anisotropy

At larger values of the diffusion weighting, double diffusion encoding was shown from the 

beginning to have the ability to characterize microscopic anisotropy (μA) in systems which 

are macroscopically isotropic, Fig. 12, see panel (c). Thus, in an early application of the 

sequence by Cory et al. [262], DDE was used to quantitatively measure the eccentricity of 

yeast cells, which was shown to be directly related to the difference in signals acquired with 

parallel and perpendicular diffusion wave vectors. This has since been explored by many 

authors, e.g., in phantoms [286, 287], ex vivo tissues [288, 289], and in vivo [277, 290, 291].

The basic sensitivity to anisotropic pores can be understood already from Eq. (4.2) in the 

long diffusion time and long mixing time limit

S2(q1, q2, t1, t2, τ) = χα(q1) 2 χα(q2) 2 (4.9)
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where χα(q) is the Fourier transform of the pore structure function, defined as χα(q) ≡ 1/Vα 
inside a pore and 0 otherwise [292].

For spherical pores, the structure function is isotropic, hence χα(q) does not depend on the 

direction of q. For anisotropic pores, say ellipsoids, the anisotropic structure functions χα(q) 

in Eq. (4.9) ensure that the result depends on the directions of q1 and q2. This is because 

diffusion in the two directions is generally correlated when pores are nonspherical.

If the overall system is macroscopically isotropic, i.e., the orientations of the individual 

pores are randomly distributed (Fig. 12c), the signal will be unaffected by rotations of the 

sample or of the laboratory system of reference, but the dependence on the relative angles 

between q1 and q2 will survive the pore averaging in Eq. (4.9). Mathematically speaking, 

this is because the two terms in the product |χα(q1)|2|χα(q2)|2 are not independent for a 

given pore, and hence the average of the product is different from the product of averages.

A convenient measure of the eccentricity of the pore space (microscopic anisotropy) can 

therefore be found from the difference of DDE signals acquired with parallel and 

perpendicular wave vectors q1 and q2. In the presence of macroscopic and microscopic 

anisotropy, the signal will depend on the orientations of both q1 and q2, and microscopic 

diffusion anisotropy can no longer be extracted simply from the difference between parallel 

and perpendicular diffusion wave vectors. The rotationally invariant way to circumvent this 

(cf. Sec. 3.5 above) is to powder average the signal, analogously to how the K0 invariant was 

introduced in Sec. 3.5.1 (although, technically, the averaging here is over the SO(3) group 

instead of a 2-sphere), and practical recipes for doing this were proposed in refs. [288, 293, 

294]. Microscopic diffusion anisotropy can then be defined as the difference between (log 

of) the powder averaged signals acquired with parallel and perpendicular diffusion wave 

vectors [288].

lnS2(q1,q2) = − (q1iq1 j + q2iq2 j)Di j(t)t

+ D2

6 (q1iq1 jq1kq1l + q2iq2 jq2kq2l)W i jkl(t)

+ 1
4 q1iq1 jq2kq2lZi jkl(t)

(4.10)

where W is the kurtosis tensor as defined in [61] from the cumulant expansion (1.10) of the 

SDE propagator, whereas Z is a rank-4 tensor, unique to DDE, defined as

Zi jkl = 4 t2 Di j
α Dkl

α − Di j
α Dkl

α . (4.11)

The tensors Di j
α (t) refer to the microscopic t-dependent diffusion tensors characterizing 

diffusion within the pores, and the SDE-measured overall diffusion tensor Dij(t) entering the 

first line of Eq. (4.10) is an average over all pores,Di j(t) = Di j
α (t) ≡ ∑αωαDi j

α (t).
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The new tensor Z, Eq. (4.11), accessible with DDE (and inaccessible with SDE), is 

proportional to the covariance tensor of microscopic diffusion tensors. Microscopic diffusion 

anisotropy, defined as the difference between log of the powder averaged signals acquired 

with parallel and perpendicular diffusion wave vectors, can then be expressed as (see [288])

ε = 1
60 3 Zi ji j − Zii j j + 2 t2( 3 Di jDi j − DiiD j j)

= t2
15( 3 Di j

α Di j
α − Dii

αD j j
α ) = 3

5 t2var σα .

(4.12)

In the last equality, the set σα ≡ σα, i i = 1
3  denote the eigenvalues of Dα, and

var σα ≡ 1
3 i = 1

3
σα, i

2 − 1
3 i = 1

3
σα, i

2
. (4.13)

With the above definition, 3 tr (Dα)2 – (trDα)2 = 9 var {σα} in Eq. (4.12). The anisotropy 

metric ε has dimensions of [length]4. These somewhat awkward dimensions have a 

historical root in DDE eccentricity measurements [262]. While ε ≥ 0, in practice it is often 

estimated from the difference of signals, which can become negative due to noise.

As an example, for randomly oriented (and identical) axially symmetric domains, such as 

fibers with (timedependent) diffusivities D||(t) and D┴(t), microscopic diffusion anisotropy 

becomes

ε = 2
15 t2 D⊥(t) − D (t) 2 . (4.14)

If the domains are different, the corresponding Eq. (4.14) should be further averaged over 

them, cf. the var σα  term in Eq. (4.12). Microscopic diffusion anisotropy hence depends 

explicitly on diffusion time, but tends to the geometric measures of pore shape anisotropy as 

the diffusion time increases, since for any confined region of size a, D(t) ~ a2/t, and t 
asymptotically drops out from Eq. (4.14). From the time dependence of the microscopic 

diffusion anisotropy, non-Gaussian effects of the individual compartments can be revealed 

by the time dependence of the compartmental (microscopic) diffusion tensors.

Practically, the anisotropy metric (4.12) can be estimated from knowledge of the full Z 
tensor, or by the difference of the powder averaged log signals with parallel and 

perpendicular diffusion wave vectors. It has an advantage of being additive (cf. the pore 

average in Eq. (4.12)): if several distinct types of pore populations are present in the sample 

(e.g., a distribution of D┴ and D|| in Eq. 4.14), ε simply becomes the volume-weighted 

mean over the corresponding ε from each of the populations. This is an advantage since it 

eases the interpretation; however, the disadvantage is the dependence on size of the pore in 
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addition to its anisotropy. This has the additional consequence that ε is strongly biased by 

the larger pores: Since wα ~ a3 and εα ~ a4 for a pore of size a, the population averaged 

eccentricity scales as ε a7/a3, heavily preferring the tail of the pore size distribution, — and 

hence susceptible to the mesoscopic fluctuations introduced in Sec. 2.5 above, cf. Eq. (2.39).

To factor out the pore sizes, normalized dimensionless measures of microscopic diffusion 

anisotropy were introduced [288, 293, 296], such as the microscopic fractional anisotropy, 

μFA:

μFA ≡ 3
2

(σ1 − σ)2 + (σ2 − σ)2 + (σ3 − σ)2

σ1
2 + σ2

2 + σ3
2

= ε

ε + 3
5 t2 1

3 tr D
2 .

(4.15)

In the previous example with axially symmetric domains, microscopic fractional anisotropy

μFA = 2
3

D − D⊥

D 2 + 2 D⊥
2 , (4.16)

whereas fractional anisotropy FA is modulated also by the fiber orientation distribution 

function [288, 297], and only recovers μFA when the fibers are all coherently aligned. 

Another metric which has been suggested to be of biological importance [253, 255], is the 

variance in isotropic diffusivity,

V I ≡ Dii
α/ 3 2 − Dii

α/ 3 2 = 1
36 t2

Zii j j (4.17)

which can also be inferred from the Z tensor [133, 298]. When diffusion within the 

individual pores is Gaussian, other methods such as the so-called magic angle spinning of 

the qvector (q-MAS) [299] can also be used to estimate the diffusion tensor covariance [133, 

300].

4.4. Concluding remarks on MDE

As we can see, MDE can potentially provide unique extra information relative to SDE. 

However, this information content only starts at the level of 𝒪(q4), Eq. (4.10) (in addition to 

the standard SDE 𝒪(q4) terms), and hence to claim the true novelty of the information, it has 

to be properly identified relative to the SDE measurements with similar scan parameters 

(timings and gradients). Clarifying the advantages of MDE is practically essential in the 

view of much reduced SNR due to a notable increase of the echo time needed for the 

multiple gradients to play out.
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Overall, the main advantage of MDE so far seems to lie in its ability to detect and quantify 

microscopic diffusion anisotropy. In particular, the advantage of the DDE metrics of 

microscopic diffusion anisotropy (e.g., Eq. (4.12)) is that they do not rely on concrete 

assumptions regarding pore shapes.

Of course, if a detailed model of microstructure is available, e.g., of the Standard Model 

form (Section 3), microscopic diffusion anisotropy is directly accessible in terms of model 

parameters (which can in principle be determined using SDE). However, even in this case, 

MDE adds value by providing an “orthogonal” way of being sensitive to model parameters 

— and, like in the SM case above, Sec. 3.6, it can provide rotationally invariant independent 

relations between parameters, which can help lift the parameter estimation degeneracies 

[238].

So far, the existing MDE models have been calculated in the limit of either Gaussian 

diffusion in all compartments, or in the ti → ∞ limit (e.g., closed pores). Importantly, the 

transient effects, cf. Section 2, have not yet been properly accounted for in the MDE 

framework. In particular, the structural disorder-induced power-law tails in Dinst(t), or, 

equivalently, in 𝒟(ω), such as the ones originating due to disordered axonal packing in the 

extra-axonal space [23, 34], will contribute to the “irreducible” MDE effects (that go beyond 

the product of a few SDE signals). Taking such transient processes into account seems a 
priori as crucial for the interpretation of MDE measurements, as it has been for the SDE — 

e.g., in the context of recent re-interpretation of the axonal diameter mapping results (cf. 

Sec. 2.4.2 above). The relevant coarse-graining formalism of the effective medium theory 

[23, 27, 33] seems perfectly suitable for the task — but it has not yet been developed.

5. OUTLOOK AND OPEN QUESTIONS

There is nothing more practical than a good theory

L. Boltzmann

5.1. To model or not to model?

We are writing this Review at a transformational moment, when our field of quantitative 

dMRI is experiencing a revolution due to unprecedented quality of hardware and novel 

acquisition methods, enabling us to observe very subtle physical effects, even in human 

subjects and potentially in patients.

Interpreting these effects in terms of the tissue microarchitecture is highly nontrivial; it is 

safe to say that the theoretical challenge has been so far greatly underappreciated. This, 

however, may swing the pendulum the other way, towards an “anti-modeling” point of view: 

Since, according to a widespread refrain, “biology is so much more complicated that 

anything physicists have ever studied”, there is little hope for the quantitative understanding 

of such effects, and the best we can do is to stay at the level of “representations” (cf. Sec. 

1.7) and to draw empirical correlations between parameters of such representations (e.g. 

mean diffusivity or fractional anisotropy) and the clinical disease scores.
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One of the messages of our Review is that the whole history of Physics in the 20th century 

offers the case for optimism. The quote from a nuclear physicist (before Section 1) has been 

a universal refrain for our sustained ability to understand nature’s complexity, step-by-step, 

from the origins of elementary particles to the vast scopes of the Universe. The essence of 

the effective theory way of thinking is that one certainly does not need to understand 

everything about the world in order to understand some corner of its parameter space really 

well. We certainly can quantify tissue microarchitecture without uncovering the origins of 

the human conscience or mapping full details of the brain’s biochemical machinery. Too 

often, “biology is way more complex than all your models” has been merely an excuse not 

to develop better models.

We reject this excuse [70]. We believe that having appropriate theoretical description of 

diffusion in tissues at the mesoscopic scale is not a luxury at this point — rather, this is an 

indispensable scientific method of investigation into pathological processes 2–3 orders of 

magnitude below nominally achievable resolution of MRI in any foreseeable future — or, in 

fact, ever, since the MRI resolution is stringently bounded by physical and physiological 

limitations that have been largely reached by now. The parallels with superresolution 

microscopy [301] are quite obvious; that discipline took a century to develop, based on 

employing models and prior information. Our task is harder but, arguably, can lead to even 

more impactful advances.

With that in mind, let us outline 10 exciting unresolved problems, focussing on which, to the 

best of our understanding, will propel our field forward.

5.2. Ten problems for mesoscopic dMRI

1. Apparent vs. genuine diffusion metrics: What are the confounding effects of 

mesoscopically varying R1(r), R2(r), and Ω(r) in the mesoscopic Bloch-Torrey 

equation (1.1) on the observed diffusion metrics, in the spirit of refs. [13–16]? 

Can we develop a multi-modal mesoscopic imaging framework able to self-

consistently quantify all these mesoscopic quantities and disentangle their effects 

in the apparent diffusion coefficients and higher-order metrics?

2. Relation between time-dependent D┴(t) and its tortuosity limit D∞, and the 
geometric parameters of realistic axonal packings: As the time dependence of 

the diffusion transverse to fiber tracts is dominated by the extra-axonal water 

(Section 2), the natural question is what structural changes (e.g. demyelination, 

axonal loss) can affect this time dependence, as well as D∞. This is a difficult yet 

clinically impactful inverse problem [219], whose approximate solution, relying 

on the ideas of coarse-graining and renormalization, has so far only been 

obtained in the t → ∞ limit [220].

3. Origin of structural disorder along the neurites: What causes the time 

dependence along the fibers or in the gray matter? Is it varicosities, beads, 

synaptic boutons, undulations, or something else? Which of these structural 

units’ changes in pathology can be detectable?
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4. Parameter estimation challenge for the Standard Model: How many 

Gaussian compartments do we have to include? For increasing the precision, it 

looks like we need orthogonal measurements, such as MDE (e.g., isotropic 

diffusion weighting), and varying echo time. What is an optimal clinically 

feasible measurement protocol?

5. Time-dependent rotationally-invariant framework: Combining the ideas of 

Sections 2 and 3 can lead to describing each fiber fascile in terms of the non-

Gaussian propagators (inside and outside the neurites) with the corresponding 

time-dependent diffusion, kurtosis, etc, cumulant tensors; such fascicles then 

naturally combine into the SM-like signal based on the fiber ODF in a voxel. 

This difficult parameter estimation problem may offer an all-encompassing 

description of the diffusion signal measurable with dMRI in the brain.

6. Permeability/exchange time for the neurites: How well we can approximate 

compartments as nonexchanging? At which time scales this assumption breaks? 

The answer most likely will be different for gray and white matter, and for 

different brain regions and the degree of myelination.

7. Standard Model for GM: Can we apply SM as introduced in Section 3 to gray 

matter in vivo at clinical diffusion times, or should we modify the 

compartments? Do we have to include exchange, and if yes, then at which level 

of complexity (e.g., Kärger model or beyond)?

8. EMT for MDE: Development of the effective medium theory framework [27] 

for the “disorder-averaging” involved in the multiple diffusion encoding signal 

(Section 4). Which physical effects, from the EMT standpoint, are best captured 

using MDE, or are completely absent in the SDE?

9. Signal vs. noise: As the saying goes, “noise is signal”. The fundamental question 

is to separate the thermal noise, imaging artifacts, as well as the genuine 

differences between parameters in voxels belonging to the same region of 

interest. Random matrix theory-based approaches [182, 183] offer an exciting 

prospect.

10. Mesoscopic fluctuations and biological variability: How different are the 

mesoscopic tissue parameters within a given region of interest? Their differences 

provide the “natural” minimal width for the parameter distributions within an 

ROI, in the limit of infinite SNR. Sometimes, relatively small differences in the 

mesoscopic parameters can translate into large differences of the dMRI metrics; 

the heavy sensitivity of the signal from water inside axons to the tail of the 

axonal diameter distribution [23] (Secs. 2.5, 4.3) can lead to the mesoscopic 

fluctuations for a sufficiently small voxel, akin to a similar phenomenon noted 

earlier within condensed matter physics [7]. Studying these fluctuations can 

provide fundamental insights on the optimality and robustness of the 

organization of neuronal tissue microarchitecture, as well as offer practical limits 

on our detection capabilities.
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Appendix A:: Causality and analytical properties in the frequency domain

As stated after Eq. (1.4), the diffusion propagator 𝒢t; r, r0
 is the density of particles released 

at a point r0 at the moment t = 0. While the diffusion equation is often formulated for 

positive times only, t > 0, with an explicit initial condition, writing Eq. (1.4) for all times t is 

more convenient due to reasons that will become clear below. Being the response to an 

instant point source of particles, the diffusion propagator helps finding the particle density 

for an arbitrary source f (t, r) (“particle injection”), using the linearity of diffusion equation,

∂t − ∂rD(r)∂r ρ(t, r) = f (t, r) . (A1)

The solution takes the form of a t- and r-convolution,

ρ(t, r) = dt0ddr0𝒢t − t0; r, r0
f (t0, r0) . (A2)

which is straightforward to prove by acting with the bracketed operator from Eq. (A1) on 

𝒢t; r, r0
 under the integral. This solution explains the notion of causality that implies that the 

response ρ(t, r) follows the source, f (t0, r0), and it cannot precede it. This means that 

𝒢t − t0; r, r0
≡ 0 for t < t0. This is guaranteed by the proportionality of 𝒢t; r, r0

 to the step 

function θ(t), as stated after Eq. (1.5). Synonymous to causality is the notion that 𝒢t; r, r0
 is a 

retarded propagator, which implies that any perturbation, f, of the system propagates into the 

future, which is opposed to the formally possible advanced propagator for which 

perturbations propagate into the past.

Likewise, quantities D(t), Dinst(t) and 𝒟(t), entering Eqs. (2.10)–(2.14), are retarded, since 

they are identically zero for t < 0. In particular, the retarded velocity autocorrelator (2.6) has 

a physical meaning of a response of the current (sometimes called flux) J(t, r) of diffusing 

particles to that of a lump of particle density ρ(t, r) (the generalized Fick’s law), cf. ref. [27],
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J(t, r) = − dt0𝒟(t − t0)∂rρ(t0, r) + 𝒪 ∂r
3ρ . (A3)

Equivalently, in the Fourier domain, the convolution becomes a multiplication, cf. Eq. (2.8):

Jω, r = − 𝒟(ω)∂rρω, r + 𝒪 ∂r
3ρ . (A4)

In physics, the above retarded response functions are known as particular cases of the 

general linear response theory and the fluctuation-dissipation theorem [134, 302].

Our main goal in this Appendix is to investigate how causality, i.e., the retarded character of 

any response function that identically vanishes for t < 0, manifests itself in the frequency 

domain. We will now show that causality imposes a strict constraint on the analytical 

properties of its Fourier transform in the complex plane of ω. Namely, a retarded response 
must be an analytic function, i.e., it must have no singularities (e.g., poles or branch points), 

in the upper half-plane Im ω ≥ 0, Fig. 13 [134].

To show that, consider the inverse Fourier transform back to the time domain (having 𝒟(ω)
as an example):

𝒟(t) = dω
2 π e−iωt𝒟(ω), (A5)

and demand that the resulting 𝒟(t) ≡ 0 for t < 0.

The integration in Eq. (A5) is performed along the Re ω axis of the complex plane of ω (i.e., 

over all the frequencies). Because of the Fourier exponential, one has to close the integration 

contour along an infinite semi-circle on which e–iωt → 0 (Jordan’s lemma),26 and then 

shrink this contour to single out contributions of all singularities, according to Cauchy’s 

theorem. Equivalently, we can view the Fourier integration as proceeding along the equator 

of the Riemann sphere (topologically equivalent to the complex plane with an added point at 

infinity); in this case, the fact that the Re ω axis corresponds to a closed contour is more 

obvious. Cauchy theorem again applies, and the Jordan lemma dictates in which hemisphere 

— top or bottom — of the Riemann sphere the contour should be shrunk from the equator to 

encompass the singularities.

For negative times, t < 0, e–iωt diverges when Im ω → –∞, and vanishes when Im ω → 
+∞, which dictates closing the integration contour in the upper half of the ω plane, 26 In 

Fig. 13. For causality to hold, there must be no singularities in the upper half-plane, in which 

case the integration contour is constricted to a point, yielding 𝒟(t) |t < 0 ≡ 0. All singularities 

26In Eq. (A5), the sign in the exponential e–iωt is chosen in the tradition of physics; the opposite sign would invoke the interchanging 
of the upper and lower halves of the ω plane.
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of 𝒟(ω) must then be present in the lower half of the ω plane, where the contour is closed for 

t > 0. The presence of singularities is necessary, since a function without any singularities on 

a Riemann sphere is a constant.

Let us illustrate the above general considerations by analyzing the analytical structure of the 

retarded propagator of a uniform diffusion equation. Eq. (1.5) with a constant D(r) = D0 

takes the form

∂t − D0∂r
2 Gt; r

(0) = δ(t)δ(r), (A6)

where we selected r0 = 0 due to translation invariance. The above equation in the Fourier 

domain G(0)(t, r) = ∫ dω
2 π

ddq
( 2 π)d

eiqr − iωtGω, q
(0)  becomes algebraic, as the differential operators 

∂t → –iω and ∂r → iq become diagonal:

−iω + D0q2 Gω; q
(0) = 1 ,

with the solution of a Lorentzian form

Gω; q
(0) = 1

−iω + D0q2 . (A7)

This solution preserves causality, since its only singularity, at ω = –iD0q2, resides in the 

lower half-plane of ω. For t > 0, closing the integration contour in the lower half of the 

complex plane and using the residue theorem gives the Gaussian propagator in the qt 
representation, Eq. (1.8).

The above consideration shows that causality is tightly related to the integration in the time 

domain. We now inspect this relation closely, first without explicit reference to diffusion 

propagator, and then applying it to Eqs. (2.12) and (2.13). While the differentiation in the 

time domain of any function f(t) corresponds to the multiplication with –iω in the Fourier 

domain, ∂t f (t) − iω f (ω), the inverse of the differential operator — i.e., the factor 1/(–iω) 

— corresponds to an indefinite integration (the antiderivative) in the time domain. However, 

infinitesimal shifts of the pole at ω = 0 result in different integration limits of definite time 

integrals. Considering both possible shift directions, the same integration technique as above 

gives the Fourier transformation:

dω
2 π

e−iωt

−i(ω ± iε) = ± θ( ± t), (A8)
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where θ(t) is the unit step function, and ε → +0. For an arbitrary function f(ω), which is 

integrable on the real axis of ω, the product f(ω)=(–iω±ε) is Fourier-transformed according 

to the convolution theorem,

f (ω)
−iω + ε dt′ f (t′)θ(t − t′) =

−∞

t
dt′ f (t′), (A9)

f (ω)
−iω + ε − dt′ f (t′)θ(t′ − t) = −

t

∞
dt′ f (t′) . (A10)

Note that differentiating both Eqs. (A9) and (A10) with respect to t yields back f(t). Eqs. 

(A9) and (A10) show that while the addition of ε is unimportant for the Fourier transform of 

derivatives, it is crucial for inverting differential operators. Shifting the pole of f(ω)/(–iω) 

downwards from the real axis results in the causal integration (A9), for which the resulted 

integral up to any time moment t depends on the integrand in the past, t′ < t. The opposite 

shift results in the dependence on the future, t′ < t. (The results differ by f |ω = 0 = ∫ dt f (t), 

and coincide if f|ω=0 = 0, when f (ω)/ω is not singular.) Obviously, the first choice is 

adequate for the majority of solutions to equations describing the time evolution of physical 

quantities such as Eq. (1.5), or Eqs. (2.12) and (2.13). The notation ε with ε → +0 is often 

abbreviated to simply +0 as it is done in Eqs. (2.12) and (2.13).

Appendix B:: OG with a finite number of pulses

Consider the OG gradient wave form g(t) = g0cos(ω0t − ϕ) with arbitrary initial phase ϕ and 

N oscillations, such that the total gradient duration T = N · 2π/ω0. The corresponding

g(ω) =
g0
2 e−iϕ ⋅ e

i(ω + ω0)T
− 1

i(ω + ω0) + eiϕ ⋅ e
i(ω − ω0)T

− 1
i(ω − ω0) , e

±iω0T
= 1, (B1)

results in qω = g(ω)/(−iω), such that the wave form acts as the following “filter” for D(ω) in 

Eq. (2.9):

q−ωqω =
g0

2( 1 − cosωT)
2 ω2

1
(ω − ω0)2 + 1

(ω − ω0)2 + 2 cos 2 ϕ
(ω − ω0)(ω + ω0) . (B2)

As qω and Eq. (B2) are not singular when ω → 0 and ω → ±ω0, we do not need to specify 

how the zeroes of denominators in Eq. (B2) are shifted. Hence, one can directly substitute 

Eq. (B2) into Eq. (2.9) and integrate with any 𝒟(ω) along the real axis.

However, to reveal the analytical structure, we find it useful to shift the frequency poles 

inside the square brackets by an infinitesimal positive imaginary part below the real axis, ω 
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→ ω + i0 in all the denominators, cf. Appendix A. As 𝒟(ω) is also analytic in the upper 

half-plane of the complex ω, Appendix A, the whole integrand in Eq. (2.9) remains analytic 

there. Hence, in the prefactor 1 − cos ωT, the terms 1 and − 1
2 eiωT can be dropped for T > 0, 

as they identically vanish when closing the contour in the upper half plane — we now see 

that their role was merely to maintain the T → −T symmetry of Eq. (2.9) with q−ωqω from 

Eq. (B2), which is forgone by this procedure. Hence, 1 − cosωT − 1
2 e−iωT, yielding the 

causal expression

lnS =
g0

2

4
dω
2 π

𝒟(ω)e−iωT

ω+
2

1
(ω+ − ω0)2 + 1

(ω+ + ω0)2 + 2 − 4sin2ϕ
(ω+ − ω0)(ω+ + ω0) , ω+

= ω + i0,

(B3)

which starts to mimic the functional form of Eq. (2.13) — and that’s the goal! Dropping 1 

and − 1
2 eiωT made the integrand in Eq. (B3) singular; however, the prescription how to go 

around its poles regularizes the result, which we obtain by a transformation into a sum of 

simple fractions. This yields the general relation between the intrinsic 𝒟(ω) and OG with N 
= ω0T/2π pulses:

lnS =
g0

2

2 ω0
2∫ dω

2 π 𝒟(ω)e−iωT 1
2

1
(ω+ − ω0)2 + 1

(ω+ + ω0)2 + 2 sin2ϕ
ω+

2

− 1 + 2 sin2ϕ
2 ω0

1
ω+ − ω0

+ 1
ω+ + ω0

.

(B4)

We can now see that the singularities in Eq. (B4) occur separately at ω = ±ω0, and at ω = 0 

for finite ϕ (when the gradient is not a pure cos wave form). Hence, we expect the response 

of 𝒟(ω) on these two frequencies. This response has the contributions of three distinct 

physical origins. The first two terms (in the braces) in Eq. (B4) yield the “pure OG” effect, 

that of the cos wave form with ϕ = 0 in the limit N → ∞. The second term describes the ω 
= 0 singularity due to the finite time-average component in q(t), q ≡ qω 0/T = (g0/ω0)sinϕ

sin ϕ present for ϕ ≠ 0, which is similar to the PG measurement. Not surprisingly, it yields 

the bPG D(t) ∝ D(T) sin2ϕ contribution via the exact relation (2.13), i.e., the narrow-pulse 

D(t) with the diffusion time t = T weighted by the PG b-value contribution 

bPG = q2T = (g0/ω0)2Tsin2ϕ, which vanishes for the cos wave form (cf. Eq. (7) in ref. [131]). 

Finally, the last term, representing a finite OG-linewidth effect, is small as 1/N, as we will 

now show.
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While the remaining calculations can be done using the correspondence of 

e
−i(ω − ω0)T

/(ω − ω0) in the limit T → ∞ with the delta-function, we proceed via a more 

transparent transformation to the time domain. We use the relations

dω
2 π

e
−i(ω − ω0)T

ω − ω0 + i 0 𝒟(ω) = − i
0

T
dt e

iω0t
𝒟(t), dω

2 π
e
−i(ω − ω0)T

(ω − ω0 + i0)2
𝒟(ω) =

0

T
dt e

iω0t
(t − T)𝒟(t)

valid for any retarded response functions 𝒟(t) and 𝒟(ω) related by the Fourier 

transformation (derived based on the property that a convolution in ω is a product in t, 
similar to how Eq. (A9) was derived). We can see that causality means that only t < T are 

integrated over, as expected. As a result, we transform Eq. (B4) into

−lnS = b ⋅ 0
T dt 1 − t

T 𝒟(t)cosω0t + 2 D(T)sin2ϕ

1 + 2 sin2ϕ
+ 1

2 πN 0

T
dt𝒟(t)sinω0t , b

=
πg0

2N

ω0
3 ( 1 + 2 sin2ϕ),

(B5)

where the b-value is calculated [131, 303] assuming constant 𝒟(ω) ≡ D0, such that 

𝒟(t) = D0δ(t − ϵ)|ϵ + 0 [27]. We can see that the total b = b|ϕ=0 + bPG is a sum of the pure 

OG and the pure PG contributions, since sin ω0t is orthogonal to a constant.

In the N ≫ 1 limit of a clear separation of time scales 2π/ω0 ≪ T, we can extend the upper 

integration limit T → ∞; using tcosω0t = ∂ω0sinω0t in the first term of Eq. (B5), we can 

separate the main contribution and the ~ 1/N correction:

−lnSN ≫ 1 ≃ b ⋅
Re𝒟(ω0) + 2 D(T)sin2ϕ

1 + 2 sin2ϕ
+ 1

2 πN
1 + 2 sin2ϕ − ω0∂ω0 Im𝒟(ω0)

1 + 2 sin2ϕ
,

𝒟(ω0) =
0

∞
dt𝒟(t)e

iω0t
.

(B6)

Here, the term ∝ D(T ) is exact due to Eq. (2.13), while setting ω = ω0 in 𝒟(ω) in the other 

two terms is precise up to ~ ω0/N. We can see that the first term in the square brackets of Eq. 

(B6) is a leading effect (it is not small when N → ∞); it gives the balance of the ω = ω0 and 

ω = 0 contributions with the “filter” weights defined by the phase ϕ in agreement with the 

general property of the second-order cumulant term, discussed after Eq. (2.9). The second 
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term, Im𝒟(ω0)/N, is suppressed as ~1/N. In the limit N → ∞, the imaginary part of 𝒟(ω)

does not contribute to the OG measurement [27].

There exists a case in which the 1/N term is comparable with the first one, namely, of a 

closed pore with a characteristic size ~a in the limit of low frequencies (long-times), 

ω0a2/D0 ≪ 1. In this limit, D(T) ~a2/T happens to be parametrically as small as the second 

term. More precisely, the second term~1/2πN of Eq. (B6) exactly cancels the 2D(T) sin2 ϕ 
contribution to the first term, and the net result is determined by Re𝒟(ω0) ω0

2. This was first 

noticed by Sukstanskii [303] via the time-domain calculation for a one-dimensional 

impermeable box. Such behavior, however, is completely general. Indeed, for a pore of 

arbitrary shape, the dispersive diffusivity is a sum over the eigenmodes of the Laplace 

operator,

𝒟(ω) = D0
k

Ck
−iω

βk
2D0/a2 − iω

Re𝒟(ω) |ω 0
k

Ck

βk
4 ⋅ ω2a4

D0
(B7)

with Ck and βk determined by the pore geometry [17, 103]; to the order 𝒪(ω), 
𝒟(ω) ≃ − iωμa2, D(T) = µa2/T, where the dimensionless parameter μ = ∑k Ck /βk

2 , and so 

both the D(T) and the Im𝒟(ω0) contributions to Eq. (B6) cancel each other exactly. The 

remaining quantity Re𝒟(ω0) ω0
2a4/D0, the leading effect, vanishes very fast (quadratically) 

in the low-frequency limit [17, 23, 103, 138, 177, 304–306] (this scaling was first observed 

by Stepisnik et al. [306] in porous media). For the relevant case of a cylinder of radius a, 

Ck = 2 / βk
2 − 1  and the sum ∑k

2
βk

4 βk
2 − 1

= 7
96  [21]. The estimate (B7) tells that OG 

(with any phase ϕ) is less efficient than PGSE in creating adequate diffusion weighting if 

one wants to measure sizes of small fully confining compartments, cf. text after Eq. (2.38).

Appendix C:: Probing the S/V limit with finite-N OG

Let us now use the general finite-N relation (B4) for the S/V model (2.16); this setup is 

practically relevant to study cell density in brain tumors [144, 145]. The intrinsic 𝒟(ω) in 

this limit can be obtained performing Fourier transform of the outcome of Eq. (2.14) [131]:

𝒟(ω) ≃ D0 1 −
S D0

Vd ⋅ eiπ /4

ω
𝒟(t) ≃ D0θ(t) δ(t) −

S D0
Vd ⋅ 1

πt
, (C1)

with the regularization θ(t)δ(t) = limη→+0 θ(t)δ(t − η) (Appendix D of ref. [27]). 

Substituting Eq. (C1) into Eq. (B5), using
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0

T dt
πt

e
iω0t

= 2
ω0

𝒞( 2 N) + i𝒮( 2 N) ,
0

T dt
πt

t
T cosω0t = − 1

4 πN
2

ω0
𝒮(

2 N),

(C2)

where the Fresnel integrals are defined in a standard way,

𝒮(x) =
0

x
dusinπu2

2 , 𝒞(x) =
0

x
ducosπu2

2 , (C3)

we obtain

−lnS = b ⋅
D0 1 − c(ϕ, N) ⋅ S

Vd 2
D0
ω0

+ 2 D(T)sin2ϕ

1 + 2 sin2ϕ
,

where b is given in Eq. (B6), and the finite-N correction factor

c(ϕ, N) = 2 𝒞( 2 N) + 3 + 4 sin2ϕ
2 πN 𝒮( 2 N) .

Here, the 1/ω2 term in Eq. (B4) yields the exact D(T ) according to Eq. (2.13) as discussed 

in Appendix B. In the “ideal OG” limit N → ∞, using 𝒞(∞) = 1
2 , we obtain c(ϕ, N ) 1 for 

any ϕ, such that Eq. (C4) yields Eq. (7) of ref. [131]. When, additionally, ϕ = 0, we obtain 

−lnS = b ⋅ Re𝒟(ω), cf. Eq. (2.17) in the main text.

We emphasize that performing the calculation in the frequency domain allows us to separate 

the time scales and identify the contributions to Eq. (C4) of two distinct physical origins. 

The D(T ) term is completely general — i.e., the applicability of Eqs. (C4)–(C5) only 

requires the period of the oscillation to be short enough so that the model (C1) applies; the 

whole gradient train T can be long and (practically, always) falls out of the short-time S/V 
limit. Often times, at that point one can set D(T) ≈ D∞. As discussed in Appendix B, the 

D(T) term appears because at finite ϕ, the OG wave form can be thought of as a pure cos 

wave form and a PG with diffusion time t = T [131]. Hence, Eq. (C4) allows one to probe 

the S/V ratio by keeping the period short, yet the total gradient train as long as needed, to 

accumulate the diffusion weighting b ∝ N, Eq. (B6).

If, additionally, the whole OG train T falls into the short-time limit, under a more stringent 

condition S/V D0T ≪ 1, then D(T ) is given by Eq. (2.16). In this limit, Eq. (C4) yields
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−lnS = bD0 1 − c(ϕ, N) ⋅ S
Vd 2

D0
ω0

, c(ϕ, N) =
c(ϕ, N) + 16

3 Nsin2ϕ

1 + 2 sin2ϕ
, (C6)

where the re-defined correction factor c(ϕ, N) corresponds to Eq. (14) of ref. [303], where the 

problem of finite-N correction in the S/V limit was first considered. It was noted there, that 

c(ϕ, N) nominally diverges for N → ∞ as N. It is clear that this divergence occurs due to 

the T scaling from D(T), and it eventually gets cut off when N becomes so large than D(T) 

falls out of the validity regime of Eq. (2.16). Hence, this spurious divergence is a result of 

defining c(ϕ, N) in ref. [303] by forcing Eq. (C6) to mimic the form of Eq. (2.16), instead of 

separating the physics at the two time scales, 2π/ω0 and T. The separation of scales 

identified in Eq. (C4) based on the general expression (B4) extends the validity of OG in the 

S/V limit far beyond the claim of ref. [303], “the high-frequency regime can be achieved 

only when the total diffusion time is smaller than the characteristic diffusion time” (implying 

S/V D0T ≪ 1), onto the practically relevant domain S/V D0/ω0 ≪ 1, for any ϕ. Note that 

for pure cos gradient, c( 0 , N) = c( 0 , N), due to the absence of the ω = 0 singularity in Eq. 

(B4), and Eq. (C6) agrees with Eqs. (C4) and (C5).
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FIG. 1. 
The mesoscopic scale in brain dMRI, as an intermediate scale between the elementary 

(molecular) and the macroscopic (resolution).
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FIG. 2. Diffusion as coarse-graining.
An example of a medium where the mesoscopic structure is created by randomly placing 

black disks of two different radii, rsmall = 1 μm and rlarge = 20 μm, top left panel. To obtain 

snapshots of the medium as effectively seen by the diffusing molecules at different time 

scales, we used a Gaussian filter with width L/2, where L(t) = 2 Dt, and ignored the time 

dependence of D(t) in the definition of diffusion length, using a typical value D = 1 μm2/ms 

for the illustration purposes (cf. Sec. 2.4 below).
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FIG. 3. 
The parameter space of dMRI is at least twodimensional: By increasing q one accesses the 

progressively higher-order diffusion cumulants, Sec. 1.8, whereas the dependence along the 

t-axis reflects their epvolution over an increasing diffusion length scale L Dt, Eq. (1.12). 

The b-value alone does not uniquely describe the measurement, unless diffusion in all tissue 

compartments is Gaussian; contour lines of b = q2t are schematically drawn in beige. Large-

q limits: Top-left is high-resolution limit L(t) ≪ lc, qlc ≫ 1, Sec. 1.5(i); middle is the 

L(t) ≳ lc, qlc ≳ 1 limit of probing the pore correlation function, Sec. 1.6. The hierarchy of 

dMRI models (pictures), cf. Fig. 4, as well as the cumulant representation with different 

number of terms, cf. Fig. 5, are superimposed. The decrease of the signal from axonal 

bundles parallel to the increasing gradient is shown by their darkening (top right). In Section 

2 we move along the t-axis at low q, and in Section 3 we move along the q-axis at 

asymptotically long t. Section 4 is devoted to effects beyond this diagram, contained in 

voxelaveraged products of propagators at different t and q.
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FIG. 4. Models are pictures…
Here they are drawn with coarse-graining occurring, roughly, from left to right. References: 

Mitra 1993 [32], universal short-t limit; Novikov 2014 [33], universal long-t behavior; 

Burcaw 2015 [23] and Fieremans 2016 [34], long-t behavior transverse and along WM 

fibers; Tanner 1978 [49], Powles 1992 [50], Sukstanskii 2004 [35], periodic 1-dimensional 

lattice; Novikov 2011 [51], random permeable barriers in any dimension, and its application 

to myofibers (Sigmund 2014 [52] and Fieremans 2016 [53]); Callaghan 1979 [54], first 

model of diffusion inside random narrow cylinders; Yablonskiy 2002 [55], diffusion in 

finite-diameter cylinders modeling lung alveoli; Stanisz 1997 [56], first model for WM fiber 

tracts made of ellipsoids; Assaf 2004 [57], CHARMED; Assaf 2008 [58], AxCaliber; 

Alexander 2010 [59], ActiveAx; Kroenke 2004 [36], NAA diffusion inside neurites. The 

widely adopted t → ∞ picture of narrow “sticks” for the neurites, embeded in the extra-

neurite space (the Standard Model): Jespersen 2007 [37], Jespersen 2010 [38], Fieremans 

2010 [39], Fieremans 2011 (WMTI) [40], Sotiropoulos 2012 (Ball and rackets) [41], Zhang 

2012 (NODDI) [42], Reisert 2014 (MesoFT) [43], Jelescu 2016 (NODDIDA) [44], Reisert 

2017 [45], Veraart 2017 (TEdDI) [48], Novikov 2018 (LEMONADE [46], RotInv [47]).
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FIG. 5. …while representations are formulas.
References: Le Bihan 1991 [60], first biexponential representation of dMRI signal from 

brain; Basser 1994 [31], diffusion tensor imaging (DTI); Jensen 2005 [61], diffusion kurtosis 

imaging (DKI); Kiselev 2011 [18], cumulant expansion; Novikov 2008 and 2010 [27, 62], 

effective medium theory (transverse relaxation and diffusion, correspondingly); Özarslan 

2013 [63], expansion in harmonic oscillator basis; Yablonskiy 2003 [64], inverse Laplace 

transform (multi-exponential representation). Anisotropic multi-exponential representations: 

Wang 2011 [65], diffusion basis spectrum imaging (DBSI); White 2013 [66], restriction 

spectrum imaging (RSI); Scherrer 2016 [67], distribution of anisotropic microstructural 

environments in diffusion-compartment imaging (DIAMOND).
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FIG. 6. 
General relations between the basic diffusion metrics:𝒟(ω), 𝒟(t), Dinst(t) and D(t), and the 

signal attenuation up to 𝒪(q2).
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FIG. 7. 
OGSE measurements in cortical GM: circles are data from average of 5 rats [123] and 

squares from 6 neonatal mice at 24 hours after unilateral hypoxic ischemic injury [126]. 

Red: normal rat brain and contralateral side of mouse brain. Blue: globally ischemic rat and 

ipsilateral side of hypoxia-ischemia injured mouse brain. PGSE data not shown. Dashed 

lines are fits from Fig. 4 of ref. [33], dotted lines are ω1/2 fits (shown as guide to the eye; 

power-law exponent fit for mouse data was not robust due to narrow frequency range). Note 

that while the absolute (ω) values differ between rat and mouse, the general features are 

similar: data is well described with ω1/2 behavior for normal and ischemic GM (except, 

possibly, the ischemic mouse, where major structural changes may have occurred in 24h); 

and the coefficient in front of ω (the slope) increases in ischemia, consistent with short-

range structural disorder increase along the neurites (e.g., due to beading).
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FIG. 8. The Standard Model of diffusion in neuronal tissue, Eq. (3.4).
In the t → ∞ regime (iii), elementary fiber segments (fascicles), consisting of intra- and 

extra-neurite compartments, are described by at least 4 independent parameters: f, Da, De
||

and De
⊥. CSF can be further added as the third compartment, cf. Eq. (3.5). Within a 

macroscopic voxel, such segments contribute to the directional dMRI signal according to 

their ODF 𝒫(n).
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FIG. 9. 
Comparison of NODDI (Sec. 3.4.2) and WMTI (Sec. 3.4.1) parameter evolution with age in 

human corpus callosum splenium [232]. A qualitatively (but not quantitatively) similar trend 

of continued increase in the intra-axonal water fraction fintra ≡ f was observed for both 

models, consistent with on-going myelination. WMTI displays a trend of increased fiber 

alignment (expressed by the orientation dispersion cos2ψ , derived from the intra-axonal 

diffusion tensor ), which could be a manifestation of continued pruning in the first year of 

life, while NODDI does not. The CSF fraction is set, fiso ≡ fCSF = 0, in WMTI.
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FIG. 10. 
(a) Example of a DDE sequence within the framework of a double spin echo. (b) The 

resulting gradient waveform obtained by multiplying each gradient by ( − 1 )
nπ, where nπ is 

the number of π pulses following the given gradient. In the text, we assume narrowpulse 

approximation, such that δi → 0, with the Larmor frequency gradients gi sufficiently large 

to yield finite qi = giδi (no summation over i).
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FIG. 11. 
Two-dimensional temporal integration involved in the second-order cumulant, Eq. (4.7) 

leading to Eq. (4.6) for the DDE measurement. Labels q1 and q2 indicate the time interval in 

which q(t) equals to q1 and q2, respectively; for simplicity, the vector indices are not shown. 

The green shaded area along the diagonal symbolizes 𝒟i j t1 − t2 , Eq. (4.8), where it 

significantly deviates from 0, with the width of this region set by the correlation time tc. The 

nontrivial cross-term q1iq2j in Eq. (4.6) arises from the off-diagonal quadrants. As this 

contribution is weighted with the velocity autocorrelation function, it tends to zero when the 

mixing time, τ (indicated by the thin lines along each dimension) becomes larger than the 

correlation time, τ ≫ tc. In particular, no non-trivial cross-term is present for Gaussian 

diffusion, for which tc → 0.
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FIG. 12. 
Examples of model systems considered in the text. In (a), a system of identical spherical 

pores is shown, whereas, in (b), the pores have a distribution of sizes. In (c), an 

approximately isotropic distribution of ellipsoidal pores is sketched and, in (d), the pores are 

coherently oriented. Systems (a)–(c) are macroscopically isotropic, system (d) is not. 

Systems (c) and (d) are microscopically anisotropic. Ensemble heterogeneity is only seen in 

systems (b) (size) and (c) (orientation). Here, spins contributing to the signal are assumed to 

only reside within the pores.
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FIG. 13. 
Analytical structure of a causal (retarded) response function on the complex plane of ω. 

When calculating the inverse Fourier transform such as Eq. (A5), the original integration 

contour over the real axis can be closed in the infinite semicircle with Im ω > 0 (light blue 

dashed line) when t < 0, according to the Jordan’s lemma. Causality then requires that no 

singularities are present in the upper half of the complex plane, in which case the integration 

contour can be shrunk to a point. For t > 0, the contour can be closed where Im ω < 0 (light 

red dashed line). This contour can be shrunk to encircle the singularities of the transformed 

function (red solid lines).
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